低挥发份劣质燃料循环流化床燃烧特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源紧缺、环境污染是整个人类社会面临的两个重大问题,低挥发份燃料的高效综合利用日益受到重视。本文对多联产半焦和石煤等低挥发份燃料的着火燃烧特性、CFB燃烧及污染物排放特性、循环流化床飞灰回燃特性进行了研究,从而为工业应用提供指导。
     采用SEM、氮吸附、压汞、固体压片红外光谱相结合的方法研究了多联产半焦的物理化学特性,结果表明:半焦和原煤相比,孔隙结构更发达,尤其是小尺度的大孔显著增多;氢键缔合的-OH或-NH、=CH等官能团减少,脂肪族CH、CH2和CH3减少,饱和酯、醛类、酮类、羧酸、烯烃、芳环及杂环化合物等物质减少,C-O基团化合物及乙烯类物质减少,甲基/亚甲基的数量比增大,含氧基团与芳香度含量之比降低。
     利用常压、加压热天平研究了不同半焦的着火燃烧机理,结果表明:随着热解温度或升温速率的升高,半焦的着火温度(Ti)升高,燃烧产物释放特性指数(r)减小,燃烧稳定性(Rw)降低,燃尽性能(Cb)提高,活化能(Ea)降低;随着反应压力的提高,半焦的着火温度降低,燃烧产物释放特性指数r增大,燃烧稳定性提高,燃尽温度先升后降,活化能先降后升,在压力0.8MPa时燃尽温度最高,活化能最低;粒径增大,则半焦着火温度升高,燃烧产物释放特性指数增大,燃烧稳定性先升后降,燃尽特性非单调变化,活化能非单调提高;焦煤比增大,则其着火温度先降后升,燃烧产物释放特性指数减小,燃烧稳定性降低,燃尽性能提高,活化能升高。另外,DAEM模型计算结果显示,半焦的活化能Ea随着质量损失率的增加而降低。
     在小型CFB试验台上进行了半焦燃烧及污染物排放特性试验,结果表明:焦煤比越大,S02、NO、N20的排放浓度越低;从850℃到940℃,随着温度的升高,NO排放量逐渐升高,N20排放量逐渐降低,但降低的趋势变缓;提高过量空气系数会导致NO、N20排放量增大;增大二次风率可降低NO、N20的排放;风量增大,炉膛烟气表观流速提高,NO排放浓度减小,N20排放浓度增大。
     针对有些循环流化床锅炉存在飞灰含碳量高和石灰石利用率低的问题,进行了劣质燃料水活化飞灰回燃特性研究。飞灰回燃不仅可以降低飞灰含碳量,而且可以提高脱硫剂的利用率。本文在小型循环流化床实验台上进行了一系列的飞灰回燃试验,研究了灰煤比(Ca/S比)、运行温度、飞灰活化方式、循环倍率、表观烟气速度等因素对脱硫效率和飞灰含碳量的影响,寻求合理运行参数,得到的试验结果可以指导工业运行。
     在前入研究的基础上,结合循环流化床流动特性、煤焦反应、污染物的生成与分解规律,建立了考虑飞灰再燃的CFB燃烧总体数学模型,并利用该模型对试验工况进行了模拟,分析显示计算结果与试验结果基本吻合。同时,运用该模型对CFB燃烧进行了预测,得到了采用飞灰回燃时,CFB系统的运行特点,为工业生产提供理论依据。
     最后,对CFB焙烧石煤灰渣提钒进行了初步探索,在一台小型流化床燃烧试验台上研究了不同配方灰渣料团的焙烧特性,着重考察了焙烧温度、焙烧时间、表观烟气速度、添加剂种类对焙烧成球率的影响,并对飞灰、底渣、床料进行收集采样,利用多种酸溶液对各种样品浸取提钒,研究了焙烧温度、焙烧时间、浸取方式对转浸率的影响。结果表明:采用水泥为添加剂,温度为930℃,焙烧时间为90 min,可得较高焙烧成球率和转浸率,钒总回收率约为55.1%。
Nowadays, energy shortage and environmental pollution are the two major problems that human are facing to, and efficient utilization of low-grade fuels has been highlighted for more special attention. The ignition and combustion mechanisms, combustion characteristics and pollution emission of multi-generation-semicoke and stone coal in CFB combustor were investigated systematically and intensively in the thesis. Furthermore, the characteristics of fly ash recycle in CFB combustor was also studied, which could play a guidancing role in industrial operation.
     The investigation on physicochemical characteristics of semi-coke was conducted with employing Scanning Electron Microscope (SEM), nitrogen adsorption, mercury porosimetry, infrared spectroscopy. And the results demonstrate that compared with parent coal, semi-coke has the following conspicuous changes:pore structure has been developed strongly, and the amount of pores increases significantly, especially for small-scale large pores. Many functional groups, such as OH, NH, CH, CH2 and CH3, reduce. Moreover, the contents of some chemical compounds, including saturated polyesters, aldehydes, ketones, alkenes, aromatic rings, heterocycles oxo-compounds, are all decreased too. CH3 to CH2 mole ratio increases, while the content ratio of oxygen-containing groups to aromaticity decreases.
     Atmospheric and pressurized thermogravimetry were employed to study the pyrolysis-ignition-combustion mechanisms of different semi-cokes, and the results show:With the increased gasification temperature or heating rate, ignition temperature (Ti) is increased, volatile release index (r) is decreased, combustion stability (Rw) is reduced, burnout performance (Cb) is enhanced, and activation energy (Ea) of semicoke is decreased. With the increased reaction pressure, Tt drops, r increases, Rw improves, Cb drops down after increasing, Ea rises after falling. When reaction pressure at 0.8MPa, burnout temperature is maximized, and Ea is minimized. With the increased average diameter of semi-coke particles, Ti and r increase, Rw fall after rising, Cb changes non-monotonically, Ea increases non-monotonically. With the increased char-to-coal ratio, Ti increases after falling, r and Rw decrease, Cb improves, Ea increases. Besides, calculation results from Distributed Activation Energy Model (DAEM) show that activation energy of semi-coke decreases with the increased mass loss rate.
     Experiments were carried out in a bench scale CFB combustor to investigate the combustion and pollution emission characteristics of semi-coke. It was found that the emission concentrations of SO2, NO and N2O would be decreased with the increased char to coal mass ratio. With the increased temperature from 850℃to 940℃, the emission concentration of NO is raised while that of N2O is cut down. With the increased excess air coefficient or the decreased secondary air rate, the emission concentrations of SO2, NO and N2O would be increased. With the increased superficial gas velocity, NO emission concentration decreases, while N2O emission concentration increases.
     At present, high carbon content of fly ash and low utilization ratio of limestone are the two main problems existing in some CFB boilers. The combustion of recycled fly ash could not only reduce the carbon content, but also increase the utilization ratio of limestone. Experiments on the combustion of the recycled fly ash, obtained from Guizhou Thermal Power Plant burning local anthracite coal, were conducted in a bench-scale CFB combustor. Effects of ash to coal mass ratio (Ca/S. molar ratio), furnace temperature, reactivation mode of fly ash, solid circulation rate and superficial gas velocity on the desulfurization efficiency and carbon content of fly ash were investigated to find the reasonable operation parameters, which could guide the industrial operation.
     Based on many chievements of other preivious study, a general mathematical model has been developed to simulate CFB combustion with the consideration of fly ash recycle. The characteristics of hydrodynamic of CFB, coal-char combustion, pollutions emission combustion are considered extremely as well. The simulation results show a good agreement with the experimental results, and the model could reasonably simulate semi-coke combustion in CFB boiler with fly ash recycling, which would play a significant role in guiding industrial operation to reflect the operating characteristics of CFB system.
     Finally, a preliminary test was performed in a bench scale fluidized bed combustor to study the roasting characteristics of several kinds of stone coal pellets, focusing on the effects of roasting temperature, roasting time, superficial gas velocity and various additives on the pellet-remaining ratio after roasting. Fly ash, bottom ash and bed material were collected. V2O5 was extracted from the fly ash and bottom ash by deionized water, acid solutions of 2% Na2CO3, 6% H2SO4 and 10% H2SO4, while the effects of roasting temperature, roasting time, leaching mode on leaching rate were analyzed. The test results showed that with cement as additive, temperature at 900℃and roasting time-90 minutes, the excellent pellet-remaining ratio after roasting and leaching rate were obtained, and the vanadium recovery rate was as high as 55.1%.
引文
1. 江泽民.对中国能源问题的思考[J].上海交通大学学报,2008(03).
    2. EIA (Energy Information Administration) REPORT. KEY WORLD ENERGY STATISTICS 2008.2009; Available from: http://www.iea.org/textbase/nppdf/free/2008/key_stats_2008.pdf.
    3. 中国投资咨询网.2006年中国煤炭工业分析及投资咨询报告(上中下卷).2006-6,http://www.ocn.com.cn/reports/2006006meitan.htm.
    4. sxcoal.com.煤炭的洁净燃烧技术以及高效利用技术.2006-3-18,http: //www.lfmj.com/Article_Show.asp?ArticleID=261.
    5. 王革华,等.能源与可持续发展[M].北京:化学工业出版社.2005
    6. 周泽兴.火电厂排放C02的分离回收和固定技术的研究开发现状[J].环境科学进展,1993.9(3):19-24.
    7. 李春鞠,顾国维.温室效应与二氧化碳的控制[J].环境保护科学,1998.26:13-15.
    8. Sina news 2005; Available from: http://news.sina.com.cn/c/2005-11-18/07417471365s.shtml.
    9. 晏水平.膜吸收和化学吸收分离C02特性的研究[D].博士,杭州:浙江大学.2009
    10. IPCC Fourth Assessment Report. Working Group Ⅲ 2007; Available from: http://www.ipcc.ch.
    11. IPCC Climate Change 2007.Synthesis Report.2007; Available from: http://www.ipcc.ch.
    12. 骆仲泱,何宏舟,王勤辉,et al.循环流化床锅炉技术的现状及发展前景[J].动力工程,2004(06).
    13. 岑可法,倪明江,骆仲泱,严建华.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社.1998
    14. 陈春元,王瑞军.包钢焦炭高温冶金性能的研究[J].炼铁,2003.22(1):16-19.
    15. 赵长遂,陈祥荣,金保升,et al.无烟煤飞灰循环流化床燃烧试验研究[J].东南大学学报(自然科学版),1992(S1).
    16. Y. Tsuo, J.M., K. Sellakumar. Improving Limestone Utilization in a Commercial-Scale Circulating fluidized Bed Boiler Through Ash Reactiviation and Recycle[C]. in Proceedings of the 15th International Conference on Fluidized Bed Combustion.1999. Savannah, Georgia.
    17. Khan T, K.R., Lee YY. Improving limestone utilization in circulating fluidized bed combustors through the reactivation and recycle of partially utilized limestone in ashes[C]. in Proceedings of the 1995 ASME international fluidized bed combustion conference.7-10 May 1995. Orlando, FL:ASME.
    18. Zhong Zhaoping, Lan Jixiang, Han Yongsheng, et al. Desulfurization in reducing atmosphere and ammonia injection denitrification in a coal-fired fluidized bed combustor with fly-ash recycle[J]. Journal of Thermal Science,1997.6(3):75-79.
    19. 宾智勇.石煤提钒研究进展与五氧化二钒的市场状况[J].湖南有色金属,2006(01).
    20. 吴峻青,周仕学,杨敏建,et al.石油焦、无烟煤用作储氢材料[J].洁净煤技术,2008.14(3):20-22.
    21. 冯娜,田原宇,刘芳,et al.石油焦后处理技术及其应用[J].石油与天然气化工,2008.37(2):134-137.
    22. 苏达根,鲁建军.石油焦脱硫灰渣用作水泥调凝剂的研究[J].水泥技术,2008(2):31-34.
    23. Xie, J.-j., Yang, X.-m., Zhang, L., et al. Emissions of SO2, NO and N2O in a circulating fluidized bed combustor during co-firing coal and biomass[J]. Journal of Environmental Sciences,2007,19(1):109-116.
    24. Li, X.T., Grace, J.R., Lim, C.J., et al. Biomass gasification in a circulating fluidized bed[J]. Biomass and Bioenergy,2004.26(2):171-193.
    25. M.C.G. Albuquerque, Y.L. Machado, A.E.B. Torres, et al. Properties of biodiesel oils formulated using different biomass sources and their blends[J]. Renewable Energy 2009. 34(3):857-859.
    26. Rajeev K. Sukumaran, Reeta Rani Singhania, Gincy Marina Mathew, et al. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production[J]. Renewable Energy,2009.34(2):421-424.
    27. 傅振英,田树义,赵丽.固定床气化炉灰渣中碳的热损失[J].煤气与热力,1995.15(6):14-18.
    28. 李元明,白戍苗,胡俊青.降低煤气发生炉灰渣含碳量的实践[J].有色冶金节能,2004.21(5):75-77.
    29. 阎承信,吴枫,孙永会.循环流化床间歇煤气化技术及其应用[J].化肥工业,2001.28(5):18-20.
    30. 周昊,朱洪波,曾庭华,et al.基于人工神经网络的大型电厂锅炉飞灰含碳量的建模[J].中国电机工程学报,2002.22(6):96-100.
    31. 刘武标,刘德昌,米铁,et al.流化床水煤气炉飞灰反应性的实验研究[J].中国电机工程学报,2003.23(9):189-192.
    32. 张继臻,王延坤.Texaco煤气化渣中可燃物高的原因分析及应对措施[J].煤化工2007.35(5):17-23.
    33. 李琼玖,钟贻烈,廖宗富,et al.四种煤气化技术及其应用(续)[J].河南化工,2008.25(4-8,12).
    34. 吴枫,阎承信.循环流化床气化技术的应用探讨[J].煤化工,2002(3):76-79.
    35. 张金良,陈爱国,夏远飞,et al.循环流化床锅炉降低飞灰中可燃物的探讨[J].发电设备,2007(03).
    36. 杨卫娟,周俊虎,刘茂省,et al.煤粉再燃过程中飞灰含碳量的影响因素分析[J].中国电机工程学报,2006(18).
    37. Moskalyk, R.R., Alfantazi, A.M. Processing of vanadium:a review[J]. Minerals Engineering,2003.16(9):793-805.
    38. He, D., Feng, Q., Zhang, G., et al. An environmentally-friendly technology of vanadium extraction from stone coal[J]. Minerals Engineering,2007.20(12):1184-1186.
    39. 李社锋.火场可燃物热解着火特性研究[D].硕士,杭州:浙江大学.2006
    40. 刘典福,魏小林,盛宏至.、煤及煤焦燃烧特性的研究现状与展望[J].江西能源,2008(01).
    41. 陈建原,孙学信.煤的挥发分释放特性指数及燃烧特性指数的确定[J].动力工程,1987.7(5):13-18.
    42. 何佩敖.我国电站锅炉燃煤特性的试验研究及展望[J].动力工程,1990.10(4):1-14.
    43. 韩洪樵,王涤非,唐林.用快速加热热天平研究煤的可燃性指标[J].工程热物理学报,1990.11(3):342-345.
    44. 傅维标,张恩仲.煤焦非均相着火温度与煤种的通用关系及判别指标[J].动力工程,1 993.13(3):34-42.
    45. 冯晓东,王淅芬,李敏.煤燃烧特性研究方法概述[J].能源工程,1998(1):24-26.
    46. 朱跃,郭文靖,刘明仁.煤的热天平分析实验结果与工业分析数据的相关性研究[J].黑龙江电力技术,1998.20(5):257-263.
    47. 谢峻林,何峰,袁润章.分解炉内煤的燃尽特性研究[J].武汉理工大学学报[J].2001. 23(7):11-14.
    48. 高正阳,方立军,周健.混煤燃烧特性的热重试验研究[J].动力工程,2002.22(3):1764-1767.
    49. Claudia Ulloa, A.L.G., Ximena Garcia. Distribution of activation energy model applied to the rapid pyrolysis of coal blendspyrolysis[J]. Journal ofanalytical and applied 2004. 71:465-483.
    50. Jia, L., Anthony, E.J., Lau, I., et al. Study of coal and coke ignition in fluidized beds[J]. Fuel,2006.85(5-6):635-642.
    51. 郭朝令,屈卫东,杨宏民,et al.电站锅炉燃煤特性的热重分析法研究[J].华中电力,1999.12(4):6-8.
    52. 周英彪,范杜平,段权鹏,et al.新型燃烧指标方程的建立[J].动力工程,2007.27(3):381-384.
    53. 赵世永.神木煤与半焦混合燃烧特性的热重分析[J].煤炭科学技术,2007(07).
    54. 向银花,房倚天,张守玉,et al.煤焦部分气化、燃烧集成热重分析研究[J].燃料化学学报,2000(05).
    55. 刘典福,魏小林,盛宏至.半焦燃烧特性的热重试验研究[J].工程热物理学报,2007(S2).
    56. 李文,李保庆.用热重技术研究煤焦的燃烧特性[J].煤炭转化,1996(03).
    57. 李海滨,崔洪,王洋,et al.流化床半焦等温热重CO_2气化动力学研究[J].燃料化学学报,1998(05).
    58. 旷戈,张济宇.恒温热重法单颗粒煤焦燃烧动力学[J].化工学报,2006(01).
    59. 方立军,刘彦丰,惠世恩.煤焦燃烧模型的热重实验研究[J].燃烧科学与技术,2003(06).
    60. Rybak, W., Zembrzuski, M., Smith, I. W. Kinetics of combustion of petroleum coke and sub-bituminous coal char:Results of ignition and steady-state techniques[J]. Symposium (International) on Combustion,1988.21(1):231-237.
    61. Gomez, C.O., Vastola, F.J. Ignition and combustion of single coal and char particles:A quantitative differential approach[J]. Fuel,1985.64(4):558-563.
    62. Cozzani, V., Petarca, L., Pintus, S., et al. Ignition and combustion of single, levitated char particles[J]. Combustion and Flame,1995.103(3):181-193.
    63. 喻秋梅,庞亚军,陈宏国.煤燃烧试验中着火点确定方法的探讨[J].华北电力技术,2001(7):9-10,50.
    64. 沈胜强,李素芬,石英.半焦粒子着火与燃烧过程实验研究[J].燃烧科学与技术,2000(01).
    65. 沈伯雄,刘德昌,陆继东.石油焦着火和燃烧燃烬特性的试验研究[J].石油炼制与化工,2000.31(10):60-64.
    66. 陈晓平,谷小兵,段钰锋,et al.气化半焦加压着火特性及燃烧稳定性研究[J].热能动力工程,2005(02).
    67. Walker, P.L., Jr.,Russinko,F.,Austin,L.G. Gas reaction of carbon[J]. Advances in Catalysis,1959.11(1):162-178.
    68. Prado, G, Froelich,D.,and Lahye,J. Fundamentals of the Physical-Chemistry of Pulverized Coal Combustion[M]. Dordrecht Boston Lancaster:Martinus Nijhoff Publishers.1987
    69. 黎永.循环流化床燃烧条件下焦碳反应性实验研究[D].博士,北京:清华大学.2002
    70. K黮aots, I., Aarna, I., Callejo, M., et al. Development of porosity during coal char combustion[J]. Proceedings of the Combustion Institute,2002.29(1):495-501.
    71. Kulaots, I., Hsu, A., Suuberg, E.M. The role of porosity in char combustion[J]. Proceedings of the Combustion Institute,2007.31(2):1897-1903.
    72. Moghtaderi, B. A study on the char burnout characteristics of coal and biomass blends[J]. Fuel,2007.86:2431-2438.
    73. Wang W X, Wang F J, Han S, et al. Investigation on SO2 emission of petroleum coke
    combustion blending with coal in CFB[J]. Journal of Combustion Science and Technology,2003.9(6):507-510.
    74. Zhao C S, Wang W X, W F J,'et al. SO2emission characteristics from co-firing of petroleum coke and coal in circulating fluidized bed[J]. Journal of Southeast University (English Edition),2005.21(1):48-52.
    75. 吴正舜,张春林,陈汉平,et al.石油焦的燃烧特性[J].化工学报,2001.52(9):834-837.
    76. 周宏仓.流化床煤部分气化/半焦燃烧多环芳烃生成与排放特性的研究[D].博士,南京:东南大学.2005
    77. 吴正舜,张春林,袁贵成,et al.高硫石油焦燃料的污染物排放特性研究[J].环境科学与技术,2003.26(2):4-5.
    78. Valix, M.G., Harris, D.J., Smith, I.W., et al. The intrinsic combustion reactivity of pulverised coal chars:The use of experimental pore diffusion coefficients[J]. Symposium (International) on Combustion,1992.24(1):1217-1223.
    79. Salatino, P., Zimbardi, F., Masi, S. A fractal approach to the analysis of low temperature combustion rate of a coal char:I. Experimental results[J]. Carbon,1993.31(3):501-508.
    80. Salatino, P., Zimbardi, F. A fractal approach to the analysis of low temperature combustion rate of a coal char. Ⅱ:Model development[J]. Carbon,1994.32(1):51-59.
    81. Lorenz, H., Carrea, E., Tamura, M., et al. The role of char surface structure development in pulverized fuel combustion[J]. Fuel,2000.79(10):1161-1172.
    82. Lei, S., Miyamoto, J.-i., Kanoh, H., et al. Enhancement of the methylene blue adsorption rate for ultramicroporous carbon fiber by addition of mesopores[J]. Carbon,2006. 44(10):1884-1890.
    83. Goel, S., Sarofim, A.F., Lu, J. A new approach to studying pore diffusivity during char combustion at FBC conditions[J]. Symposium (International) on Combustion,1996. 26(2):3127-3135.
    84. 周毅,段钰锋,陈晓平,赵长遂,吴新.半焦孔隙结构的影响因素[J].锅炉技术,2005.36(4):34-38.
    85. 周毅.半焦孔隙结构和加压燃烧特性的试验研究[D].硕士,南京:东南大学.2005
    86. 张静英,冯波,殷健,et al.煤焦在燃烧过程中孔隙结构变化的模拟[J].燃料化学学报,1998(04).
    87. 俞云,姚洪,于敦喜,et al.燃烧过程中焦炭的孔隙结构演变与颗粒物的形成[J].动力工程,2007.27(4):579-583.
    88. 邢德山,阎维平.用压汞法分析工业半焦的孔隙结构特征[J].华北电力大学学报(自然科学版),2007(05).
    89. 张蕊蕊.燃烧过程中煤焦表面结构变化规律的实验研究[D].硕士:河北工程大学.2007
    90. Hall, P.J., Antxustegi, M.M., Calo, J.M. Development of Porosity in Pittsburgh No.8 Coal Char as Investigated by Contrast-matching Small-angle Neutron Scattering and Gas Adsorption Techniques [J]. Energy Fuels,1998.12(3):542-546.
    91. Hall, P.J., Browna, S., J, F., et al. The Effects of the Electronic Structure of Micropores on the Small Angle Scattering of X-rays and Neutrons[J]. Carbon,2000.38:1257-1259.
    92. Calo, J.M., Hall, P.J. The Application of Small Angle Scattering Techniques to Porosity Characterization in Carbons[J]. Carbon,2004.42:1299-1304.
    93. E.Cetin, R.Gupta, B.Moghtaderi. Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity[J]. Fuel,2005.84:1328-1334.
    94. Ramesh, K.S., Wooten, J.B., Baliga, V.L., et al. Characterization of, chars from pyrolysis of lignin[J]. Fuel,2004.83:1469-1482.
    95. Dosite Samuel Perkins, Ⅱ. Ignition of coal and char particles:Effects of pore structure and process conditions[D].Doctor, Houston, Texas:Rice University.1998
    96. 段钰锋,周毅,陈晓平,et al.煤气化半焦的孔隙结构[J].东南大学学报(自然科学版),2005.35(1):135-139.
    97. Bhatia S K, Vartak B J. Reaction of Microporous Solids:The Discrete Random Pore Model[J]. Carbon,1996.34(11):1383-1391.
    98. Gupta J S, Bhatia S K. A Modified Discrete Random Pore Model Allowing for Different Initial Surface Reactivity[J]. Carbon,2000.38:47-58.
    99. Struisa R P W J, Scalaa C V. Stuckia S et al.Gasification Reactivity of Char coal with CO2(Part Ⅰ):Conversion and Structural Phenomena[J]. Chemical Engineering Science, 2002.57:3581-3592.
    100. Struisa R P W J, Scalaa C V. Stuckia S et al.Gasification Reactivity of Char coal with CO2(Part Ⅱ):MetalCatalysisasa Function of Conversion[J]. Chemical Engineering Science,2002.57:3593-3602.
    101. Megaridis C M. Morphological Description of Flame-Generated Materials[J]. Combust Sci and Tech,1990.71:95-99.
    102. Marvasti M A, Strahle W C. Burning Rate Prediction of Composite Solid Propellants Using Fractal Geometry[J]. Combust Sci and Tech,1992.83:291-297.
    103. 任有中,符建.煤多相燃烧分形增长模型的初步研究[J].工程热物理学报,1997.18(1):103-107.
    104. 任有中,陈智波,张玲.多相燃烧分形模型及实验研究[J].工程热物理学报,1998,.19(3):372-376.
    105. J. Adhnez, L. F. de Diego, P. Gay6n, et al. A model for prediction of carbon combustion efficiency in circulating fluidized bed combustors[J]. Fuel,1995.74(7):1049-1056.
    106. Xu, G., Gao, S. Necessary parameters for specifying the hydrodynamics of circulating fluidized bed risers--a review and reiteration[J]. Powder Technology,2003. 137(1-2):63-76.
    107. Vleeskens, J.M., Roos, M. Attrition of chars in fluidized bed combustion[J]. Fuel,1989. 68(7):825-828.
    108.Sel鐄k, N., Pekyilmaz, A. Testing of a model for fluidized bed coal combustors-effect of char combustion model[J]. Symposium (International) on Combustion,1988. 21(1):585-592.
    109. Salatino, P., Massimilla, L. A descriptive model of carbon attrition in the fluidized combustion of a coal char[J]. Chemical Engineering Science,1985.40(10):1905-1916.
    110. Ryan, J.S., Hallett, W.L.H. Packed bed combustion of char particles:experiments and an ash model[J]. Chemical Engineering Science,2002.57(18):3873-3882.
    111. Manovic, V., Komatina, M., Oka, S. Modeling the temperature in coal char particle during fluidized bed combustion[J]. Fuel,2008.87(6):905-914.
    112. Manovic, V., Grubor, B., Loncarevic, D. Modeling of inherent SO2 capture in coal particles during combustion in fluidized bed[J]. Chemical Engineering Science,2006. 61(5):1676-1685.
    113. Maloney, D.J., Monazam, E.R., Casleton, K.H., et al. Evaluation of char combustion models:measurement and analysis of variability in char particle size and density[J]. Proceedings of the Combustion Institute,2005.30(2):2197-2204.
    114. Liu, G, Wu, H., Gupta, R.P., et al. Modeling the fragmentation of non-uniform porous char particles during pulverized coal combustion[J]. Fuel,2000.79(6):627-633.
    115. Liu, G., Benyon, P., Benfell, K.E., et al. The porous structure of bituminous coal chars and its influence on combustion and gasification under chemically controlled conditions[J]. Fuel,2000.79(6):617-626.
    116. Kulasekaran, S., Linjewile, T.M., Agarwal, P.K., et al. Combustion of a porous char particle in an incipiently fluidized bed[J]. Fuel,1998.77(14):1549-1560.
    117. Kulasekaran, S., Linjewile, T.M., Agarwal, P.K. Mathematical modeling of fluidized bed combustion 3. Simultaneous combustion of char and combustible gases[J]. Fuel,1999. 78(4):403-417.
    118. Kilpinen, P., Kallio, S., Konttinen, J., et al. Char-nitrogen oxidation under fluidised bed combustion conditions:single particle studies[J]. Fuel,2002.81(18):2349-2362.
    119. Priyanka Kaushal, Tobias Proll, Hofbauer, H. Model for biomass char combustion in the riser of a dual fluidized bed gasification unit:Part 1--Model development and sensitivity analysis[J]. Fuel Processing Technology,2008.89(7):651-659.
    120. Priyanka Kaushal, Tobias Proll, Hofbauer, H. Model for biomass char combustion in the riser of a dual fluidized bed gasification unit:Part Ⅱ -- Model validation and parameter variation[J]. Fuel Processing Technology,2008.89(7):660-666.
    121. Priyanka Kaushal, Tobias Proll, Hermann Hofbauer. Model development and validation: Co-combustion of residual char, gases and volatile fuels in the fast fluidized combustion chamber of a dual fluidized bed biomass gasifier[J]. Fuel,2007.86(17-18):2687-2695.
    122. Kastanaki, E., Vamvuka, D. A comparative reactivity and kinetic study on the combustion of coal-biomass char blends[J]. Fuel,2006.85(9):1186-1193.
    123. Hurt, R.H., Calo, J.M. Semi-global intrinsic kinetics for char combustion modeling[J]. Combustion and Flame,2001.125(3):1138-1149.
    124. Gu, M.-y., Zhang, M.-c., Yu, J., et al. Numerical study on the spatial distribution of energy release during char combustion[J]. Applied Energy,2008.85(11):1060-1070.
    125. Everson, R., Neomagus, H., Kaitano, R. The modeling of the combustion of high-ash coal-char particles suitable for pressurised fluidized bed combustion:shrinking reacted core model[J]. Fuel,2005.84(9):1136-1143.
    126. Cui, Y., Stubington, J.F. In-bed char combustion of Australian coals in PFBC.2. Char combustion without secondary fragmentation[J]. Fuel,2001.80(15):2235-2243.
    127. Cui, Y, Stubington, J.F. In-bed char combustion of Australian coals in PFBC.3. Secondary fragmentation [J]. Fuel,2001.80(15):2245-2251.
    128. Cui, Y., Stubington, J.F. A mathematical model of in-bed char combustion of Australian coals in PFBC[J]. Fuel,2001.80(14):2049-2056.
    129. Cui, Y., Stubington, F. A mathematical model of in-bed char combustion of Australian coals in PFBC[J]. Fuel and Energy Abstracts,2002.43(4):275-275.
    130. Cooper, J., Hallett, W.L.H. A numerical model for packed-bed combustion of char particles[J]. Chemical Engineering Science,2000.55(20):4451-4460.
    131. Chen, Z., Lin, M., Ignowski, J., et al. Mathematical modeling of fluidized bed combustion.4:N2O and NOX emissions from the combustion of char[J]. Fuel,2001. 80(9):1259-1272.
    132. Can, G., Salatino, P., Scala, F. A single particle model of the fluidized bed combustion of a char particle with a coherent ash skeleton:Application to granulated sewage sludge[J]. Fuel Processing Technology,2007.88(6):577-584.
    133. Bukur, D.B., Amundson, N.R. Fluidized bed char combustion diffusion limited models[J]. Chemical Engineering Science,1981.36(7):1239-1256.
    134. Bukur, D., Amundson, N.R. Fluidized bed char combustion kinetic models[J]. Chemical Engineering Science,1982.37(1):17-25.
    135. Basu, P. Combustion of coal in circulating fluidized-bed boilers:a review[J]. Chemical Engineering Science,1999.54(22):5547-5557.
    136. Arai, N., Hasatani, M. A mathematical model of simultaneous formation of volatile-NO and char-NO during the packed-bed combustion of coal-char particles under an NH3---O2---Ar gas stream[J]. Fuel,1987.66(10):1418-1426.
    137. Nevin Selcuk, Aygun Pekyilmaz. Testing of a model for fluidized bed coal combustors-effect of char combustion model[J]. Symposium (International) on Combustion,1988.21(1):585-592.
    138. Smoot, L.D., Pratt, D.T. Pulverized-Coal Combustion and Gasification[M]. NewYork: Plenum Press.149-165.1979
    139. 向银花,房倚天,黄戒介,et al.煤焦的燃烧特性和动力学模型研究[J].煤炭转化,2000(01).
    140. Libby P A, Blake T R. Theoretical Study of Burning Carbon Particle[J]. Combustion and Flame,1979.36:139-169.
    141. Makino, A. An Approximate Explicit Expression for the Combustion Rate of a Small Carbon Particle[J]. Combustion and Flame,1992.90:143-154.
    142. zhang M C, Yu J, xu X C. A New Flame sheet Model to Reflect the Influence of the Oxidation of CO on the Combustion of a Carbon Partiele[J]. Combustion and Flame, 2005.143(3):150-158.
    143. 章明川,于娟..考虑碳粒表面还原反应的移动火焰锋面(MFF)模型[J].工程热物理学报,2004.25(3):511-514.
    144. 张健,章明川,于娟,et al.移动火焰锋面(MFF)模型火焰锋面确定条件的进一步改进[J].工程热物理学报,2007.28(2):153-156.
    145. Everson, R.C., Neomagus, H.W.J.P., Kasaini, H., et al. Reaction kinetics of pulverized coal-chars derived from inertinite-rich coal discards:Characterisation and combustion[J]. Fuel,2006.85(7-8):1067-1075.
    146. Mota, O.D.S., Campos, J.B.L.M. Combustion of coke with high ash content in fluidised beds[J]. Chemical Engineering Science,1995.50(3):433-439.
    147. S. Jayanti, K. Maheswaran, Saravanan, V. Assessment of the effect of high ash content in pulverized coal combustion[J]. Applied Mathematical Modelling,2007.31:934-953.
    148.邱宽嵘.高灰分煤焦流化床2段燃烧数学模型[J].煤炭学报,1996.21(3):310-314.
    149. 刘鑫,沈胜强.半焦粒子团燃烧模型与计算分析[J].燃烧科学与技术,1997(03).
    150. Vand V. A theory of the irreversible electrical resistence changes of metallic films evaporated in vacuum[M]. London:Proc Phys Soc.1942
    151. PittG J. kinetics of the evolution of volatile products from coal[J]. Fuel,1962. 41(8):267-274.
    152. K Hashimoto, K Miura, T Watanabe. Kinetics of thermal regeneration reaction of activated carbons used in waste water treatment[J].1982.28(5):737-746.
    153. Miura K. A New and Simple Method to Estimate f(E) and Ko(E) in the Distributed Activation Energy Model from Three Sets of Experimental Data[J]. Energy & Fuels, 1995.9:302-307.
    154. K Miura, T Maki. A Simple Method for Estimating f(E) and ko(E) in the Distributed Activation Energy Model[J]. ENERGY AND FUELS,1998.12(5):864-869.
    155. 刘旭光,李保庆.分布活化能模型的理论分析及其在半焦气化和模拟蒸馏体系中的应用[J].燃料化学学报,2001(01).
    156.李社锋,方梦祥,舒立福,et al.利用分布活化能模型研究木材的热解和燃烧机理[J].燃烧科学与技术,2006.12(6):535-539.
    157. 向银花,王洋,张建民,et al.部分气化煤焦燃烧动力学的活化能分布模型研究[J].燃烧科学与技术,2003(06).
    158. Atif A. Khan, Wiebren De Jong, Hartmut Spliethoff. A Fluidized Bed Combustion Model with Discretized Population Balance.2. Experimental Studies and Model Validation[J]. Energy & Fuels,2007.21:3709-3717.
    159. Yingwei Cai, and Kyriacos Zygourakis. A Multiscale Transient Model for Combustion of Highly Porous Chars[J]. Ind. Eng. Chem. Res,2003.42:2746-2755.
    160. Yan Ren, Nader Mahinpey, Freitag, N. Kinetic Model for the Combustion of Coke Derived at Different Coking Temperatures[J]. Energy & Fuels,2007.21:82-87.
    161. V. M. Gremyachkin. Model of coke combustion and gasification in a mixture of reaction gases[J]. Combustion, Explosion, and Shock Waves,1994.30(2):157-164.
    162. Juan AdBnez, and Luis F. de Diego. Modeling of Carbon Combustion Efficiency in Circulating Fluidized Bed Combustors.1. Selection of Submodels and Sensitivity Analysis[J]. Ind. Eng. Chem. Res,1995.34:3129-3138.
    163. 刘昀,刘敬东,崔永平,et al.75t/h循环流化床锅炉飞灰回燃技术改造[J].工业锅炉,2006(04):326-330.
    164. 谢伯达.无烟煤循环流化床锅炉的飞灰回燃[J].福建电力与电工,2005(04).
    165. 章平衡.65t/h抛煤链条炉飞灰回燃装置的改进[J].节能,2003(12).
    166. 章名耀,金保升,刘坤磊.飞灰循环底饲回燃流化床燃烧技术[J].洁净与空调技术1996(01).
    167. 吴新,段钰锋,赵长遂,et al.飞灰底饲回燃技术在无烟煤流化床锅炉上的应用[J].锅炉技术,1999(08).
    168. 吴新,段钰锋,赵长遂,et al.采用低倍率飞灰循环底饲回燃技术改造燃用无烟煤流化床锅炉[J].工业锅炉,2000.61(01):35-37.
    169. 赵长遂,蓝计香,金保升,et al.飞灰循环流化床燃烧研究及其工业应用[J].东南大学学报(自然科学版),1990(02).
    170. 赵长遂,段钰锋,陈晓平,et al.飞灰底饲回燃技术在无烟煤循环流化床锅炉中应用的机理和实绩[J].能源研究与利用,2001(06):11-13.
    171. 马奕飞,袁宏,邵焕群,et al.循环流化床锅炉飞灰再燃烧[J].热力发电,2001(03).
    172. 何宏舟.飞灰回燃对燃烧福建无烟煤CFB锅炉运行影响的研究[J].热能动力工程,2006(01).
    173. 张守玉,王文选,杨玉来,et al.锅炉飞灰燃烧特性实验研究[J].煤炭转化,2003(04).
    174. 顾舒.关于飞灰再燃燃烧特性的实验研究[D].硕士:东北电力大学.2006
    175. Shearer JA, S.G., Myles KM, Johnson Ⅰ. Hydration enhanced sulfation of limestone and dolomite in the fluidized bed combustion of coal[J]. J Air Pollut Control Assoc,1980. 30:684-692.
    176. Shearer JA, S.G., Moulton S, Smyk EB, Myles KM, Swift WM, et al. Hydration process for reactivating spent limestone and dolomite sorbents for reuse in fluidized bed coal combustion[C]. in Proceedings of the 6th international conference on fluidized bed combustion.1980. Atlanta, GA.
    177. Julien S, B.C., Lim CJ, Grace JR, Chiu JH, Skowyra RS. Spent sorbent reactivation using steam[C]. in Proceedings of the 1995 ASME international fluidized bed combustion conference.7-10 May 1995. Orlando FL:ASME.
    178. Anthony, E.J., Bulewicz, E.M., Jia, L. Reactivation of limestone sorbents in FBC for SO2 capture[J]. Progress in Energy and Combustion Science,2007.33(2):171-210.
    179. Wu Y, A.E., Jia L. Hydration of partially sulphated CaO in FBC systems[J]. Fuel,2004. 83:1357.
    180. Wu Y, C.J., Anthony EJ, Jia L. Study on the reactivation of five fly ashes from commercial scale FBC boilers[J]. Energy Fuels,2004.18:830-834.
    181. Couturier MF, M.D., Steward FR, Volmerange V. Reactivation of partially sulphated limestone particles from a CFB combustor by hydration[J]. Can J Chem Eng,1994. 72:91-98.
    182. Laursen, K., Duo, W., Grace, J.R., et al. Sulfation and reactivation characteristics of nine limestones[J]. Fuel,2000.79(2):153-163.
    183. Laursen K, M.P., Lim CJ, Grace JR. Steam reactivation of partially utilized limestone sulfur sorbents[J]. Environ Eng Sci,2003.20:11-20.
    184. Wu Y, C.J., Anthony EJ, Jia L. Reactivation studies on six fly ashes from commercial CFB boilers[C]. in Proceedings of the 18th international conference on fluidized bed combustion.22-25 May 2005. Toronto, Ontario, Canada.
    185. Anthony EJ, R.G., Berry EE, Hemings RT, Kissel RK. Characterization of solid wastes from circulating fluidized bed combustion[J]. J Energy Resourc Technol,1995. 117:18-117.
    186. Wu Y, A.E., Jia L. Experimental studies on hydration of partially sulphated CFBC ash[J]. Can J Chem Engineering Geology,2003.81:2000-2014.
    187. Bulewicz EM, D.K., Gora D, Taraszka J. Possible causes of the variability of FBC ash behaviour[J]. Combust Sci Technol,2000.153:141.
    188. Wu Y, A.E., Jia L. An experimental study on hydration of partially sulfated FBC ash.[J]. Combust Sci Technol,2002.174:171-81.
    189. HFW, T. Cement chemistry(2nd ed)[M]. London:Thomas Telford.1997
    190. Montagnaro, F., Salatino, P., Scala, F., et al. An assessment of water and steam reactivation of a fluidized bed spent sorbent for enhanced SO2 capture[J]. Powder Technology,2008.180(1-2):129-134.
    191. Laursen, K., Duo, W., Grace, J.R., et al. Characterization of steam reactivation mechanisms in limestones and spent calcium sorbents[J]. Fuel,2001.80(9):1293-1306.
    192. Jia, L., Wang, J., Anthony, E.J. Reactivation of fluidised bed combustor ash for sulphur capture[J]. Chemical Engineering Journal,2003.94(2):147-154.
    193. Anthony, E.J., Jia, L., Wu, Y CFBC ash hydration studies[J]. Fuel,2005. 84(11):1393-1397.
    194. Marquis DL, C.M., Steward FR. A thermogravimetric study on the reactivation of spent CFB limestones by hydration, in Report to Energy, Mines and Resources. August 1991: Canada.
    195. Laursen K, D.W., Lim CJ, Grace JR. Sulphation and steam reactivation characteristics of limestones of worldwide origin[C]. in Proceedings of international conference on materials for advanced technologies.2001. Singapore.
    196. P, D. Properties of reactivated calcium-based sorbents[J]. Fuel,2002.81:763-70.
    197. Blondin J, B.A. Process for slaking quicklime contained in ash.[J]. WO 91/10628,25 July 199.
    198. Couturier MF, V.Y., Steward F. Hydration of partially sulphated lime with water.[C]. in Proceedings of the 15th international conference on fluidized bed combustion.16-19 May 1999. Savannah, GA.
    199. Salib P, A.E. Pilot plant studies on improving sulphur capture in CFBC boilers using water.[C]. in FBC19.21-24 May 2006. Vienna, Austria.
    200. Johnson I, M.K., Fee DC, Moulton DS, Shearer JA, Smith GW, et al. Exploratory and basic fluidized-bed combustion studies, in Argonne National Laboratory report ANL/FE-82-4, Annual report. October 1980-September 1981.
    201. Anthony, E.J., Jia, L., Caris, M., et al. An examination of the exothermic nature of fluidized bed combustion (FBC) residues[J]. Waste Management,1999.19(4):293-305.
    202. Anthony EJ, N.J., Bulewicz EM, Jia L, Burwell SM. Understating the behavior of calcium compounds in petroleum coke fluidized bed combustion (FBC) ash[C]. in The 19th international conference on solid waste technology and management.21-24 March 2004. Philadelphia, PA.
    203. Bulewicz EM, G.r.D., Anthony EJ. The behaviour of free lime in CFBC ashes[C]. in 17th international conference on FBC. May 2003. Jacksonville, FL.
    204. D, S. Improving the action of sulfur sorbents in fluidized bed combustion of coal[J]. Ind Eng Chem Process Des Dev,1985.24:72-7.
    205. Wu. Y., Sun, P., Anthony, E.J., et al. Reinvestigation of hydration/reactivation characteristics of two long-term sulphated limestones which previously showed uniformly sulphating behaviour[J]. Fuel,2006.85(14-15):2213-2219.
    206. Gora, D., Anthony, E.J., Bulewicz, E.M., et al. Steam reactivation of 16 bed and fly ashes from industrial-scale coal-fired fluidized bed combustors[J]. Fuel,2006. 85(1):94-106.
    207. Anthony EJ, B.E.M., Gora D., Najman J. Observations on the hydration behaviour of a selection of bed and fly ashes from FBC installations [C]. in the 18th International Conference on Fluidized Bed Combustion. May 22-25 2005. Toronto,Ontario, Canada.
    208. Fabio Montagnaro, F.S., and Piero Salatino. Reactivation by Water Hydration of Spent Sorbent for Fluidized-Bed Combustion Application:Influence of Hydration Time[J]. Ind. Eng. Chem. Res,2004.43:5692-5701.
    209. 王爱军,祁海鹰,由长福,et al.蒸汽活化提高脱硫剂钙利用率的实验研究[J].工程热物理学报,2000(06).
    210.周月桂,章明川,范卫东,et al.神木煤灰增湿活化脱硫的半工业性台架试验研究[J].中国电机工程学报,2003(09).
    211. 刘传亮.循环流化床锅炉强化脱硫技术的研究[D].硕士,杭州:浙江大学.2007
    212. 严继明等.吸附与凝聚-固体的表面与孔[M].北京:科学出版社.1986
    213. Piotr Kowalczyk, Vladimir M.Gun'ko, Artur P.Terzyk, et al. The comparative characterization of structural heterogeneity of mesoporous activated carbon fibers(ACFs)[J]. Applied Surface Science,2003.206:67-77.
    214. 范云鸽,李燕鸿,马建标.交联聚苯乙烯型多孔吸附剂的中孔性质研究[J].高等学校化学学报,2002.23(8):1622-1626.
    215. 胡松,孙学信,邹祖桥,et al.煤焦外表面分形维数在燃烧过程中的变化[J].燃料化学学报,2002(02).
    216. 任有中,陈智波.固体燃料燃烧的分形模型研究[J].燃烧科学与技术,1999.5(1):21-26.
    217. NICOLET NEXUS 670型傅立叶变换红外光谱.2009; Available from: http://www.ceu.zju.edu.cn/itpeceu/ceu cn/ceu05 build/wl yq05.htm.
    218. 红外光谱.2009; Available from:http://baike.baidu.com/view/139957.htm.
    219. I.I. Kantorovich, E. Bar-Ziv. Processes in highly porous chars under kinetically controlled conditions:I. Evolution of the porous structure[J]. combustion and Flame, 1994.97(1):61-78.
    220. 严继民,张启元,高敬琮.吸附与凝聚:固体的表面与孔(第二版)[M].北京:科学出版社.1986
    221. 袁晓红,姚源,唐永良.活性炭吸附剂的孔结构表征[J].中国粉体技术,2000.6(s1):190-191.
    222. Rodriguez-reinoso F, Gonzalez M T, Molinasabio M. The use of steam and CO2 as activating agents in the preparation of activated carbons[J]. Carbon,1995.33(1):15-23.
    223. 朱子彬,马智华,林石英.高温下煤焦气化反应特性(Ⅱ)细孔构造对煤焦气化反应的影响[J].化工学报,1994.45(2):155-161.
    224. 向银花,王洋,张建民,et al.煤焦气化过程中比表面积和孔容积变化规律及其影响因素研究[J].燃料化学学报,2002.30(2):108-112.
    225. 朱廷钰,王洋.粒径对煤温和气化特性的影响[J].煤炭转化,1999.22(3):39-43.
    226.任有中,陈智波,张玲.多相燃烧分形模型及其实验研究[J].工程热物理学报,1998.19(3):372-376.
    227. 任有中,符建,曹源泉,et al.煤多相燃烧分形增长模型的初步研究[J].工程热物理学报,1997.18(1):103-107.
    228. 任有中,符建,陈智波,et al.碳焦结构的电镜分析及其分形描述[J].燃烧科学与技术,1996.2(1):8-14.
    229. 任有中,符建.煤焦孔洞的结构特性及其标度理论[J].工程热物理学报,1995.16(3):376-380.
    230. Rong He, Xuchang Xu, Changhe Chen, et al. Evolutionof pore fractal dimensions for burning porous chars[J]. Fuel,1998.77(12):1291-1295.
    231. 张佳丽,谌伦建,张如意.煤焦分形维数及其对比热容的影响研究[J].燃料化学学报,2005.33(3):359=362.
    232. Carlos A, Leon Y. New Perspectives in mercury porosimetry[J]. Advances in Colloid & Interface Science,1998.76-77:341-372.
    233. 史磊.半焦的活化及脱灰研究[D].硕士,大连:大连理工大学.2008
    234. J.M. Jones, M. Pourkashanian, C.D. Rena, et al. Modelling the relationship of coal structure to char porosity[J]. Fuel,1999.78 (14):1737-1744.
    235. Simon R. Kelemen, Martin L. Gorbaty, Graham N. George, et al. Thermal reactivity of sulphur forms in coal[J]. Fuel,1991.70(3):396-402
    236. Calkins, W.H. The chemical forms of sulfur in coal:a review[J]. Fuel,1994. 73(4):475-484.
    237. 赵卫东.低阶煤水热改性制浆的微观机理及燃烧特性研究[D].博士,杭州:浙江大学.2009
    238. 谢克昌.煤的结构与反应性[M].北京:科学出版社.2002
    239. Brown J. K. Infra-Red Spectra of Solvent Extracts of Coals[J]. Fuel,,1959.38(l):55-63.
    240. Ibarra J., Munoz E., Moliner R. FTIR study of the evolution of coal structure during the coalification process[J]. Organic Geochemistry,1996.24(6-7):725-735.
    241. 俞云.煤燃烧过程中煤焦特性与颗粒物形成的研究[D].硕士,武汉:华中科技大学.2005
    242. Trommer, D., Noembrini, F., Fasciana, M., et al. Hydrogen production by steam-gasification of petroleum coke using concentrated solar power--Ⅰ. Thermodynamic and kinetic analyses[J]. International Journal of Hydrogen Energy,2005.30(6):605-618.
    243. Russell, N.V., Beeley, T.J., Man, C.K., et al. Development of TG measurements of intrinsic char combustion reactivity for industrial and research purposes[J]. Fuel Processing Technology,1998.57(2):113-130.
    244. Cumming, J.W. A DTG combustion study on anthracitic and other coal chars[J]. Thermochimica Acta,1989.155:151-161.
    245. 孙庆雷,李文,李保庆.神木煤显微组分半焦燃烧特性[J].化工学报,2002(01).
    246. 范晓雷,薇,张.,周志杰,et al.热解压力及气氛对神府煤焦气化反应活性的影响[J].燃料化学学报,2005.35(5):530-533.
    247. Borrego, A.G., Osorio, E., Casal, M.D., et al. Coal char combustion under a CO2-rich atmosphere:Implications for pulverized coal injection in a blast furnace[J]. Fuel Processing Technology. In Press, Corrected Proof.
    248. Cai, H.Y., Guell, A.J., Chatzakis, I.N., et al. Combustion reactivity and morphological change in coal chars:Effect of pyrolysis temperature, heating rate and pressure[J]. Fuel, 1996.75(1):15-24.
    249. Chen, Y., Mori, S., Pan, W.-P. Studying the mechanisms of ignition of coal particles by TG-DTA[J]. Thermochimica Acta,1996.275:149-158.
    250. Essenhigh R H, Misra M K, Shaw D W. Ignition of coal particles:a review[J]. Combustion and Flame,1989.77(1):3-30.
    251. 王俊琪.煤的部分气化及半焦燃烧系统集成研究[D].博士,杭州:浙江大学.2008
    252. 周军.石油焦燃烧特性的试验研究[D].硕士,北京:清华大学.2006
    253. 胡文斌,杨海瑞,吕俊复等.煤着火特性的热重分析研究[J].电站系统工程,2005.21(2):8-9.
    254. 徐建国,魏兆龙.用热分析法研究煤的热解特性[J].燃烧科学与技术,1999.5(2):175-179.
    255. 于海龙,姜秀民.升温速率对油页岩燃烧特性与动力学参数的影响[J].燃烧科学与技术,2003.9(1):54-57.
    256. 孙佰仲.油页岩及半焦混合燃烧特性理论与试验研究[D].博士:华北电力大学.2008
    257. 谷小兵.半焦加压燃烧特性研究[D].硕士,南京:东南大学.2003
    258. 杨亚平,童隆坤.煤粉锅炉中石油焦作为燃料的利用研究[J].锅炉技术,2002.33(12):1-4.
    259. Lin, S.-Y., Suzuki, Y., Hatano, H., et al. Pressure e!ect on char combustion in di!erent rate-control zones:initial rate expression[J]. Chemical Engineering Science,2000. 55:43-50.
    260. Liakos, H.H., Theologos, K.N., Boudouvis, A.G., et al. The effect of pressure on coal char combustion[J]. Applied Thermal Engineering,2001.21(9):917-928.
    261. MacNeil, S., Basu, P. Effect of pressure on char combustion in a pressurized circulating fluidized bed boiler[J]. Fuel,1998.77(4):269-275.
    262. CROISET, E., MALLET, C., ROUAN, J.-P., et al. THE INFLUENCE OF PRESSURE ON CHAR COMBUSTION KINETICS[C]. in Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute.1996.
    263. Cai, H.-Y, GOell, A.J., Chatzakis, I.N., et al. Combustion reactivity and morphological change in coal chars:effect of pyrolysis temperature, heating rate and pressure[J]. Fuel, 1996.75(1):15-24.
    264. Banin, V., Moors, R., Veefkind, B. Kinetic study of high-pressure pulverized coal char combustion:experiments and modelling[J]. Fuel,1997.76(10):945-949.
    265. Bi, H.T. A critical review of the complex pressure fluctuation phenomenon in gas-solids fluidized beds[J]. Chemical Engineering Science,2007.62(13):3473-3493.
    266.熊源泉,郑守忠,章名耀.加压条件下半焦燃烧特性的试验研究[J].锅炉技术,2001(11).
    267. 熊源泉,郑守忠,金保升.煤气化半焦增压流化床燃烧特性中试试验研究[J].热能动力工程,2007(02).
    268. 孙晨亮,章名耀.压力下各种因素对煤粒着火温度的影响[J].燃烧科学与技术,1999.5(3):313-318.
    269. Shi-Ying Lin, Yoshizo Suzuli, Hiroyuki Hatawo, et al. Pressure effect on char combustion in different rate-control zones initial rate expression[J]. Chemical Engineering Science,2000.55:43-50.
    270. 韩洪樵,傅维标,赵岩,et al.压力对煤粒燃烬时间影响的研究[J].工程热物理学报,1991.12(3):328-332.
    271. 胡荣祖,高胜利,赵凤起,et al.热分析动力学(第二版)[M].北京:科学出版社.2008
    272. Charles R. Monson, Geoffrey J. Germane, Angus U. Blackham, et al. Char oxidation at elevated pressures [J]. Combustion and Flame,1995.100(4):669-683.
    273. Terry F. Wall, G-s.L., Hong-wei Wu, Daniel G. Roberts, Kathy E. Benfell, Sushil Gupta, John A. Lucas, David J. Harris. The effects of pressure on coal reaction during pulverized coal combustion and gasification[J]. Progress in Energy and combustion Science,2002.28(5):405-433.
    274. 薛永强,来蔚鹏,王志忠.粒度对煤粒燃烧和热解影响的理论分析[J].煤炭转化,2005.28(3):19-21.
    275. Vyazovkin S, Wight C. A. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids[J]. International Reviews in Physical Chemistry,1998. 17(3):407-433.
    276. 向银花,李海滨,黄戒介,et al.气氛对神木煤部分气化煤焦再气化动力学参数的影响[J].燃料化学学报,2004.32(2):151-154.
    277. Curtis W M, Conner J R. A general explanation for the compensation effect:The relationship between ΔS and activation energy[J]. Journal of Catalysis,1982. 78(1):238-246.
    278. 徐秀峰,崔洪,顾永达,et al.煤焦制备条件对其气化反应性的影响[J].燃料化学学报,1996.24(5):404-410.
    279. 郑楚光.洁净煤技术[M].武汉:华中理工大学出版社.1996
    280. Muzio L J, Quartucy G C. Implementing NOx Control:Research to Application[J]. Prog. Energy Combust. Sci.,1997.23(3):233-266.
    281. Armesto L, Boerrigter H, Bahillo A, et al. N2O Emissions from Fluidised Bed Combustion:The Effect of Fuel Characteristics and Operating Conditions[J]. Fuel,2003. 82(15/17):1845-1850.
    282. 何宏舟,申良坤,苏亚欣.燃烧福建无烟煤的CFB锅炉炉内脱硝模型[J].燃烧科学与技术,2008.14(6):501-505.
    283. 张磊,杨学民,谢建军,et al.循环流化床燃煤过程NOx和N2O产生——控制研究进展[J].过程工程学报,2006.6(6):1004-1010.
    284. FRANZ WINTER, CHRISTIAN WARTHA, GERHARD LOFFLER, et al. THE NO AND N2O FORMATION MECHANISM DURING DEVOLATILIZATION AND CHAR COMBUSTION UNDER FLUIDIZED-BED CONDITIONS [C]. in Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute. 1996.
    285. 段伦博,陈晓平,梁财,et al.以煤焦混合物为燃料的循环流化床锅炉SO2排放特性[J].化工学报,2008(03):728-734.
    286. 王正华,周昊,翁安心,et al.不同煤种高温燃烧时NOx和SO2生成影响因素的实验[J].锅炉技术,2003.34(3):11-14.
    287. 刘汉涛,王永征,路春美,et al.混煤燃烧过程中NOx排放特性试验研究[J].锅炉技术,2005.36(4):43-46.
    288. KILPINEN P, HUPA M. Homogeneous N2O chemistry at fluidized bed combustion conditions:a kinetic modeling study[J]. Combution and Flame,1991.85(1-2):94-104.
    289. 丁乃今,姜秀民,吴少华.油页岩流化床燃烧N20生成特性[J].热能动力工程,2003.18(6):589-591.
    290. Basu P, Fraser S A. Circulating Fluidized Bed Boilers:Design and Operations[M]. Stoneham:Butterworth Heinemann Press.1991
    291. 赵宗彬,陈皓侃,李保庆.煤燃烧过程中NOx的生成和还原[J].煤炭转化,1999.22(4):10-14.
    292. 岑可法,倪明江,骆仲泱,et al.循环流化床锅炉理论设计与运行[M].、北京:中国电力出版社.1998
    293. 新井纪男著,赵黛青等译.燃烧生成物的发生与抑制技术[M].北京:科学出版社.2001
    294. Luis F. de Diego, Carlos A. Londono, Xiao S. Wang, et al. Influence of Operating Parameters on NOx and N2O Axial Profiles in a Circulating Fluidized Bed Combustor[J]. Fuel.,1996.75(8):971-978.
    295. 王正华,周昊,池作和,et al.不同煤种高温燃烧时NOx排放特性的沿程分析[J].电站系统工程,2003.19(2):19-23.
    296. Svoboda, K., Pohorel, M. Influence of operating conditions and coal properties on NOx and N2O emissions in pressurized fluidized bed combustion of subbituminous coals[J]. Fuel,2004.83(7-8):1095-1103.
    297. Jones, J.M., Zhu, Q., Thomas, K.M. Metalloporphyrin-derived carbons:models for investigating NOx release from coal char combustion[J]. Carbon,1999. 37(7):1123-1131.
    298. 谢建军,杨学民,张磊,et al.循环流化床燃煤过程NO、N20和S02的排放行为研究[J].燃料化学学报,2006.34(2):151-159.
    299. Gavin D G, Dorrington M A. Factors in the Conversion of Fuel Nitrogen to Nitric and Nitrous Oxides during Fluidized Bed Combustion[J]. Fuel,1993.72(3):381-388.
    300. Lyngfelt A, Leckner B. SO2 Capture and N2O Reduction in a Circulating Fluidized-bed Boiler:Influence of Temperature and Air Staging[J]. Fuel,1993.72(11):1553-1561.
    301. Lu Y, Jahkola A, Hippinen Ⅰ, et al. The Emissions and Control of NOx and N2O in Pressurized Fluidized Bed Combustion[J]. Fuel,1992.71(6):693-699.
    302. Young B C, Mann M D, Collings M E. Formation of NOx and N2O in the Fluidized-bed Combustion of High-and Low-Rank Coals[J]. Coal Sci. Technol,1993.21:419-423.
    303. Bonn B, Pelz G, Baumann H. Formation and decomposition of N2O in fluidized bed biolers[J]. Fuel,1995.74(2):165-171.
    304. Zhao, J., Grace, J.R., Lim, C.J., et al. Influence of operating parameters on NOitx emissions from a circulating fluidized bed combustor[J]. Fuel,1994.73(10):1650-1657.
    305. Wang X S, Gibbs B M, Rhodes M J. Impact of Air Staging on the Fate of NO and N2O in a Circulating Fluidized-bed Combustor[J]. Combustion and Flame,1994. 99((3/4):508-515.
    306. 卢建欣,刘皓,冯波,et al.循环流化床煤燃烧过程中N20/NOx的排放研究[J].热能动力工程,1995.10(6):375-380.
    307. Wu Xin, Duan Yufeng, Zhao Changsui, et al. Application of Fly Ash Underfeed Recycling Technology in a Anthractie Fired Bubbling Fluidized Bed Boiler[J]. Boiler Technology,1999.30:29-32.
    308. Nowak, W. Clean coal fluidized-bed technology in poland[J]. Applied Energy,2003. 74:405-413.
    309. Alial Shawabkeh, Hitoki Matsuda, Hasatani., M. Comparative reactivity of treated FBC-and PCC-fly ash for SO2 removal[J]. The Canadian Journal of Chemical Engineering, 1995.73(3):378-382.
    310. 顾亚平.论循环流化床锅炉的循环倍率[J].锅炉技术,2001.32(1):8-12.
    311. 肖显斌,杨海瑞,吕俊复,et al.循环流化床燃烧数学模型[J].煤炭转化,2002.25(3):11-16.
    312. Hannes J, Ulrieh Renz, Cor M Vanden Bleek. The IEA model for circulating fluidized bed combustion[C]. in 13th International Conference on FBC.1995. Orlando:ASME.
    313. Heinboekel, F N Fett. A Mathematical Model for Pressurized Circulating Fluidized Bed Combustion[C]. in the 13th International Conference for FBC.1995. Orlando:ASME.
    314. 王勤辉.循环流化床锅炉总体数学模型及性能试验[D].博士,杭州:浙江大学.1997
    315. T. Knoebig, K. Luecke, J. Werther. Mixing and reaction in the circulating fluidized bed-A three-dimensional combustor model [J]. Chemical Engineering Science,1999. 54(13-14):2151-2160.
    316. 刘亚妮.循环流化床锅炉数学模型及数值模拟研究[D].硕士,武汉:武汉大学.2005
    317.李静海,郭慕孙.循环流化床能量最小多尺度作用模型[J].中国科学B辑,1992(11):1127-1136.
    318. 李政.循环流化床锅炉通用整体数学模型、仿真与性能预测[D].博士,北京:清华大学.1994
    319. 丁丽萍,李成之,赫翼成.循环流化床的燃烧数学模型[J].冶金能源,1994.13(5):29-33.
    320. 杨波.循环流化床锅炉燃烧过程的数值模拟[D].硕士:中国科学院.2000
    321. 张永哲,徐向东.循环流化床锅炉动态数学模型与仿真研究[J].中国电机工程学报,2000.20(12):84-88.
    322. 毛玉如.循环流化床富氧燃烧技术的试验和理论研究[D].博士,杭州:浙江大学.2003
    323. Ergun S. Fluid flow through packed columns[J]. Chemical Engineering Progress,1952. 48:89-94.
    324. 骆仲泱.燃煤循环流化床的燃烧技术[D].博士,杭州:浙江大学.1990
    325. C. Y. Wen, Chen, L.H. Fluidized bed freeboard phenomena:Entrairiment and elutriation[J]. AIChE Journal,1982.28(1):117-128.
    326. Kunii.D, Levenspiel,O. Flow Modeling of Fast Fluidized Beds Fluidized Beds Ⅲ[M]. Oxford:Pergamon press.1991
    327. Werther J. Circulating Fluidized Bed Technology IV [M]. New York.1994
    328. 白丁荣,金涌,俞芷青,et al.快速流态化两通道模型[J].化工学报,1990.41(1):10-18.
    329. 赫俏,陆继东,张新文,et al.循环流化床流动特性分析[J].燃烧科学与技术,1999.5(3):325-330.
    330. 韩才元,徐明厚,周怀春,et al.煤粉燃烧[M].北京:科学出版社.2001
    331. 金晓钟.循环流化床锅炉热量释放规律的实验及模型研究[D].博士,北京:清华大学.1999
    332. 吴正舜,张春林,陈汉平,et al.煤在燃烧过程中破碎模型的建立[J].燃料化学学报,2003.31(1):17-21.
    333. 吴正舜,刘欣,吴创之,et al.煤在燃烧过程中的破碎[J].电站系统工程,2003.19(2):4-7.
    334. Pinho, C. Fragmentation on batches of coke or char particles during fluidized bed combustion[J]. Chemical Engineering Journal,2006.115(3):147-155.
    335. Bellgardt F., Hembach M., Schossler. Modeling of large scale atmospheric fluidized bed combustors[C]. in International Conference on FBC.1987.
    336. Qinhui Wang, Zhongyang Luo, Mingjiang Ni, et al. Particle population balance model for a circulating fluidized bed boiler[J]. Chemical Engineering Journal,2003. 93(2):121-133.
    337. Munts V.A., Baskakov A.P., Fedorenko Y.N. The optimum size of particles in circulating fluidized bed furnaces[C]. in Circulating Fluidized Bed Technology Ⅲ.1991. New York: Pergamon Press.
    338. Cammarota, A., Chirone, R., Salatino, P., et al. Attrition phenomena during fluidized bed combustion of granulated and mechanically dewatered sewage sludges[J]. Proceedings of the Combustion Institute,2005.30(2):3017-3024.
    339. Montagnaro, F., Salatino, P., Scala, F., et al. Assessment of ettringite from hydrated FBC residues as a sorbent for fluidized bed desulphurization[small star, filled][J]. Fuel,2003. 82(18):2299-2307.
    340. Chu, C.Y., Hwang, S.J. Attrition and sulfation of calcium sorbent and solids circulation rate in an internally circulating fluidized bed[J]. Powder Technology,2002. 127(3):185-195.
    341. Salatino, P., Scala, F., Chirone, R. Fluidized-bed combustion of a biomass char:The influence of carbon attrition and fines postocombustion on fixed carbon conversion[J]. Symposium (International) on Combustion,1998.27(2):3103-3110.
    342. Walsh, P.M., Li, T. Fragmentation and attrition of coal char particles undergoing collisions during combustion at temperatures from 900 to 1100 K[J]. Combustion and Flame,1994.99(3-4):749-757.
    343. T.J. Pis, A.B. Fuertes, V. Artos, et al. Attrition of coal ash particles in a fluidized bed[J]. Powder Technology,1991.66:41-46.
    344. U. Arena, A. Cammarota, L. Massimilla. Carbon attrition during the combustion of a char in a circulating fluidized bed[J]. Science and Technology,1990.73:383-394.
    345. 王勤辉,骆仲泱,倪明江,et al.循环流化床锅炉炉内颗粒分布平衡模型[J].中国电机工程学报,2001.21(9):110-115.
    346. WU R. L., LIM C. J, GRACE J. R., et al. Instantaneous local heat transfer and hydrodynamics in a circulating fluidized bed[J]. International journal of heat and mass transfer,1990.34(8):2019-2027.
    347. C Y Wen, E Miller. Heat transfer in solids-gas transport lines[J]. Industrial & Engineering Chemistry,1961.53:51-53.
    348. J R Grace. Fluidized bed heat transfer, in Handbook of Multi-Phase Systems, G Hestroni, Editor.1982, McGraw-Hill, HemisPhere:Washington, p.9-70.
    349. M Q Brewster. Effective Absorptivity and Emissivity of Particulate Medium with Application to a Fluidized Bed[J]. ASME Journal of Trans.,1986.108:710-713.
    350. Navarro, R., Guzman, J., Saucedo, I., et al. Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes[J]. Waste Management,2007. 27(3):425-438.
    351. 李静,李朝建,吴雪文.石煤提钒焙烧工艺及机理探讨[J].湖南有色金属,2007.23(6):7-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700