可逆燃料电池—电解池氧电极复合改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池是一种可以直接将燃料的化学能转化为电能的电化学装置,固体氧化物电解池是固体氧化物燃料电池的逆过程,能够高温电解水/二氧化碳制氢气/一氧化碳。可逆电池将二者的功能合二为一。本论文主要进行了可逆电池的氧电极的复合改性研究。采用LSM((La0.8Sr0.2)0.95MnO3-δ),LSCF(La0.6Sr0.4Co0.2Fe0.8O3-δ)和SSC(Sm0.5Sr0.5CoO3-δ))氧电极材料。
     采用丝网印刷工艺制备的LSM和LSCF氧电极材料用于高温电解池和可逆电池,长期运行后,LSM与电解质YSZ(氧化钇稳定的氧化锆)发生剥离,YSZ与GDC(Gd0.1Ce0.9O2-δ)阻挡层剥离,导致电池性能衰减。
     浸渍工艺制备纳米LSM-YSZ,LSCF-YSZ和SSC-YSZ氧电极用于可逆电池,提高了氧电极的性能和催化活性。可逆循环测试或长期稳定性测试后,纳米离子发生团聚导致电池性能衰减。对SSC氧电极的研究发现氧电极SSC与YSZ分层,以及长期电解后氢电极Ni的团聚也是导致电池性能衰减的主要原因之一。最后,将纳米LSCF-YSZ氧电极用于H2O/CO2共电解,研究了共电解的影响因素和反应过程。
     综上,通过本论文研究为开发高活性和高稳定的氧电极材料奠定了基础。
A solid oxide fuel cell (SOFC) is an electrochemical setup to convert chemical energy offuels into electric energy. A solid oxide electrolysis cell (SOEC) was reversibly operated as toSOFCs. H2/CO can be generated from H2O/CO2via an SOEC. A reversible cell integrated SOFCwith SOEC. In this study, LSM, LSCF and SSC oxygen electrodes are prepared for reversibleSOFCs. Electrochemical performance and stability of the oxygen electrodes for cells wereinvestigated, and degradation mechanism was demonstrated.
     LSM and LSCF electrodes prepared by screen printing were used for reversible SOFCs.After long-term steam electrolysis operation, SOEC deteriorated. Microstructure of post-test cellswas studied that delamination of LSM from YSZ and GDC from YSZ caused the deterioration.Furthermore, LSM-infiltrated YSZ oxygen electrode was prepared for reversible SOFC, so as toimprove the electrochemical performance and operational stability of the cell.Nano-sized LSM-YSZ, LSCF-YSZ, and SSC-YSZ oxygen electrodes were prepared for reversibleSOFCs by an infiltration process, with improved electrode performance and electro-catalyticactivity. Cell degradation in electrolysis mode is attributed to agglomeration of nano-particles,which has been observed during post-test SEM analysis. Agglomeration of infiltrated LSCFparticles is possibly responsible for the performance degradation of the cell. Rversible cells withSSC-YSZ oxygen electrodes degraded due to delamination of SSC-YSZ oxygen electrod fromYSZ electrolyte and coarsening of Ni particles. H2O/CO2co-electrolysis was investigated onLSCF-infiltrated YSZ oxygen electrode.
     In conclusion, this dissertation has established a solid foundation for development ofhigh-activity and high-stability oxygen electrodes.
引文
1.刘忻.固体氧化物燃料电池阳极材料的研究进展[J].陶瓷学报,2011,32(3):483~410
    2. Zhu, W.Z. and S.C. Deevi. A review on the status of anode materials for solid oxide fuelcells[J]. Materials Science and Engineering: A,2003,362(1-2):228~239.
    3. Z. L. Zhan, S. A. Barnett. Operation of ceria-electrolyte solid oxide fuel cells oniso-octane-air fuel mixtures[J]. Journal of Power Sources,2006,157:422~429.
    4.迟克彬,李方伟,李影辉等.固体氧化物燃料电池研究进展[J].天然气化工,2002,27:37~44
    5.韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备[M].北京:科学出版社,2004,8~39
    6.李方伟,李影辉,迟克彬等.固体氧化物燃料电池研究进展[J].化工学报,2003,28:47~52.
    7.韩敏芳,彭苏萍.固体氧化物燃料电池发展及展望[J]. Advanced Matreials Industry.2005,7:38~40
    8.马景陶,葛奔,艾德生.流延法制备固体氧化物电解池氢电极支撑电解质的共烧结技术研究[J].稀有金属材料与工程,2011,40(增刊1):287~290
    9. O. A. Marina, L. R. Pederson, M. C. Williams, et al. Electrode performance in reversiblesolid oxide fuel cells[J]. Journal of The Electrochemical Society,2007,154(5): B452~459.
    10.匡佳雯,史栩翔,蔡宁生等.固体氧化物电解池H2O-CO2共电解制取烃类燃料反应特性研究[J].中国电机工程学报.2012,32(17):31~36
    11. Q. X. Fu, C. Mabilat, M. Zahid, et al. Syngas production via high-temperature steam/CO2co-electrolysis: an economic assessment[J]. Energy&Environmental Science,2010,3:1382~1397.
    12. Z. L. Zhan, W. Kobsiriphat, J. R. Wilson, et al. Syngas Production By Coelectrolysis ofCO2/H2O: The Basis for a Renewable Energy Cycle[J]. Energy&Fuels2009,23,3089~3096.
    13.马景陶,林旭平,葛奔等. SOEC电解质与氢电极的流延制备_共烧结及性能[J].稀有金属材料与工程,2009,38(增刊2):700~704.
    14. J. E. O’Brien, M. G. McKellar, C. M. Stoots, et al. Parametric study of large-scaleproduction of syngas via high-temperature co-electrolysis[J]. International Journal ofHydrogen Energy,2009,34:4216~4226.
    15. C. Stoots, J. O’Brien, J. Hartvigsen. Results of recent high temperature coelectrolysisstudies at the Idaho National Laboratory[J]. International Journal of Hydrogen Energy,2009,34:4208~4215.
    16. P. Kim-Lohsoontorn, Y.-M. Kim, N. Laosiripojana, et al. Gadolinium dopedceria-impregnated nickeleyttria stabilised zirconia cathode for solid oxide electrolysiscell[J]. International Journal of Hydrogen Energy,2011,36:9420~9427.
    17.马学菊,马文会,杨斌等.固体氧化物燃料电池阳极材料的研究进展[J].电源技术,2007,31(9):751-755.
    18.张珺,周和平,刘志辉等. NiO包覆YSZ固体氧化物燃料电池阳极材料的制备研究[J].稀有金属材料与工程,2007,36(增刊2):606-608.
    19. H. T. Lim, A. V. Virkar. Measurement of oxygen chemical potential in Gd2O3-dopedceria-Y2O3-stabilized zirconia bi-layer electrolyte, anode-supported solid oxide fuelcells[J]. Journal of Power Sources,2009,192:267~278.
    20. S. D. Song, M. F. Han, J. Q. Zhang, et al. NiCu-Zr0.1Ce0.9O2-δanode materials forintermediate temperature solid oxide fuel cells using hydrocarbon fuels[J]. Journal ofPower Sources,2013,233:62~68.
    21. J. Nielsen, T. Klemens, P. Blennow. Detailed impedance characterization of a wellperforming and durable Ni:CGO infiltrated cermet anode for metal-supported solid oxidefuel cells[J]. Journal of Power Sources,2012,219:305~316.
    22. H. Lin, C. Ding, K. Kumada, et al. Ni-GDC Anode-Supported Ceria Electrolyte Film andIts Application in Solid Oxide Fuel Cells[C]. AIP Conference Proceeding,54~58
    23. A. Nakajo, J. Kuebler, A. Faes, et al. Compilation of mechanical properties for thestructural analysis of solid oxide fuel cell stacks. Ceramics International[J],2012,38:3907~3927.
    24. C.-H. Lo, C.-H. Tsai, C. Hwang. Plasma-Sprayed YSZ/Ni-LSGM-LSCoIntermediate-Temperature Solid Oxide Fuel Cells[J]. International Journal of AppliedCeramic Technology,2009,6(4):513~524.
    25. S. Jung, C. Lu, H.P. He, et al. Influence of composition and Cu impregnation method onthe performance of Cu/CeO2/YSZ SOFC anodes[J]. Journal of Power Sources,2006,154:42~50.
    26. E. P. Murray, M.J. Sever, S.A. Barnett. Electrochemical performance of(La,Sr)(Co,Fe)O3–(Ce,Gd)O3composite cathodes[J]. Solid State Ionics,2002,148:27~
    34.
    27. M. Kumar, S. Srikanth, B. Ravikumar, et al. Synthesis of pure and Sr-doped LaGaO3,LaFeO3and LaCoO3and Sr,Mg-doped LaGaO3for ITSOFC application using differentwet chemical routes[J]. Materials Chemistry and Physics,2009,113:803~815.
    28. B. Rambabu, S. Ghosh, W.C. Zhao, et al. Innovative processing of dense LSGMelectrolytes for IT-SOFC's[J]. Journal of Power Sources,2006.159(1):21~28.
    29. M.A. Laguna-Bercero, N. Kinadjan, R. Sayer, et al., Performance ofLa2-xSrxCo0.5Ni0.5O4±δas an Oxygen Electrode for Solid Oxide Reversible Cells[J]. FuelCells,2011,11(1):102~107.
    30. H.P. Ding, X.J. Xue. GdBa0.5Sr0.5Co2O5+δlayered perovskite as promising cathode forproton conducting solid oxide fuel cells[J]. Journal of Alloys and Compounds,2010,496(1-2):683~686.
    31. B.B. Liu, Z.Y. Jiang, B. Ding. Bi0.5Sr0.5MnO3as cathode material forintermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources,2011,196(3):999~1005.
    32. J. R. Kong, Y. Zhang, C.S. Deng, et al. Synthesis and electrochemical properties of LSMand LSF perovskites as anode materials for high temperature steam electrolysis[J].Journal of Power Sources,2009,186(2):485~489.
    33. F. Bidrawn, G. Kim, N. Aramrueang, et al. Dopants to enhance SOFC cathodes based onSr-doped LaFeO3and LaMnO3[J]. Journal of Power Sources,2010,195:720~728.
    34. Y.L. Liu, A. Hagen, R. Barfod, et al. Microstructural studies on degradation of interfacebetween LSM-YSZ cathode and YSZ electrolyte in SOFCs[J]. Solid State Ionics,2009,180(23-25):1298~1304.
    35. H. Abernathy, H. O. Finklea, D.S. Mebane, et al. Reversible aging behavior ofLa0.8Sr0.2MnO3electrodes at open circuit[J]. Journal of Power Sources,2012,216:11~14.
    36. D. Rembelski, J. P. Viricelle, L. Combemale, et al. Characterization and Comparison ofDifferent Cathode Materials for SC-SOFC: LSM, BSCF, SSC, and LSCF[J]. Fuel Cells,2012,12(2):256~264.
    37. M.F. Liu, D. Ding, K. Blinn, et al. Enhanced performance of LSCF cathode throughsurface modification[J]. International Journal of Hydrogen Energy,2012,37(10):8613~8620.
    38. W.Q. Zhang, B. Yu, J.M. Xu. Investigation of single SOEC with BSCF anode and SDCbarrier layer[J]. International Journal of Hydrogen Energy,2012,37(1):837~842.
    39. R. A. De Souza, J. A. Kilner, J. F. Walker. A SIMS study of oxygen tracer diffusion andsurface exchange in La0.8Sr0.2MnO3[J]. Materials Letters,2000,43:43~52.
    40. L.-W. Tai, M. M. Nasrallah, H. U. Anderson, et al. Structure and electrical properties ofLa1-xSrxCo1-yFeyO3. Part1. The system La1-xSrxCo0.2Fe0.8O3[J]. Solid State Ionics,1995,76:273~283.
    41. L.-W. Tai, M. M. Nasrallah, H. U. Anderson, et al. Structure and electrical properties ofLa1-xSrxCo1-yFeyO3. Part2. The system La1-xSrxCo0.2Fe0.8O3[J]. Solid State Ionics,1995,76:259~271.
    42. Z.P. Shao, S.M. Haile, J. Ahn, et al. A thermally self-sustained micro solid-oxide fuel-cellstack with high power density[J]. Nature,2005,435:795~798.
    43. F. Zhao, R.R. Peng, C.R. Xia. A La0.6Sr0.4CoO3-δ-based electrode with high durability forintermediate temperature solid oxide fuel cells[J]. Materials Research Bulletin,2008,43(2):370~376.
    44. H. Hayshi, M. Kanoh, C.J. Quan, et al. Thermal expansion of Gd-doped ceria and reducedceria[J]. Solid State Ionics,2000,132:227~233.
    45. H.-G. Jung, Y.-K. Sun, H.Y. Jung, et al. Investigation of anode-supported SOFC withcobalt-containing cathode and GDC interlayer[J]. Solid State Ionics,2008,179(27-32):1535~1539.
    46. T. Nagai, W. Ito, T. Sakon. Relationship between cation substitution and stability ofperovskite structure in SrCoO3-δ-based mixed conductors[J]. Solid State Ionics,2007.177(39-40):3433~3444.
    47. C.R. Xia, M.L. Liu. Low-temperature SOFCs based on Gd0.1Ce0.9O1.95fabricated by drypressing[J]. Solid State Ionics,2001,144:249~255.
    48. H. Y. Tu, Y. Takeda, N. Imanishi, et al. Ln1-xSrxCoO3(Ln=Sm, Dy) for the electrode ofsolid oxide fuel cells[J]. Solid State Ionics,1997,100:283~288.
    49. A. N. Petrov, O. F. Kononchuk, A. V. Andreev, et al. Crystal structure, electrical andmagnetic properties of La1-xSrxCoO3-y[J]. Solid State Ionics,1995,80:189~199.
    50. A. Petric, P. Huang, F. Tietz. Evaluation of La–Sr–Co–Fe–O perovskites for solid oxidefuel cells and gas separation membranes[J]. Solid State Ionics,2000,135:719~725.
    51. H. Ullmann, N. Trofimenko, F. Tietz, et al. Correlation between thermal expansion andoxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes[J].Solid State Ionics,2000,138:79~90.
    52.张文强,于波,陈靖等.高温固体氧化物电解水制氢技术[J].化学进展,2008,20(5):778~787.
    53. N. Jordan, W. Assenmacher, S. Uhlenbruck, et al. Ce0.8Gd0.2O2-δprotecting layersmanufactured by physical vapor deposition for IT-SOFC[J]. Solid State Ionics,2008,179(21-26):919~923.
    54. A.J. Darbandi, T. Enz, H. Hahn. Synthesis and characterization of nanoparticulate filmsfor intermediate temperature solid oxide fuel cells[J]. Solid State Ionics,2009,180(4-5):424~430.
    55. X.Y. Lou, S.Z. Wang, Z. Liu, et al. Improving La0.6Sr0.4Co0.2Fe0.8O3δcathodeperformance by infiltration of a Sm0.5Sr0.5CoO3δcoating[J]. Solid State Ionics,2009,180(23-25):1285~1289.
    56. L.F. Nie, M.F. Liu, Y.J. Zhang, et al. La0.6Sr0.4Co0.2Fe0.8O3δcathodes infiltrated withsamarium-doped cerium oxide for solid oxide fuel cells[J]. Journal of Power Sources,2010,195(15):4704~4708.
    57. S. Ricote, N. Bonanos, P.M. Rorvik, et al. Microstructure and performance ofLa0.58Sr0.4Co0.2Fe0.8O3δcathodes deposited on BaCe0.2Zr0.7Y0.1O3δby infiltration andspray pyrolysis[J]. Journal of Power Sources,2012,209:172~179.
    58. Y.Y. Huang, J.M. Vohs, R.J. Gorte. Fabrication of Sr-Doped LaFeO3YSZ CompositeCathodes[J]. Journal of The Electrochemical Society,2004,151(4): A646~651.
    59. Y.Y. Huang, K. Anh, J.M. Vohs, et al. Characterization of Sr-doped LaCoO3-YSZcomposites prepared by impregnation methods[J]. Journal of The Electrochemical Society,2004,151(10): A1592~1597.
    60. H.P. He, Y.Y. Huang, J. Regal, et al. Low-temperature fabrication of oxide composites forsolid-oxide fuel cells[J]. Journal of American Ceramic Society,2004,87(3):331~336
    61. X. Y. Xu, C.B. Cao, C.R. Xia, et al. Electrochemical performance of LSM–SDCelectrodes prepared with ion-impregnated LSM[J]. Ceramics International,2009,35(6):2213~2218.
    62. C.H. Yang, C. Jin, A. Coffin, et al. Characterization of infiltrated (La0.75Sr0.25)0.95MnO3asoxygen electrode for solid oxide electrolysis cells[J]. International Journal of HydrogenEnergy,2010,35(11):5187~5193.
    63. W.S. Wang, M.D. Gross, J.M. Vohs, et al. The Stability of LSF-YSZ Electrodes Preparedby Infiltration[J]. Journal of The Electrochemical Society,2007,154(5): B439~445.
    64. M. Shah, A. Call, G. Hughes, et al. Nano-Particle Coarsening Effects in LSCF-infiltratedcathodes[C].219thECS Meeting, The Electrochemical Society,11
    65. T. Z. Sholklapper, H. Kurokawa, C. P. Jacobson, et al. Nanostructured Solid Oxide FuelCell Electrodes[J]. Nano Letters,2007,7(7):2136~2141
    66. S. P. Jiang, Y. J. Leng, S. H. Chan, et al. Development of (La,Sr)MnO3-Based Cathodesfor Intermediate Temperature Solid Oxide Fuel Cells[J]. Electrochemical and Solid-StateLetters,2003,6(4): A67~70.
    67. T. Z. Sholklapper, V. Radmilovic, C. P. Jacobson, et al. Nanocomposite Ag-LSM solidoxide fuel cell electrodes[J]. Journal of Power Sources,2008,175(1):206~210.
    68. C. Graves, S. D. Ebbesen, M. Mogensen, et al. Sustainable hydrocarbon fuels byrecycling CO2and H2O with renewable or nuclear energy[J]. Renewable and SustainableEnergy Reviews,2011,15(1):1~23.
    69. C. Graves, S.D. Ebbensen, M. Mogensen. Co-electrolysis of CO2and H2O in solid oxidecells: performance and durability[J]. Solid State Ionics,2010:1~6.
    70. A. Brisse, J. Schefold, M. Zahid. High temperature water electrolysis in solid oxidecells[J]. International Journal of Hydrogen Energy,2008,33:5357-5382.
    71. H. S. Spacil, C. S. Tedmon Jr. Electrochemical dissociation of water vapor in solid oxideelectrolyte cells I thermodynamics and cell characteristics[J]. Journal of theElectrochemical Society,1969,12:1618~1626
    72. H. S. Spacil, C. S. Tedmon Jr. Electrochemical dissociation of water vapor in solid oxideelectrolyte cells II thermodynamics and cell characteristics[J]. Journal of theElectrochemical Society,1969,12:1627~1633.
    73. J.E.O’Brien, C.M. Stoots, J.S. Herring, et al. Performance measurements of solid-oxideelectrolysis cells for hydrogen production[J]. Journal of Fuel Cell Science and Technology,2005,2(3):156~163.
    74. J.E. O’Brien, C.M. Stoots, J.S. Herring. Hydrogen Production Performance of a10-CellPlanar Solid-Oxide Electrolysis Stack[J]. Journal of Fuel Cell Science and Technology,2006,3(2):213~219.
    75. C.M. Stoots, J.M. O’Brien, K.G. Condie, et al. High-temperature electrolysis forlarge-scale hydrogen production from nuclear energy-Experimental investigations[J].International Journal of Hydrogen Energy,2010,35(10):4861~4870.
    76. A. Hauch, S.H. Jensen, S. Ramousse, et al. Performance and durability of solid oxideelectrolysis cells[J]. Journal of The Electrochemical Society,2006,153(9):A1741~A1747.
    77. Jensen, S.H., P.H. Larsen, M. Mogensen. Hydrogen and synthetic fuel production fromrenewable energy sources[J]. International Journal of Hydrogen Energy,2007,32(15):3253~3257.
    78. S. Fujiwara, S. Kasai, H. Yamauchi, et al. Hydrogen production by high temperatureelectrolysis with nuclear reactor[J]. Progress in Nuclear Energy,2008,50(2-6):422~426.
    79. B. Yu, W. Q. Zhang, J. Chen. Microstructural characterization and electrochemicalproperties of Ba0.5Sr0.5Co0.8Fe0.2O3δand its application for anode of SOEC[J].International Journal of Hydrogen Energy,2008,33:6873~6877.
    80. M.Y. Liu, Y. Bo, J.M. Xu, et al. Thermodynamic analysis of the efficiency ofhigh-temperature steam electrolysis system for hydrogen production[J]. Journal of PowerSources,2008,177:493~499.
    81.任耀宇,马景陶,咎青峰等.高温电解水蒸汽制氢关键材料研究进展[J].硅酸盐学报,2011,39(7):1067~1074
    82. C.W. Forsberg. Hydrogen, nuclear energy, and the advanced high-temperature reactor[J].International Journal of Hydrogen Energy,2003,28:1073~1081
    83. C. Jin, C.H. Yang, F. Zhao, et al. La0.75Sr0.25Cr0.5Mn0.5O3as hydrogen electrode for solidoxide electrolysis cells[J]. International Journal of Hydrogen Energy,2011,36:3340~3346.
    84. J.E. O’Brien, M.G. McKellar, E.A. Harvego, et al. High-temperature electrolysis forlarge-scale hydrogen and syngas production from nuclear energy-summary of systemsimulation and economic analyses[J]. International Journal of Hydrogen Energy,2010,35:4808~4819.
    85. J. E. O’Brien, C.M. Stoots, J. S. Herring, et al. High-temperature co-electrolysis of carbondioxide and steam for the production of syngas; equilibrium model and single-celltests[C]. International Topical Meeting on the Safety and Technology of NuclearHydrogen2007.
    86. C. Stoots, J. O’Brien, J. Hartvigsen. Carbon Neutral Production of Syngas Via HighTemperature Electrolytic Reduction of Steam and CO2[C].2007ASME InternationalMechanical Engineering Congress and Exposition2007:1-11.
    87. P. Kim-Lohsoontorn, J. Bae. Electrochemical performance of solid oxide electrolysis cellelectrodes under high-temperature coelectrolysis of steam and carbon dioxide[J]. theJournal of Power Sources,2010,9:18~27
    88. X.L. Yue, J.T.S. Irvine. Alternative cathode material for CO2reduction by hightemperature solid oxide electrolysis cells[J]. Journal of The Electrochemical Society,2012,159(8): F442~F448.
    89. S. S. Li, Y. X. Li, Y. N. Gan, et al. Electrolysis of H2O and CO2in an oxygen-ionconducting solid oxide electrolyzer with a La0.2Sr0.8TiO3+δcomposite cathode[J]. Journalof Power Sources,2012,218:244~248.
    90. S. D. Ebbesen, M. Mogensen. Electrolysis of carbon dioxide in solid oxide electrolysiscells[J]. Journal of Power Sources,2009,193:349~358.
    91. C. M. Stoots, J. E. O’Brien, J. J. Hartvigsen. Syngas production via high-temperatureco-electrolysis of steam and carbon dioxide in a solid-oxide stack[C]. Fuel Cell Science,Engineering&Technology Conference2007.
    92. C. Stoots, J. O’Brien, J. Herring, et al. Recent progress at the idaho national laboratory inhigh temperature electrolysis for hydrogen and syngas production[C]. ASMEInternational Mechanical Engineering Congress and Exposition, October31-November6,2008, Boston, USA.
    93. K. Chen, N. Ai, S. P. Jiang. Performance and stability of (La,Sr)MnO3–Y2O3–ZrO2composite oxygen electrodes under solid oxide electrolysis cell operation conditions[J].International Journal of Hydrogen Energy,2012,37(14):10517~10525.
    94. C. Fu, X. Ge, S. H. Chan, et al. Fabrication and characterization of anode-supportedlow-temperature SOFC based on Gd-doped ceria electrolyte[J]. Fuel Cells,2012,12(3):450~456.
    95. Y. H. Gong, W. J. Ji, L. Zhang, et al. Low temperature deposited (Ce,Gd)O2x interlayerfor La0.6Sr0.4Co0.2Fe0.8O3cathode based solid oxide fuel cell[J]. Journal of PowerSources,2011,196(5):2768~2772.
    96. M. Shah, P. W. Voorhees, and S. A. Barnett. Time-dependent performance changes inLSCF-infiltrated SOFC cathodes: The role of nano-particle coarsening. Solid State Ionics,2011,187:64~67.
    97. J. Chen, F.L. Liang, L. Liu, et al. Nano-structured (La, Sr)(Co, Fe)O3+YSZ compositecathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources,2008,183(2):586~589.
    98. F. Wang, D. J. Chen, and Z. Shao. Sm0.5Sr0.5CoO3δ-infiltrated cathodes for solid oxidefuel cells with improved oxygen reduction activity and stability. Journal of Power Sources,2012,216:208~215.
    99. C. R. Xia, W. Rauch, F. L. Chen, et al. Sm0.5Sr0.5CoO3cathodes for low-temperatureSOFCs. Solid State Ionics,2002,149,11~19.
    100. T. C. Yeh, J. L. Routbort, and T. O. Mason. Oxygen transport and surface exchangeproperties of Sr0.5Sm0.5CoO3δ. Solid State Ionics,2013,232:138~143.
    101.梁明德.固体氧化物高温电解池材料制备研究[D].东北大学博士学位论文.
    102.王玲,曾燕伟,蔡铜祥.固体氧化物燃料电池电解质材料的研究进展[J].电池,2012,42(3):172~175.
    103.黄金,王延忠,刘炜等.中低温固体氧化物燃料电池复相固体电解质的研究进展[J].电池,43(3):178~181.
    104. Pattaraporn Kim-Lohsoontorn, Joongmyeon Bae. Electrochemical Performance ofElectrodes under High-Temperature Coelectrolysis of Steam and Carbon Dioxide [C].Proceeding of9th European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland.(2010)Chapter14,13~26.
    105. N. Li, A. Verma, P. Singh, et al. Characterization of La0.58Sr0.4Co0.2Fe0.8O3δ–Ce0.8Gd0.2O2composite cathode for intermediate temperature solid oxide fuel cells[J]. CeramicsInternational,2013,39(1):529~538.
    106. Y. Tao, H. Nishino, S. Ashidate, et al. Polarization properties ofLa0.6Sr0.4Co0.2Fe0.8O3-based double layer-type oxygen electrodes for reversible SOFCs[J].Electrochimica Acta,2009,54(12):3309~3315.
    107. S.-G. Kim, S. P. Yoon, S. W. Nam, et al. Fabrication and characterization of a YSZ-YDCcomposite electrolyte by a sol-gel coating method[J]. Journal of Power Source,2002,110:222~228
    108. R.R. Peng, C.R. Xia, X.Q. Liu, et al. Intermediate-temperature SOFCs with thinCe0.8Y0.2O1.9films prepared by screen-printing[J]. Solid State Ionics,2002(152-153):561~565
    109. Z. Fan, J.W. An, A. Lancu, et al. Thickness effects of yttria-doped ceria interlayers onsolid oxide fuel cells[J]. Journal of Power Sources,2012,218:187~191.
    110. M.-B. Choi, B. Singh, E.D. Wachsman, et al. Performance of La0.1Sr0.9Co0.8Fe0.2O3δandLa0.1Sr0.9Co0.8Fe0.2O3δ–Ce0.9Gd0.1O2oxygen electrodes with Ce0.9Gd0.1O2barrier layer inreversible solid oxide fuel cells[J]. Journal of Power Sources,2013,239:361~373.
    111. M.A. Laguna-Bercero, J.A. Kilner, S.J. Skinner. Development of oxygen electrodes forreversible solid oxide fuel cells with scandia stabilized zirconia electrolytes[J]. Solid StateIonics,2011,192(1):501~504.
    112. H.J. Ko, J.-H. Myung, J.-H. Lee, et al. Synthesis and evaluation of (La0.6Sr0.4)(Co0.2Fe0.8)O3(LSCF)–Y0.08Zr0.92O1.96(YSZ)–Gd0.1Ce0.9O2δ(GDC) dual composite SOFC cathodes forhigh performance and durability[J]. International Journal of Hydrogen Energy,2012,37(22):17209~17216.
    113. P. Hjalmarsson, X. Sun, Y.-L, Liu, et al. Influence of the oxygen electrode andinter-diffusion barrier on the degradation of solid oxide electrolysis cells[J]. Journal ofPower Sources,2013,223:349-357.
    114. Z.L. Zhan, L. Zhao. Electrochemical reduction of CO2in solid oxide electrolysis cells[J].Journal of Power Sources,2010,195:7250~7254.
    115. J.R. Kong, Y. Zhang, C.S. Deng, et al. Synthesis and electrochemical properties of LSMand LSF perovskites as anode materials for high temperature steam electrolysis[J].Journal of Power Sources,2009,186:485~489.
    116. P. Kim-Lohsoontorn, Y.-M. Kim, N. Laosiripojana, et al. Gadolinium dopedceria-impregnated nickeleyttria stabilised zirconia cathode for solid oxide electrolysiscell[J]. International Journal of Hydrogen Energy,2011,36:9420~9427.
    117. M. Keane, M.K. Mahapatra, A. Verma, et al. LSM-YSZ interactions and anodedelamination in solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy,2012,37(22):16776~16785.
    118. N. Li, M. Keane, M. K. Mahapatra, et al. Mitigation of the delamination of LSM anode insolid ox8de electrolysis cells using manganese-modified YSZ[J]. International Journal ofHydrogen Energy,2013,38(15):6298~6303.
    119. A.V. Virkar. Mechanism of oxygen electrode delamination in solid oxide electrolyzercells[J]. international journal of hydrogen energy,2010,35(18):9527~9543.
    120. K.F. Chen, N. Ai, S.P. Jiang. Reasons for the high stability of nano-structured(La,Sr)MnO3infiltrated Y2O3–ZrO2composite oxygen electrodes of solid oxideelectrolysis cells. Electrochemistry Communications,2012,19:119~122.
    121. K.F. Chen, N.A., S.P. Jiang. Performance and stability of (La,Sr)MnO3-Y2O3-ZrO2composite oxygen electrodes under solid oxide electrolysis cell peration conditions[J].International Journal of Hydrogen Energy2012,37:10517~10525.
    122. C. J. Fu, Q. L. Liu, S. H. Chan, et al. Effects of transition metal oxides on thedensification of thin-film GDC electrolyte and on the performance ofintermediate-temperature SOFC. International Journal of Hydrogen Energy,2010,35(20):11200~11207.
    123. T. Talebi, M. Haji, B. Raissi. Effect of sintering temperature on the microstructure,roughness and electrochemical impedance of electrophoretically deposited YSZelectrolyte for SOFCs[J]. International Journal of Hydrogen Energy,2010,35(17):9420~9426.
    124. P. Leone, M. Santarelli, P. Asinari, et al. Experimental investigations of the microscopicfeatures and polarization limiting factors of planar SOFCs with LSM and LSCFcathodes[J]. Journal of Power Sources,2008,177(1):111~122.
    125. S. Lee, H.S. Song, S.H. Hyun, et al. LSCF-SDC core–shell high-performance durablecomposite cathode[J]. Journal of Power Sources,2010,195(1):118~123.
    126. G. Constantin, C. Rossignol, P. Briois, et al. Efficiency of a dense thin CGO buffer layerfor solid oxide fuel cell operating at intermediate temperature[J]. Solid State Ionics,2013,249-250:98~104.
    127. G.. B. Chen, H.M. Zhang, H.X. Zhong, et al. Gas diffusion layer with titanium carbide fora unitized regenerative fuel cell[J]. Electrochimica Acta,2010,55(28):8801~8807.
    128. R. Knibbe, J. Drennan, J.G. Love. Effect of alumina additions in YSZ on themicrostructure and degradation of the LSM-YSZ interface[J]. Solid State Ionics,2009,180(14-16):984~989.
    129. S.P. Jiang. A review of wet impregnation—An alternative method for the fabrication ofhigh performance and nano-structured electrodes of solid oxide fuel cells. MaterialsScience and Engineering:2006, A418(1-2):199~210.
    130. K. Yamahara, C. P. Jacobson, S. J. Visco, et al. Thin film SOFCs with cobalt-infiltratedcathodes. Solid State Ionics,2005,176(3-4):275~279.
    131. Y. Huang, J.M. Vohs, and R.J. Gorte. SOFC cathodes prepared by infiltration with variousLSM precursors. Electrochemical and Solid-State Letters,2006,9(5): A237~A240.
    132. S. Lee, G. Kim, J.M. Vohs, et al. SOFC anodes based on infiltration of La0.3Sr0.7TiO3.Journal of The Electrochemical Society,2008,155(11): B1179~B1183.
    133. Y. Sakito, A. Hirano, N. Imanishi, et al. Silver infiltrated La0.6Sr0.4Co0.2Fe0.8O3cathodesfor intermediate temperature solid oxide fuel cells. Journal of Power Sources,2008,182(2):476~481.
    134. R. Kiebach, C. Kn fel, F. Bozza, et al. Infiltration of ionic-, electronic-andmixed-conducting nano particles into La0.75Sr0.25MnO3–Y0.16Zr0.84O2cathodes-Acomparative study of performance enhancement and stability at different temperatures.Journal of Power Sources,2013,228:170~177.
    135. T.Z. Sholklapper, C. Lu, C.P. Jacobson, et al. LSM-infiltrated solid oxide fuel cellcathodes. Electrochemical and Solid-State Letters,2006,9(8): A376~A378.
    136. N.P. Bansal, and B. Wise. Sol–gel synthesis of La0.6Sr0.4CoO3xand Sm0.5Sr0.5CoO3xcathode nanopowders for solid oxide fuel cells. Ceramics International,2012,38(7):5535~5541.
    137. W. Jiang, Z. Lü, B. Wei, et al. Sm0.5Sr0.5CoO3-Sm0.2Ce0.8O1.9composite oxygen electrodesfor solid oxide electrolysis cells. Fuel Cells,2014,14(1):76~82.
    138. X. Zhang, M. Robertson, S. Yick, et al. Sm0.5Sr0.5CoO3+Sm0.2Ce0.8O1.9composite cathodefor cermet supported thin Sm0.2Ce0.8O1.9electrolyte SOFC operating below600°C.Journal of Power Sources,2006,160(2):1211~1216.
    139. C. Lu, T. Z. Sholklapper, C.P. Jacobson, et al. LSM-YSZ cathodes with reaction-infiltratednanoparticles. Journal of The Electrochemical Society,2006,153(6): A1115~A1119.
    140. H. Zhang, F. Zhao, F.L. Chen, et al. Nano-structured Sm0.5Sr0.5CoO3δelectrodes forintermediate-temperature SOFCs with zirconia electrolytes. Solid State Ionics,2011,192(1):591~594.
    141. Z. Y. Jiang, Z.W. Lei, B. Ding, et al. Electrochemical characteristics of solid oxide fuelcell cathodes prepared by infiltrating (La,Sr)MnO3nanoparticles into yttria-stabilizedbismuth oxide backbones[J]. International Journal of Hydrogen Energy,2010,35(15):8322~8330.
    142. M. D. Liang, B. Yu, M.F. Wen, et al. Preparation of LSM-YSZ composite powder foranode of solid oxide electrolysis cell and its activation mechanism[J]. Journal of PowerSources,2009,190:341~345.
    143. L. Adijanto, R. Kungas, F. Bidrawn, et al. Stability and performance of infiltratedLa0.8Sr0.2CoxFe1xO3electrodes with and without Sm0.2Ce0.8O1.9interlayers[J]. Journal ofPower Sources,2011,196(14):5797~5802.
    144. X.Y. Lou, Z. Liu, S.Z. Wang, et al. Controlling the morphology and uniformity of acatalyst-infiltrated cathode for solid oxide fuel cells by tuning wetting property[J]. Journalof Power Sources,2010,195(2):419~424.
    145. G. Kim, S. Lee, J.Y. Shin, et al. Investigation of the Structural and Catalytic Requirementsfor High-Performance SOFC Anodes Formed by Infiltration of LSCM[J].Electrochemical and Solid-State Letters,2009,12(3): B48~B52.
    146. Y.-C. Chang, M-C Lee, W-X Kao, et al. Fabrication and evaluation of electrochemicalcharacteristics of the composite cathode layers for the anode-supported solid-oxide fuelcells[J]. Journal of the Taiwan Institute of Chemical Engineers,2011,42(5):775~782.
    147. V.A.C. Haanappel, A. Mai, J. Mertens. Electrode activation of anode-supported SOFCswith LSM-or LSCF-type cathodes. Solid State Ionics,2006,177:2033~2037.
    148. J. M. Serra, V. B. Vert, O. Buchler, et al. IT-SOFC supported on mixed oxygenionic-electronic conducting composites[J]. Chem. Mater,2008,20:3867~3875
    149. S.-H. Jun, Y.R. Uhm, R.-H Song, et al. Synthesis and properties of Ag nanoparticlesattached La0.6Sr0.4Co0.3Fe0.7O3-δ[J]. Current Applied Physics,2011.11(1): S305~S308.
    150. H.S. Song, W.H. Kim, S.H. Hyun, et al. Effect of starting particulate materials onmicrostructure and cathodic performance of nanoporous LSM-YSZ compositecathodes[J]. Journal of Power Sources,2007,167(2):258~264.
    151. S. B. Adler, J. A. Lane, B. C. H. Steele. Electrode kinetics of porous mixed-conductingoxygen electrodes[J]. Journal of the Electrochemical Society,1996,143:3554~3564.
    152. Y.H. Liu, F.Z. Wang, B. Chi, et al. A stability study of impregnated LSCF–GDCcomposite cathodes of solid oxide fuel cells[J]. Journal of Alloys and Compounds,2013,578:37~43.
    153. F.L. Liang, J. Chen, B. Chi, et al. Redox behavior of supported Pd particles and its effecton oxygen reduction reaction in intermediate temperature solid oxide fuel cells[J]. Journalof Power Sources,2011,196(1):153~158.
    154.刘明义.高温蒸汽电解制氢研究[D].清华大学博士学位论文.
    155. J. Liu, S.A. Barnett. Thin yttrium-stabilized zirconia electrolyte solid fuel cells bycentrifugal casting. Communications of the American Ceramic Society,2002,85(12):3096~3098.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700