梯度多孔分子筛膜材料的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济的迅速发展,石化、化工和室内装饰等行业生产过程中产生的挥发性有机化合物(VOCs)的排放量日益加剧,对人类健康及环境安全的危害也日趋严重。空气中VOCs的脱除方法有很多种,主要包括吸附、催化氧化和高温焚烧等处理技术。其中,固定床吸附法和催化燃烧法具有操作简单、能耗低及净化效率高等优点,在脱除空气中VOCs领域得到广泛的应用。然而,传统固定床吸附器/反应器一般是由颗粒或粉末状吸附剂/催化剂装填而成,普遍存在接触效率低、传质传热阻力大及床层压降大等缺点。设计并制备一类新型结构化分子筛膜吸附/催化材料,有效强化传热传质,提高接触效率、吸附及反应速率,是一项具有实际工程应用价值的前沿性课题。本文设计并研究了梯度多孔ZSM-5分子筛膜吸附/催化剂材料的制备、表征及其在脱除空气中低浓度VOCs中的应用,探讨了结构化固定床吸附器/反应器的吸附/反应动力学。
     首先,研究了纸状多孔烧结不锈钢微纤(PSSF)载体的制备工艺。以质量比为2:1的不锈钢纤维(长度为2~3mm,直径为6.5μm)和针叶木纤维为原料,通过湿法造纸工艺/高温烧结技术制备纸状多孔烧结不锈钢纤维材料,并考察不锈钢纤维用量对纸状多孔烧结不锈钢纤维床层压降的影响,得到最佳不锈钢纤维用量为6g。采用扫描电镜(SEM)观察了不锈钢纤维材料烧结前后的微观结构,结果表明不锈钢纤维的连接处在高温条件下被很好地烧结在一起,形成大空隙率的三维网络结构。
     其次,研究了梯度多孔ZSM-5分子筛膜吸附材料的制备工艺。以正硅酸乙酯(TEOS)为硅源、四丙基氢氧化铵(TPAOH)为结构导向剂,通过水热合成法制备Silicalite-1纯硅分子筛晶种,考察不同工艺参数对Silicalite-1晶种生长的影响;采用吸附法在不锈钢纤维表面合成Silicalite-1晶种薄层,并以正硅酸乙酯(TEOS)为硅源、偏铝酸钠(NaAlO2)为铝源、四丙基氢氧化铵(TPAOH)为结构导向剂,通过二次生长法在不锈钢纤维表面合成ZSM-5分子筛膜吸附材料,考察不同工艺参数对ZSM-5分子筛膜的表面形貌和厚度的影响。结果表明在Silicalite-1晶种制备过程中,合成液中的水含量、无水乙醇含量、合成液的老化时间、晶化温度和晶化时间对Silicalite-1晶种的生长均有影响;通过二次生长法能在不锈钢纤维表面合成连续致密的ZSM-5分子筛膜,所制备ZSM-5分子筛膜材料的BET比表面积达到了145m2/g,其膜厚度为4μm,梯度化多孔ZSM-5分子筛膜材料(ZSM-5/PSSF)中分子筛膜的负载量大约为37wt%。此外,二次合成液中的铝含量对ZSM-5分子筛膜的生长影响最大,晶化温度主要影响了ZSM-5分子筛膜的表面形貌和膜厚度,晶化时间主要决定了ZSM-5分子筛膜的膜厚度。
     再次,研究了梯度多孔ZSM-5分子筛膜催化材料的制备工艺。以硝酸钴(Co(NO3)2)、硝酸铜(Cu(NO3)2)、硝酸锰(Mn(NO3)2)溶液为过渡金属催化剂活性组分前驱体,采用湿法浸渍法在多孔ZSM-5分子筛膜上负载催化剂活性组分制备梯度化多孔ZSM-5分子筛膜催化材料;探讨过渡金属组分配比、负载量及烧结温度等影响因素对分子筛膜催化剂结构及催化氧化异丙醇活性的影响,结果表明Cu-Mn(1:6)双金属氧化物改性分子筛膜催化剂(Cu-Mn(1:6)/ZSM-5/PSSF)和Co-Cu-Mn(1:1:1)三金属氧化物改性分子筛膜催化剂(Co-Cu-Mn(1:1:1)/ZSM-5/PSSF)表现出较高的催化活性,异丙醇在分子筛膜催化剂上的90%转化率温度T90%为210℃。此外,梯度多孔ZSM-5分子筛膜催化剂作为高效催化剂,表现出较高的接触效率、良好的催化反应速率和稳定性。
     同时,研究了空气中低浓度VOCs在基于梯度多孔ZSM-5分子筛膜吸附材料的结构化固定床吸附器上的吸附动力学。通过在固定床的进口端和出口端分别装填活性炭或ZSM-5分子筛颗粒吸附剂和ZSM-5分子筛膜吸附材料组成结构化固定床吸附器,研究异丙醇和甲苯单组份气体在结构化固定床上的吸附动力学,并与传统颗粒固定床的实验结果进行比较。结果表明,在相同条件下,VOCs在结构化固定床上的吸附透过曲线斜率明显高于传统颗粒固定床,ZSM-5分子筛膜吸附材料明显降低了传质阻力;随着气体流量和入口浓度的增加,VOCs在结构化固定床上的吸附透过时间明显缩短。采用LUB方程、Yoon-Nelson模型和BDST模型对VOCs在结构化固定床上的传质机理和吸附透过行为进行分析。结果表明,结构化固定床的床层利用率相对于传统颗粒固定床的提高了10%~18%。Yoon-Nelson模型和BDST模型均能很好地预测VOCs在结构化固定床上的吸附透过曲线。
     同时,研究了空气中低浓度VOCs在基于梯度多孔ZSM-5分子筛膜催化材料的结构化分子筛膜反应器上的催化燃烧行为,研究异丙醇、乙酸乙酯单组份气体以及双组份气体(异丙醇和甲苯、乙酸乙酯和甲苯)在结构化分子筛膜反应器上的催化燃烧动力学;探讨床层高度、空速及VOCs入口浓度对结构化分子筛膜反应器催化燃烧行为的影响。结果表明分子筛膜反应器的最佳床层高度为2cm;异丙醇和乙酸乙酯在结构化分子筛膜反应器上的100%完全转化温度T100%均低于280℃,VOCs入口浓度和空速对其在分子筛膜反应器上的催化燃烧行为产生了轻微影响,随着入口浓度和空速的增加,VOCs在分子筛膜反应器上的50%转化温度T50%和90%转化温度T90%均升高;双组份中甲苯的存在对异丙醇或乙酸乙酯的催化转化均起到轻微抑制作用,相比于甲苯,分子筛膜反应器对双组份气体中异丙醇或乙酸乙酯的催化活性更高。
     最后,研究了异丙醇在结构化分子筛膜反应器上的催化燃烧反应本征动力学。通过考察空速对异丙醇转化率的影响,以消除外扩散影响;进一步探讨分子筛膜厚度及晶体粒径对异丙醇转化率的影响,以消除内扩散影响。采用Power-rate Law和Mars-vanKrevelen动力学模型对异丙醇在结构化分子筛膜反应器上催化燃烧动力学行为进行模拟研究,结果表明Power-rate Law动力学模型不适用于描述异丙醇在分子筛膜催化剂上的催化燃烧动力学行为,而Mars-van Krevelen动力学模型能较好地预测异丙醇在结构化分子筛膜反应器上的催化燃烧动力学行为,其反应机理为氧化-还原机理,其表面还原反应活化能和表面氧化反应活化能分别为60.30和57.19kJ/mol。
With the high-speed development of global economy, increasing emissions of volatileorganic compounds (VOCs) emitted from a large variety of sources scuh as petrochemicals,chemical processes as well as household products produce many undesirable effects onhumans health and environmental safety. Various technologies have been implemented for theremoval of VOCs from air, such as adsorption, catalytic oxidation and thermal combustion etc.Among these methods, adsorption technology and catalytic oxidation using fixed beds havebeen regarded as one of the most promising technologies for the removal of VOCs from airdue to their easy operation, low energy requirement as well as high purification efficiency.However, the drawbacks of poor contacting efficiency, relatively higher mass/heat transfer aswell as bed pressure dorp exist in most of traditional fixed bed adsorbers/reactors due to theuse of pellet shaped or powder adsorbents/catalysts. The design and fabrication of a novelstructured zeolite membrane adsorptional/catalytic material that can effectively enhancemass/heat transfer, contacting efficiency as well as adsorptional/catalytic reaction rate havebeen reconigzed as a cutting-edge research topic. In this paper, the fabrication andcharacterization of gradient porous ZSM-5zeolite membrane adsorptional/catalytic materialwere designed and investigated. The applications of these novel structured materials in theremoval of VOCs in air at low concentrations were also studied. Adsorption dynamics ofVOCs in air at low concentrations in structured fixed bed adsorbers based on these novelstructured materials was measured, and catalytic combustion performances of VOCs in air atlow concentrations over structured zeolite membrane reactor were also investigated.
     Firstly, the preparation process of paper-like sintered stainless steel fibers (PSSF) supportwas investigated. The paper-like sintered stainless steel fibers (PSSF) support was fabricatedby the wet lay-up papermaking/sintering process using stainless steel fibers (6.5μm diameter,2~3mm length) and cellulose with a weight ratio of2:1. The effects of stainless steel fibersdosage on the bed pressure drop of PSSF were studied, and the experimental results indicatedthat the optimum amount of stainless steel fibers is6g. The micromorphology and structureof stainless steel fibers before and after sintering were observed by using Scanning Electron Microscopy (SEM). The experimental results showed that the junctures of stainless steelfibers in PSSF were completely sintered together to form a three-dimensional networkstructure with large voidage under high temperature condition.
     Secondly, the preparation process of gradient porous ZSM-5zeolite membranesmaterials was studied. The Tetraethoxysilane (TEOS) and Tetrapropylammoniumhydroxide(TPAOH) were used as silicon source and structure directing agent, respectively. The effectsof various synthesis parameters on the growth of silicalite-1seeds were also investigated. ThePSSF support was treated with a silicalite-1seeds solution to fabricate a thin andhomogeneous seed flim on the surface of stainless steel fibers. The ZSM-5zeolite membraneswere synthesized on the surface of seeded-PSSF by secondary growth method. The secondaysynthesis solution was prepared using the same chemicals as the silicalite-1seed solution, butSodium aluminate (NaAlO2) was added as aluminum source. The effects of various secondarysynthesis parameters on the surface morphology and thickness of ZSM-5zeolite membranewere also studied. The experimental results indicated that the water and Ethanol (EtOH)content in synthesis solution, aging time, crystallization temperature as well as crystallizationtime obviously influenced the growth of silicalite-1seeds. A continuous and dense ZSM-5zeolite membrane was successfully fabricated on the surface of stainless steel fibers by usingsecondary growth method. The BET specific surface area of fabricated gradient porousZSM-5membrane material (ZSM-5/PSSF) was145m2/g, and the thickness of ZSM-5membrane was4μm. Morover, the obtained ZSM-5membrane content in ZSM-5/PSSFmaterial was approximately37wt%. In addition, the aluminum content in secondary synthesissolution significantly influenced the growth of ZSM-5membrane. The experimental resultsalso indicated that the surface morphology and membrane thickness of ZSM-5zeolitemembrane were obviously influenced by the crystallization temperature and time.
     Thirdly, the preparation process of gradient porous ZSM-5membrane catalysts wasinvestigated. The modified ZSM-5zeolite membrane catalysts were synthesized by theincipient wetness impregnating method using Cobalt nitrate (Co(NO3)2), Manganese nitrate(Mn(NO3)2) and Copper nitrate (Cu(NO3)2) as precursor salts. The effects of molar ratios of transition metal component, total metal loading as well as calcination temperature on thestructure properties and catalytic performances for isopropanol oxidation of modified ZSM-5zeolite membrane catalysts were investigated. Among the series of catalysts, the as-preparedCu-Mn(1:6) mixed oxides modifed ZSM-5membrane catalysts (Cu-Mn(1:6)/ZSM-5/PSSF)and Co-Cu-Mn(1:1:1) mixed oxides modifed ZSM-5membrane catalysts(Co-Cu-Mn(1:1:1)/ZSM-5/PSSF) have exhibited the best catalytic activity for isopropanoloxidation, demonstrating by a lowest T90%of210℃(the temperature at isopropanolconversion approaches90%). Moreover, the gradient porous modified ZSM-5membranecatalysts as high efficiency catalyst for VOCs oxidation can offer a much higher contactingefficiency, excellent catalytic reaction rate as well as reaction stability.
     Meanwhile, adsorption dynamics of VOCs in air at low concentraions in structured fixedbed adsorber based on the gradient porous ZSM-5zeolite membrane adsorptional materials.The structured fixed bed adsorbers filled with both activated carbon or ZSM-5particles in theinlet of bed and ZSM-5zeolite membrane adsorptional materials (ZSM-5/PSSF) in the outletof bed were designed. Adsorption dynamics of VOCs in air at low concentrations(isopropanol or toluene) in the structured fixed bed adsorbers was performed, comparing withthat of traditional particles fixed beds filled with individual activated carbon or ZSM-5particles. The experimental results indicated that the steepness of breakthrough curves ofVOCs in structured fixed bed adsorber was more upright that that of traditional particles fixedbed adsorber, confirming that the mass transfer was obviously enhanced by addingZSM-5/PSSF adsorptional materials in the outlet of structured fixed bed. Moreover, thebreakthrough times of VOCs in structured fixed bed adsorber decrease significantly asincreasing gas flow rate and inlet concentration of VOCs. The length of unused bed (LUB)theory, Yoon-Nelson as well as Bed Depth Service Time (BDST) models were used toinvestigate the experimental results. The analytical results showed that the bed utilization ofstructured fixed bed adsorber increases10%~18%compared with that of traditional particlesfixed bed. It can be demonstrated that theoretical breakthrough curves predicted using bothYoon-Nelson and BDST models were in good agreement with the experimental results.
     Meanwhile, catalytic combustion performances of VOCs in single component(isopropanol or toluene) and binary component mixtures (isopropanol and toluene, ethylacetate and toluene) were investigated over the structured zeolite membrane reactor based ongradient porous ZSM-5zeolite membrane catalytic materials. The effects of catalysts bedheight, gas hourly space velocity (GHSV) as well as initial concentrations on the catalyticperformances of structured zeolite membrane reactor for VOCs combustion were alsoinvestigated. The experimental results showed that the best catalysts bed height of structuredzeolite membrane reactor was2cm. Moreover, experimental results also indicated that thecomplete destruction of isopropanol or ethyl acetate in single component over structuredzeolite membrane reactor can be achieved below the temperature of280℃. Results alsoexhibited that the inlet concentration of VOCs and GHSV had a slight effect on the catalyticperformances of structured zeolite membrane reactor for VOCs combustion, demonstating bythat the T50%and T90%of VOCs increase slightly as the initial concentrations and GHSVincreased. The study also indicated that the presence of toluene in VOCs binary mixtures hada minimal inhibition effect on the catalytic conversion of isopropanol or ethyl acetate over thestructured zeolite membrane reactor. It can be concluded that the catalytic activity ofisopropanol or ethyl acetate in binary mixtures was much higher that that of toluene.
     Finally, the modeling studies of catalytic combustion performances of isopropanol overstructured zeolite membrane reactor were investigated by using Power-rate Law and Mars-vanKrevelen kinetic models. External and internal mass transfer effects were evaluated. Theanalysis results showed that the Mars-van Krevelen kinetic model was more suitable forpredicting the catalytic combustion performances of isopropanol over structured zeolitemembrane reactor than the Power-rate Law kinetic model, and its reaction mechanism isoxidation-reduction. The surface reduction and oxidation reaction activation energies were60.30kJ/mol and57.19kJ/mol, relatively.
引文
[1] Bhatia S, Abdullah A Z, Wong C T. Adsorption of butyl acetate in air over silver-loaded Yand ZSM-5zeolites: experimental and modelling studies [J]. Journal of HazardousMaterials,2009,163(1):73-81.
    [2] Wong C T, Abdullah A Z, Bhatia S. Catalytic oxidation of butyl acetate over silver-loadedzeolites [J]. Journal of Hazardous Materials,2008,157(2-3):480-489.
    [3] Zou X, Zhu G, Guo H, et al. Effective heavy metal removal through porousstainless-steel-net supported low siliceous zeolite ZSM-5membrane [J]. Microporous andMesoporous Materials,2009,124(1-3):70-75.
    [4] Aguado S, Polo AC, Bernal MP, et al. Removal of pollutants from indoor air using zeolitemembranes [J]. Journal of Membrane Science,2004,240(1-2):159-166.
    [5] Aguado S, Coronas J, Santamaría J. Use of zeolite membrane reactors for the combustionof VOCs present in air at low concentrations [J]. Chemical Engineering Research andDesign,2005,83(3):295-301.
    [6] Nikolajsen K, Kiwi-Minsker L, Renken A. Structured fixed-bed adsorber based onzeolite/Sintered metal fibre for low concentration VOC removal [J]. ChemicalEngineering Research and Design,2006,84(7):562-568.
    [7] Yuranov I, Renken A, Kiwi-Minsker L. Zeolite/sintered metal fibers composites aseffective structured catalysts [J]. Applied Catalysis A: General,2005,281(1-2):55-60.
    [8] Beauchet R, Magnoux P, Mijoin J. Catalytic oxidation of volatile organic compounds(VOCs) mixture (isopropanol/o-xylene) on zeolite catalysts [J]. Catalysis Today,2007,124(3-4):118-123.
    [9]李奇锋,王铁宇,吕永龙.中国VOCs的排放特征及控制对策[J].第十五届中国科协年会第24分会场:贵州发展战略性新兴产业中的生态环境保护研讨会论文集,2013,
    [10] Shah J J, Singh H B. Distribution of volatile organic chemicals in outdoor and indoor air:A national VOCs data base [J]. Environmental Science&Technology,1988,22(12):1381-1388.
    [11]苑宏英,郭静. VOCs恶臭污染物质的污染状况和一般处理方法[J].四川环境,2005,23(6):45-49.
    [12]马超,薛志钢,李树文. VOCs排放,污染以及控制对策[J].环境工程技术学报,2012,2(2):103-109.
    [13]苏雷燕,李岩,赵明.环境空气中挥发性有机物(VOCs)来源解析的研究进展[J].绿色科技,2013,5):168-171.
    [14] Khan F I, Kr Ghoshal A. Removal of volatile organic compounds from polluted air [J].Journal of Loss Prevention In The Process Industries,2000,13(6):527-545.
    [15]马广大.大气污染控制工程[M].中国环境科学出版社,2004.
    [16]杨亚欣,郭斌.工业高浓度挥发性有机气体净化技术现状与进展[J].环境科学导刊,2010,(1):64-67.
    [17]汪涵,郭桂悦,周玉莹.挥发性有机废气治理技术的现状与进展[J].化工进展,2009,10):1833-1841.
    [18] Oh G-Y, Ju Y-W, Kim M-Y, et al. Adsorption of toluene on carbon nanofibers preparedby electrospinning [J]. Science of The Total Environment,2008,393(2):341-347.
    [19] Nagao M, Suda Y. Adsorption of benzene, toluene, and chlorobenzene on titaniumdioxide [J]. Langmuir: the ACS journal of surfaces and colloids,1989,5(1):42-47.
    [20] Diban N, Urtiaga A, Ortiz I. Recovery of key components of bilberry aroma using acommercial pervaporation membrane [J]. Desalination,2008,224(1):34-39.
    [21] Delagrange S, Pinard L, Tatibouet J-M. Combination of a non-thermal plasma and acatalyst for toluene removal from air: Manganese based oxide catalysts [J]. AppliedCatalysis B: Environmental,2006,68(3):92-98.
    [22] Niaei A, Salari D, Aghazadeh F, et al. Catalytic oxidation of2-Propanol over (Cr, Mn,Fe)-Pt/γ-Al2O3bimetallic catalysts and modeling of experimental results by artificialneural networks [J]. Journal of Environmental Science and Health Part A,2010,45(4):454-463.
    [23] Kim S C. The catalytic oxidation of aromatic hydrocarbons over supported metal oxide[J]. Journal of Hazardous Materials,2002,91(1-3):285-299.
    [24] Tzortzatou K, Grigoropoulou E. Catalytic oxidation of industrial organic solvent vapors[J]. Journal of Environmental Science and Health Part a: Toxic/Hazardous Substances&Environmental Engineering,2010,45(5):534-541.
    [25]尚静,杜尧国. TiO2纳米粒子气-固复相光催化氧化VOCs作用的研究进展[J].环境污染治理技术与设备,2000,1(3):67-76.
    [26]吴永文,李忠. VOCs污染控制技术与吸附催化材料[J].离子交换与吸附,2003,19(1):88-95.
    [27]左满宏,吕宏安.催化燃烧与催化剂材料在VOCs治理方面研究进展[J].天津化工,2007,21(4):8-10.
    [28] Papaefthimiou P, Ioannides T, Verykios X E. Performance of doped Pt/TiO2(W6+)catalysts for combustion of volatile organic compounds (VOCs)[J]. Applied Catalysis B:Environmental,1998,15(1-2):75-92.
    [29]He C, Li P, Cheng J, et al. A Comprehensive study of deep catalytic oxidation of benzene,toluene, ethyl Acetate, and their mixtures over Pd/ZSM-5catalyst: mutual effects andkinetics [J]. Water Air and Soil Pollution,2010,209(1-4):365-376.
    [30] Ribeiro F, Silva J M, Silva E, et al. Catalytic combustion of toluene on Pt zeolite coatedcordierite foams [J]. Catalysis Today,2011,176(1):93-96.
    [31] Tahir S F, Koh C A. Catalytic destruction of volatile organic compound emissions byplatinum based catalyst [J]. Chemosphere,1999,38(9):2109-2116.
    [32] Vu V H, Belkouch J, Ould‐Dris A, et al. Catalytic oxidation of volatile organiccompounds on manganese and copper oxides supported on titania [J]. AIChE Journal,2008,54(6):1585-1591.
    [33] Hosseini S A, Niaei A, Salari D, et al. Optimization and statistical modeling of catalyticoxidation of2-propanol over CuMnmCo2-mO4nano spinels by unreplicated split designmethodology [J]. Journal of Industrial and Engineering Chemistry,2013,19(1):166-171.
    [34] Silva B, Figueiredo H, Santos V P, et al. Reutilization of Cr-Y zeolite obtained bybiosorption in the catalytic oxidation of volatile organic compounds [J]. Journal ofHazardous Materials,2011,192(2):545-553.
    [35] Zwinkels M F, J r s S G, Menon P G, et al. Catalytic materials for high-temperaturecombustion [J]. Catalysis Review-Science and Engineering,1993,35(3):319-358.
    [36] Bartholomew C H, Farrauto R J. Fundamentals of industrial catalytic processes [M].John Wiley&Sons,2011.
    [37] Wu J C-S, Lin Z-A, Tsai F-M, et al. Low-temperature complete oxidation of BTX onPt/activated carbon catalysts [J]. Catalysis Today,2000,63(2):419-426.
    [38] Tsou J, Magnoux P, Guisnet M, et al. Catalytic oxidation of volatile organic compounds:oxidation of methyl-isobutyl-ketone over Pt/zeolite catalysts [J]. Applied Catalysis B:Environmental,2005,57(2):117-123.
    [39] Maupin I, Mijoin J, Barbier J, et al. Improved oxygen storage capacity on CeO2/zeolitehybrid catalysts. Application to VOCs catalytic combustion [J]. Catalysis Today,2011,176(1):103-109.
    [40] Alvarez-Galvan M, de la Pena O’Shea V, Fierro J, et al. Alumina-supportedmanganese-and manganese-palladium oxide catalysts for VOCs combustion [J].Catalysis Communications,2003,4(5):223-228.
    [41] Li J-J, Xu X-Y, Jiang Z, et al. Nanoporous silica-supported nanometric palladium:synthesis, characterization, and catalytic deep oxidation of benzene [J]. EnvironmentalScience&Technology,2005,39(5):1319-1323.
    [42] Hu C. Catalytic combustion kinetics of acetone and toluene over Cu0.13Ce0.87Oycatalyst[J]. Chemical Engineering Journal,2011,168(3):1185-1192.
    [43] Luo M-F, He M, Xie Y-L, et al. Toluene oxidation on Pd catalysts supported byCeO2-Y2O3washcoated cordierite honeycomb [J]. Applied Catalysis B: Environmental,2007,69(3):213-218.
    [44] Ma Y, Chen M, Song C, et al. Catalytic oxidation of toluene, acetone and ethyl acetate ona new Pt-Pd/stainless steel wire mesh catalyst [J]. Acta Phys-Chim Sin,2008,24(7):1132-1136.
    [45] Ki-Joong K, Yong-Hwa K, Ho-Geun A. Catalytic performance of nanosized Pt-Au alloycatalyst in oxidation of methanol and toluene [J]. J Nanosci Nanotechnol,2007,7(11):3795-3799.
    [46] Takamitsu Y, Yoshida S, Kobayashi W, et al. Combustion of volatile organic compoundsover composite catalyst of Pt/-Al2O3and beta zeolite [J]. Journal of EnvironmentalScience and Health Part a: Toxic/Hazardous Substances&Environmental Engineering,2013,48(7):667-674.
    [47] Morales-Torres S, Maldonado-Hodar F J, Perez-Cadenas A F, et al. Design oflow-temperature Pt-carbon combustion catalysts for VOC's treatments [J]. Journal ofHazardous Materials,2010,183(1-3):814-822.
    [48] Barakat T, Finne G, Franco M, et al. Influence of shaping on Pd and Pt/TiO2catalysts intotal oxidation of VOCs [M] Advances in Innovative Materials and Applications.2011:162-165.
    [49] Manta C M, Bozga G, Bercaru G, et al. Kinetics of o-Xylene combustion over aPt/Alumina catalyst [J]. Chemical Engineering&Technology,2012,35(12):2147-2154.
    [50] Walerczyk W, Zawadzki M. Structural and catalytic properties of Pt/ZnAl2O4as catalystfor VOC total oxidation [J]. Catalysis Today,2011,176(1):159-162.
    [51] Okal J, Zawadzki M. Catalytic combustion of butane on Ru/γ-Al2O3catalysts [J].Applied Catalysis B: Environmental,2009,89(1):22-32.
    [52] Aouad S, Saab E, Abi Aad E, et al. Reactivity of Ru-based catalysts in the oxidation ofpropene and carbon black [J]. Catalysis today,2007,119(1):273-277.
    [53] Aouad S, Saab E, Abi-Aad E, et al. Study of the Ru/Ce system in the oxidation of carbonblack and volatile organic compounds [J]. Kinetics and Catalysis,2007,48(6):835-840.
    [54] Mitsui T, Tsutsui K, Matsui T, et al. Support effect on complete oxidation of volatileorganic compounds over Ru catalysts [J]. Applied Catalysis B: Environmental,2008,81(1):56-63.
    [55] Joung H-J, Kim J-H, Oh J-S, et al. Catalytic oxidation of VOCs over CNT-supportedplatinum nanoparticles [J]. Applied Surface Science,2014,290:267-273.
    [56] Sedjame H-J, Fontaine C, Lafaye G, et al. On the promoting effect of the addition ofceria to platinum based alumina catalysts for VOCs oxidation [J]. Applied Catalysis B:Environmental,2014,144:233-242.
    [57] Rooke J C, Barakat T, Finol M F, et al. Influence of hierarchically porous niobium dopedTiO2supports in the total catalytic oxidation of model VOCs over noble metalnanoparticles [J]. Applied Catalysis B: Environmental,2013,142:149-160.
    [58] Chen C, Zhu J, Chen F, et al. Enhanced performance in catalytic combustion of tolueneover mesoporous Beta zeolite-supported platinum catalyst [J]. Applied Catalysis B:Environmental,2013,140(199-205.
    [59] Konova P, Stoyanova M, Naydenov A, et al. Catalytic oxidation of VOCs and CO byozone over alumina supported cobalt oxide [J]. Applied Catalysis A: General,2006,298:109-114.
    [60] Tidahy H, Siffert S, Wyrwalski F, et al. Catalytic activity of copper and palladium basedcatalysts for toluene total oxidation [J]. Catalysis Today,2007,119(1):317-320.
    [61] Liu Y, Luo M, Wei Z, et al. Catalytic oxidation of chlorobenzene on supportedmanganese oxide catalysts [J]. Applied Catalysis B: Environmental,2001,29(1):61-67.
    [62] Sinha A K, Suzuki K. Three‐dimensional mesoporous chromium oxide: a highly efficientmaterial for the elimination of volatile organic compounds [J]. Angewandte ChemieInternational Edition,2005,44(2):271-273.
    [63] Morales M R, Barbero B P, Cadús L E. Combustion of volatile organic compounds onmanganese iron or nickel mixed oxide catalysts [J]. Applied Catalysis B: Environmental,2007,74(1):1-10.
    [64] Gutiérrez-Ortiz J I, de Rivas B, López-Fonseca R, et al. Catalytic purification of wastegases containing VOC mixtures with Ce/Zr solid solutions [J]. Applied Catalysis B:Environmental,2006,65(3):191-200.
    [65] Picasso G, Gutiérrez M, Pina M, et al. Preparation and characterization of Ce-Zr andCe-Mn based oxides for n-hexane combustion: Application to catalytic membranereactors [J]. Chemical Engineering Journal,2007,126(2):119-130.
    [66] Azalim S, Franco M, Brahmi R, et al. Removal of oxygenated volatile organiccompounds by catalytic oxidation over Zr-Ce-Mn catalysts [J]. Journal of HazardousMaterials,2011,188(1):422-427.
    [67] Garcia T, Agouram S, Sanchez-Royo J F, et al. Deep oxidation of volatile organiccompounds using ordered cobalt oxides prepared by a nanocasting route [J]. AppliedCatalysis A: General,2010,386(1-2):16-27.
    [68] Jiang S J, Song S Q. Enhancing the performance of Co3O4/CNTs for the catalyticcombustion of toluene by tuning the surface structures of CNTs [J]. Applied Catalysis B:Environmental,2013,140:1-8.
    [69] Zhu Z, Lu G, Zhang Z, et al. Highly active and stable Co3O4/ZSM-5catalyst for propaneoxidation: effect of the preparation method [J]. ACS Catalysis,2013,3(6):1154-1164.
    [70] Konsolakis M, Carabineiro S A C, Tavares P B, et al. Redox properties and VOCoxidation activity of Cu catalysts supported on Ce1-xSmxO delta mixed oxides [J].Journal of Hazardous Materials,2013,261:512-521.
    [71] Gao Y Y, Li X X, Zhang T, et al. Preparation and performance of Cu based catalyst onstainless steel wire mesh [J]. Chin J Inorg Chem,2012,28(2):227-232.
    [72] Qu Z P, Bu Y B, Qin Y, et al. The effects of alkali metal on structure of manganese oxidesupported on SBA-15for application in the toluene catalytic oxidation [J]. ChemicalEngineering Journal,2012,209(163-169.
    [73] Tsoncheva T, J rn M, Paneva D, et al. Copper and chromium oxide nanocompositessupported on SBA-15silica as catalysts for ethylacetate combustion: Effect ofmesoporous structure and metal oxide composition [J]. Microporous and MesoporousMaterials,2011,137(1-3):56-64.
    [74] Tian Z-Y, Bahlawane N, Vannier V, et al. Structure sensitivity of propene oxidation overCo-Mn spinels [J]. Proceedings of the Combustion Institute,2013,34:2261-2268.
    [75] Tian Z-Y, Tchoua Ngamou P H, Vannier V, et al. Catalytic oxidation of VOCs over mixedCo-Mn oxides [J]. Applied Catalysis B: Environmental,2012,117:125-134.
    [76] Zimowska M, Michalik-Zym A, Janik R, et al. Catalytic combustion of toluene overmixed Cu-Mn oxides [J]. Catalysis Today,2007,119(1-4):321-326.
    [77]Li W, Zhuang M, Wang J. Catalytic combustion of toluene on Cu-Mn/MCM-41catalysts:Influence of calcination temperature and operating conditions on the catalytic activity [J].Catalysis Today,2008,137(2):340-344.
    [78] Agustina Campesi M, Mariani N J, Pramparo M C, et al. Combustion of volatile organiccompounds on a MnCu catalyst: A kinetic study [J]. Catalysis Today,2011,176(1):225-228.
    [79] Aguilera D A, Perez A, Molina R, et al. Cu-Mn and Co-Mn catalysts synthesized fromhydrotalcites and their use in the oxidation of VOCs [J]. Applied Catalysis B:Environmental,2011,104(1-2):144-150.
    [80] Cao H, Li X, Chen Y, et al. Effect of loading content of copper oxides on performance ofMn-Cu mixed oxide catalysts for catalytic combustion of benzene [J]. Journal of RareEarths,2012,30(9):871-877.
    [81] Agustina Campesi M, Mariani N J, Bressa S P, et al. Kinetic study of the combustion ofethanol and ethyl acetate mixtures over a MnCu catalyst [J]. Fuel Processing Technology,2012,103:84-90.
    [82] Morales M R, Barbero B P, Cadús L E. MnCu catalyst deposited on metallic monolithsfor total oxidation of volatile organic compounds [J]. Catalysis Letters,2011,141(11):1598-1607.
    [83] Morales M, Barbero B, Cadus L. Total oxidation of ethanol and propane over Mn-Cumixed oxide catalysts [J]. Applied Catalysis B: Environmental,2006,67(3-4):229-236.
    [84] Liu G, Yue R, Jia Y, et al. Catalytic oxidation of benzene over Ce-Mn oxides synthesizedby flame spray pyrolysis [J]. Particuology,2013,11(4):454-459.
    [85] Lu H, Zhou Y, Huang H, et al. In-situ synthesis of monolithic Cu-Mn-Ce/cordieritecatalysts towards VOCs combustion [J]. Journal of Rare Earths,2011,29(9):855-860.
    [86] Azalim S, Brahmi R, Agunaou M, et al. Washcoating of cordierite honeycomb withCe-Zr-Mn mixed oxides for VOC catalytic oxidation [J]. Chemical Engineering Journal,2013,223:536-546.
    [87] Aguero F N, Barbero B P, Gambaro L, et al. Catalytic combustion of volatile organiccompounds in binary mixtures over MnOx/Al2O3catalyst [J]. Applied Catalysis B:Environmental,2009,91(1):108-112.
    [88] Abdullah A Z, Abu Bakar M Z, Bhatia S. A kinetic study of catalytic combustion of ethylacetate and benzene in air stream over Cr-ZSM-5catalyst [J]. Industrial&EngineeringChemistry Research,2003,42(24):6059-6067.
    [89] Beauchet R, Mijoin J, Batonneau-Gener I, et al. Catalytic oxidation of VOCs on NaXzeolite: mixture effect with isopropanol and o-xylene [J]. Applied Catalysis B:Environmental,2010,100(1-2):91-96.
    [90] Silva E R, Silva J M, Oliveira F A C, et al. Cordierite foam supports washcoated withzeolite-based catalysts for volatile organic compounds (VOCs) combustion [M]Advanced Materials Forum V, Pt1and2. Stafa-Zurich; Trans Tech Publications Ltd.2010:104-110.
    [91] Li X X, Chen M, Zheng X M. Preparation and characterization of a novel washcoatmaterial and supported Pd catalysts [J]. Kinetics and Catalysis,2013,54(5):572-577.
    [92] Huang Q, Yan X K, Li B, et al. Study on catalytic combustion of benzene over ceriumbased catalyst supported on cordierite [J]. Journal of Rare Earths,2013,31(2):124-129.
    [93] Yang K S, Choi J S, Lee S H, et al. Development of Al/Al2O3-coated wire-meshhoneycombs for catalytic combustion of volatile organic compounds in air [J]. Industrial&Engineering Chemistry Research,2004,43(4):907-912.
    [94] Barbero B P, Costa-Almeida L, Sanz O, et al. Washcoating of metallic monoliths with aMnCu catalyst for catalytic combustion of volatile organic compounds [J]. ChemicalEngineering Journal,2008,139(2):430-435.
    [95] Zhang C, Hong Z, Chen J, et al. Catalytic MFI zeolite membranes supported on α-Al2O3substrates for m-xylene isomerization [J]. Journal of Membrane Science,2012,389:451-458.
    [96] Rebrov E, Seijger G, Calis H, et al. The preparation of highly ordered single layerZSM-5coating on prefabricated stainless steel microchannels [J]. Applied Catalysis A:General,2001,206(1):125-143.
    [97] Navascués N, Escuin M, Rodas Y, et al. Combustion of volatile organic compounds attrace concentration levels in zeolite-coated microreactors [J]. Industrial&EngineeringChemistry Research,2010,49(15):6941-6947.
    [98] Yang H, Lu Y, Tatarchuk B J. Glass fiber entrapped sorbent for reformatesdesulfurization for logistic PEM fuel cell power systems [J]. Journal of Power Sources,2007,174(1):302-311.
    [99] Chang B-K, Lu Y, Tatarchuk B J. Microfibrous entrapment of small catalyst or sorbentparticulates for high contacting-efficiency removal of trace contaminants including COand H2S from practical reformates for PEM H2-O2fuel cells [J]. Chemical EngineeringJournal,2006,115(3):195-202.
    [100] Kalluri R R, Cahela D R, Tatarchuk B J. Microfibrous entrapped small particleadsorbents for high efficiency heterogeneous contacting [J]. Separation and PurificationTechnology,2008,62(2):304-316.
    [101]李剑锋,王苗苗,杨九龙.微纤包结细粒子结构化微燃烧器的催化燃烧性能[J].现代化工,2007,7(9):29-31.
    [102] Ye P, Luan Z, Li K, et al. The use of a combination of activated carbon and nickelmicrofibers in the removal of hydrogen cyanide from air [J]. Carbon,2009,47(7):1799-1805.
    [103] Yang H, Cahela D R, Tatarchuk B J. A study of kinetic effects due to using microfibrousentrapped zinc oxide sorbents for hydrogen sulfide removal [J]. Chemical EngineeringScience,2008,63(10):2707-2716.
    [104] Tang Y, Chen L, Wang M, et al. Microfibrous entrapped ZnO-CaO/Al2O3for highefficiency hydrogen production via methanol steam reforming [J]. Particuology,2010,8(3):225-230.
    [105] Wahid S, Tatarchuk B J. Catalytic material with enhanced contacting efficiency forvolatile organic compound removal at ultrashort contact time [J]. Industrial&Engineering Chemistry Research,2013,52(44):15494-15503.
    [106] Wahid S, Cahela D R, Tatarchuk B J. Experimental, theoretical, and computationalcomparison of pressure drops occurring in pleated catalyst structure [J]. Industrial&Engineering Chemistry Research,2013,52(40):14472-14482.
    [107] Zhang H, Gao L, Hu X. Preparation of microfibrous entrapped activated carboncomposite [J]. Separation and Purification Technology,2009,67(2):149-151.
    [108] Liu J, Yan Y, Zhang H. Adsorption dynamics of toluene in composite bed withmicrofibrous entrapped activated carbon [J]. Chemical Engineering Journal,2011,173(2):456-462.
    [109] Maione A, Andre F, Ruiz P. Structured bimetallic Pd-Pt/γ-Al2O3catalysts on FeCrAlloyfibers for total combustion of methane [J]. Applied Catalysis B-Environmental,2007,75(1-2):59-70.
    [110] Bruneel E, Van Brabant J, Le M T, et al. Deposition of a Cu/Mo/Ce catalyst for dieselsoot oxidation on a sintered metal fiber filter with a CeO2anti corrosion coating [J].Catalysis Communications,2012,25:111-117.
    [111] Turco R, Haber J, Yuranov I, et al. Sintered metal fibers coated with transition metaloxides as structured catalysts for hydrogen peroxide decomposition [J]. Chem EngProcess,2013,73:16-22.
    [112] Zhao G, Hu H, Deng M, et al. Au/Cu-fiber catalyst with enhanced low-temperatureactivity and heat transfer for the gas-phase oxidation of alcohols [J]. Green Chemistry,2011,13(1):55-58.
    [113] Deng M, Zhao G, Xue Q, et al. Microfibrous-structured silver catalyst forlow-temperature gas-phase selective oxidation of benzyl alcohol [J]. Applied CatalysisB: Environmental,2010,99(1-2):222-228.
    [114] Zhao G F, Deng M M, Jiang Y F, et al. Microstructured Au/Ni-fiber catalyst: galvanicreaction preparation and catalytic performance for low-temperature gas-phase alcoholoxidation [J]. Journal of Catalysis,2013,301:46-53.
    [115] Mao J, Deng M, Chen L, et al. Novel microfibrous-structured silver catalyst for highefficiency gas-phase oxidation of alcohols [J]. AIChE Journal,2009,1545-1556.
    [116] Mao J, Deng M, Xue Q, et al. Thin-sheet Ag/Ni-fiber catalyst for gas-phase selectiveoxidation of benzyl alcohol with molecular oxygen [J]. Catalysis Communications,2009,10(10):1376-1379.
    [117] Monnerat B, Kiwi-Minsker L, Renken A. Hydrogen production by catalytic cracking ofmethane over nickel gauze under periodic reactor operation [J]. Chemical engineeringscience,2001,56(2):633-639.
    [118] Yuranov I, Dunand N, Kiwi-Minsker L, et al. Metal grids with high-porous surface asstructured catalysts: preparation, characterization and activity in propane total oxidation[J]. Applied Catalysis B: Environmental,2002,36(3):183-191.
    [119] Fredrik Ahlstr m-Silversand A, Ulf Ingemar Odenbrand C. Modelling catalyticcombustion of carbon monoxide and hydrocarbons over catalytically active wiremeshes [J]. Chemical Engineering Journal,1999,73(3):205-216.
    [120] Vorob’eva M, Greish A, Ivanov A, et al. Preparation of catalyst carriers on the basis ofalumina supported on metallic gauzes [J]. Applied Catalysis A: General,2000,199(2):257-261.
    [121] Yuranov I, Kiwi-Minsker L, Renken A. Structured combustion catalysts based onsintered metal fibre filters [J]. Applied Catalysis B: Environmental,2003,43(3):217-227.
    [122] Tribolet P, Kiwi-Minsker L. Carbon nanofibers grown on metallic filters as novelcatalytic materials [J]. Catalysis today,2005,102:15-22.
    [123] Ruta M, Yuranov I, Dyson P, et al. Structured fiber supports for ionic liquid-phasecatalysis used in gas-phase continuous hydrogenation [J]. Journal of Catalysis,2007,247(2):269-276.
    [124] Louis B, Reuse P, Kiwi-Minsker L, et al. Synthesis of ZSM-5coatings on stainless steelgrids and their catalytic performance for partial oxidation of benzene by N2O [J].Applied Catalysis A: General,2001,210(1):103-109.
    [125] Louis B, Kiwi-Minsker L, Reuse P, et al. ZSM-5coatings on stainless steel grids inone-step benzene hydroxylation to phenol by N2O: Reaction kinetics study [J].Industrial&Engineering Chemistry Research,2001,40(6):1454-1459.
    [126] Louis B, Subrahmanyam C, Kiwi-Minsker L, et al. Synthesis and characterization ofMCM-41coatings on stainless steel grids [J]. Catalysis Communications,2002,3(4):159-163.
    [127]徐如人,庞文琴,等.分子筛与多孔材料化学[M].科学出版社,2004.
    [128]郎林. MFI型取向分子筛膜的制备与应用[D];天津大学,2009.
    [129] Caro J, Noack M, K lsch P, et al. Zeolite membranes: state of their development andperspective [J]. Microporous and Mesoporous Materials,2000,38(1):3-24.
    [130]陈革新,张香文,米镇涛.沸石分子筛膜合成研究进展[J].化学通报,2003,66(8):1-7
    [131]杨赞中,许珂敬,田贵山.支撑沸石分子筛膜的研究进展[J].人工晶体学报,2007,36:601-607
    [132]成岳,李健生,王连军,等. ZSM-5分子筛膜的研究进展[J].化学进展,2006,18(2):221-229.
    [133] Caro J, Noack M. Zeolite membranes: Recent developments and progress [J].Microporous and Mesoporous Materials,2008,115(3):215-233.
    [134] Pina M P, Mallada R, Arruebo M, et al. Zeolite films and membranes. Emergingapplications [J]. Microporous and Mesoporous Materials,2011,144(1-3):19-27.
    [135] McLeary E E, Jansen J C, Kapteijn F. Zeolite based films, membranes and membranereactors: Progress and prospects [J]. Microporous and Mesoporous Materials,2006,90(1-3):198-220.
    [136] Lovallo M C, Gouzinis A, Tsapatsis M. Synthesis and characterization of oriented MFImembranes prepared by secondary growth [J]. AIChE Journal,1998,44(8):1903-1913.
    [137] Dong W-Y, Long Y-C. Preparation of an MFI-type zeolite membrane on a porous glassdisc by substrate self-transformation [J]. Chem Commun,2000,12:1067-1068.
    [138] Chiou Y, Tsai T, Sung S, et al. Synthesis and characterization of zeolite (MFI)membrane on anodic alumina [J]. Journal of the Chemical Society, FaradayTransactions,1996,92(6):1061-1066.
    [139] Geus E R, Den Exter M J, van Bekkum H. Synthesis and characterization of zeolite(MFI) membranes on porous ceramic supports [J]. Journal of the Chemical Society,Faraday Transactions,1992,88(20):3101-3109.
    [140] Bakker W, Zheng G, Kapteijn F, et al. Single and multi-component transport throughmetal-supported MFI zeolite membranes [M]. Precision process technology. Springer.1993:425-436.
    [141] Bakker W J, Kapteijn F, Poppe J, et al. Permeation characteristics of a metal-supportedsilicalite-1zeolite membrane [J]. Journal of Membrane Science,1996,117(1):57-78.
    [142] Kong C, Lu J, Yang J, et al. Preparation of silicalite-1membranes on stainless steelsupports by a two-stage varying-temperature in situ synthesis [J]. Journal of membranescience,2006,285(1):258-264.
    [143] Geus E R, van Bekkum H, Bakker W J, et al. High-temperature stainless steel supportedzeolite (MFI) membranes: preparation, module construction, and permeationexperiments [J]. Microporous Materials,1993,1(2):131-147.
    [144] Lin X, Chen X, Kita H, et al. Synthesis of silicalite tubular membranes by in situcrystallization [J]. AIChE Journal,2003,49(1):237-247.
    [145] Yan Y, Davis M E, Gavalas G R. Preparation of zeolite ZSM-5membranes by in-situcrystallization on porous α-Al2O3[J]. Industrial&Engineering Chemistry Research,1995,34(5):1652-1661.
    [146] Zhang F-Z, Fuji M, Takahashi M. In situ growth of continuous b-oriented MFI zeolitemembranes on porous α-alumina substrates precoated with a mesoporous silicasublayer [J]. Chemistry of Materials,2005,17(5):1167-1173.
    [147] Choi J, Ghosh S, Lai Z, et al. Uniformly a-Oriented MFI zeolite films by secondarygrowth [J]. Angewandte Chemie International Edition,2006,118(7):1172-1176.
    [148] Bernal M a P, Xomeritakis G, Tsapatsis M. Tubular MFI zeolite membranes made bysecondary (seeded) growth [J]. Catalysis Today,2001,67(1):101-107.
    [149] Xomeritakis G, Nair S, Tsapatsis M. Transport properties of alumina-supported MFImembranes made by secondary (seeded) growth [J]. Microporous and MesoporousMaterials,2000,38(1):61-73.
    [150] Xomeritakis G, Tsapatsis M. Permeation of aromatic isomer vapors through orientedMFI-type membranes made by secondary growth [J]. Chemistry of Materials,1999,11(4):875-878.
    [151] Xomeritakis G, Gouzinis A, Nair S, et al. Growth, microstructure, and permeationproperties of supported zeolite (MFI) films and membranes prepared by secondarygrowth [J]. Chemical Engineering Science,1999,54(15):3521-3531.
    [152] Li G, Kikuchi E, Matsukata M. ZSM-5zeolite membranes prepared from a cleartemplate-free solution [J]. Microporous and Mesoporous Materials,2003,60(1):225-235.
    [153] Hedlund J, Noack M, K lsch P, et al. ZSM-5membranes synthesized without organictemplates using a seeding technique [J]. Journal of Membrane Science,1999,159(1):263-273.
    [154] Mintova S, Hedlund J, Valtchev V, et al. ZSM-5films prepared from template freeprecursors [J]. Journal of Materials Chemistry,1998,8(10):2217-2221.
    [155] Kanezashi M, O’Brien J, Lin Y. Template-free synthesis of MFI-type zeolite membranes:Permeation characteristics and thermal stability improvement of membrane structure [J].Journal of Membrane Science,2006,286(1):213-222.
    [156] Pan M, Lin Y. Template-free secondary growth synthesis of MFI type zeolitemembranes [J]. Microporous and Mesoporous Materials,2001,43(3):319-327.
    [157] Gopalakrishnan S, Yamaguchi T, Nakao S-i. Permeation properties of templated andtemplate-free ZSM-5membranes [J]. Journal of Membrane Science,2006,274(1):102-107.
    [158] Li J, Nguyen Q, Zhou L, et al. Preparation and properties of ZSM-5zeolite membraneobtained by low-temperature chemical vapor deposition [J]. Desalination,2002,147(1):321-326.
    [159] Falconer J L, Funke H H, George S M, et al. Modification of zeolite or molecular sievemembranes using atomic layer controlled chemical vapor deposition [P]. US Patents:6043177A,2000.
    [160] Ohta Y, Akamatsu K, Sugawara T, et al. Development of pore size-controlled silicamembranes for gas separation by chemical vapor deposition [J]. Journal of MembraneScience,2008,315(1):93-99.
    [161] Motuzas J, Heng S, Ze Lau P, et al. Ultra-rapid production of MFI membranes bycoupling microwave-assisted synthesis with either ozone or calcination treatment [J].Microporous and Mesoporous Materials,2007,99(1):197-205.
    [162] Motuzas J, Julbe A, Noble R, et al. Rapid synthesis of oriented silicalite-1membranesby microwave-assisted hydrothermal treatment [J]. Microporous and MesoporousMaterials,2006,92(1):259-269.
    [163] Sebastian V, Mallada R, Coronas J, et al. Microwave-assisted hydrothermal rapidsynthesis of capillary MFI-type zeolite-ceramic membranes for pervaporationapplication [J]. Journal of Membrane Science,2010,355(1):28-35.
    [164] Li Y, Yang W. Microwave synthesis of zeolite membranes: a review [J]. Journal ofMembrane Science,2008,316(1):3-17.
    [165] Tang Z, Kim S-J, Gu X, et al. Microwave synthesis of MFI-type zeolite membranes byseeded secondary growth without the use of organic structure directing agents [J].Microporous and Mesoporous Materials,2009,118(1):224-231.
    [166] Wang Z, Yan Y. Controlling crystal orientation in zeolite MFI thin films by direct in situcrystallization [J]. Chemistry of Materials,2001,13(3):1101-1107.
    [167] Lin X, Kita H, Okamoto K-i. A novel method for the synthesis of high performancesilicalite membranes [J]. Chemical Communications,2000,19:1889-1890.
    [168] Mintova S, Hedlund J, Schoeman B, et al. Continuous films of zeolite ZSM-5onmodified gold surfaces [J]. Chem Commun,1997,1:15-16.
    [169] Abdollahi M, Ashrafizadeh S, Malekpour A. Preparation of zeolite ZSM-5membraneby electrophoretic deposition method [J]. Microporous and Mesoporous Materials,2007,106(1):192-200.
    [170] Seike T, Matsuda M, Miyake M. Preparation of FAU type zeolite membranes byelectrophoretic deposition and their separation properties [J]. Journal of MaterialsChemistry,2002,12(2):366-368.
    [171] Shan W, Zhang Y, Yang W, et al. Electrophoretic deposition of nanosized zeolites innon-aqueous medium and its application in fabricating thin zeolite membranes [J].Microporous and Mesoporous Materials,2004,69(1):35-42.
    [172] Lovallo M C, Tsapatsis M. Preferentially oriented submicron silicalite membranes [J].AIChE Journal,1996,42(11):3020-3029.
    [173] Lai Z, Tsapatsis M, Nicolich J P. Siliceous ZSM‐5membranes by secondary growth ofb-Oriented seed layers [J]. Advanced Functional Materials,2004,14(7):716-729.
    [174] Xu X, Yang W, Liu J, et al. Fast formation of NaA zeolite membrane in the microwavefield [J]. Chinese Science Bulletin,2000,45(13):1179-1181.
    [175] Xomeritakis G, Lai Z, Tsapatsis M. Separation of xylene isomer vapors with orientedMFI membranes made by seeded growth [J]. Industrial&Engineering ChemistryResearch,2001,40(2):544-552.
    [176] Matsufuji T, Nishiyama N, Matsukata M, et al. Separation of butane and xylene isomerswith MFI-type zeolitic membrane synthesized by a vapor-phase transport method [J].Journal of Membrane Science,2000,178(1):25-34.
    [177] Illgen U, Sch fer R, Noack M, et al. Membrane supported catalytic dehydrogenation ofiso-butane using an MFI zeolite membrane reactor [J]. Catalysis Communications,2001,2(11):339-345.
    [178] Vilaseca M, Coronas J, Cirera A, et al. Use of zeolite films to improve the selectivity ofreactive gas sensors [J]. Catalysis Today,2003,82(1):179-185.
    [179] Lai Z, Bonilla G, Diaz I, et al. Microstructural optimization of a zeolite membrane fororganic vapor separation [J]. Science,2003,300(5618):456-460.
    [180] O’Brien-Abraham J, Kanezashi M, Lin Y. Effects of adsorption-induced microstructuralchanges on separation of xylene isomers through MFI-type zeolite membranes [J].Journal of Membrane Science,2008,320(1):505-513.
    [181] Sano T, Yanagishita H, Kiyozumi Y, et al. Separation of ethanol/water mixture bysilicalite membrane on pervaporation [J]. Journal of Membrane Science,1994,95(3):221-228.
    [182] Zhang J, Tang X, Dong J, et al. Zeolite thin film-coated long period fiber grating sensorfor measuring trace organic vapors [J]. Sensors and Actuators B: Chemical,2009,135(2):420-425.
    [183] Haag S, Hanebuth M, Mabande G T, et al. On the use of a catalytic H-ZSM-5membrane for xylene isomerization [J]. Microporous and Mesoporous Materials,2006,96(1):168-176.
    [184] Sato T, Kumagai A, Itoh N. A catalytic ZSM-5membrane sandwiched with silicalite-1layers for highly selective toluene disproportionation [J]. Separation and PurificationTechnology,2010,73(1):32-37.
    [185] Hedlund J, Schoeman B J, Sterte J. Synthesis of ultra thin films of molecular sieves bythe seed film method [J]. Studies in Surface Science and Catalysis,1997,105:2203-2210.
    [186] Zampieri A, Dubbe A, Schwieger W, et al. ZSM-5zeolite films on Si substrates grownby in situ seeding and secondary crystal growth and application in an electrochemicalhydrocarbon gas sensor [J]. Microporous and Mesoporous Materials,2008,111(1):530-535.
    [187]徐铭遥.单元式CuMn2CenOx/Cord催化剂的研制及其对甲苯催化燃烧性能[D].华南理工大学,2011.
    [188] Li Y, Zhang X, Wang J. Preparation for ZSM-5membranes by a two-stagevarying-temperature synthesis [J]. Separation and Purification Technology,2001,25(1):459-466.
    [189] Li X, Wang L, Xia Q, et al. Catalytic oxidation of toluene over copper and manganesebased catalysts: effect of water vapor [J]. Catalysis Communications,2011,14(1):15-19.
    [190] Collins J. The LUB/equilibrium section concept for fixed-bed adsorption [C].Proceedings of the Chem Eng Prog Symp Ser,1967:31-35.
    [191] Yoon Y H, Nelson J H. Application of gas adsorption kinetics I. A theoretical model forrespirator cartridge service life [J]. The American Industrial Hygiene AssociationJournal,1984,45(8):509-516.
    [192] Hutchins R. New method simplifies design of activated-carbon systems [J]. ChemicalEngineering,1973,80(19):133-138.
    [193] Mars P, Van Krevelen D W. Oxidations carried out by means of vanadium oxidecatalysts [J]. Chemical Engineering Science,1954,3:41-59.
    [194] Gangwal S, Mullins M, Spivey J, et al. Kinetics and selectivity of deep catalyticoxidation of n-hexane and benzene [J]. Applied Catalysis,1988,36:231-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700