半干法脱硫灰制备生态建材及工艺参数优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半干法脱硫技术具有流程简单、占地面积少、无污水排放等优点,但其副产脱硫灰生成量较高,组成上以硫酸钙、亚硫酸钙和残余脱硫剂为主,是一潜在的资源,目前常用的处理方法是直接堆放和填埋,不但造成环境污染,而且浪费有用资源。因此,对脱硫灰的综合利用研究成为当前急需解决的问题,也成为制约烟气脱硫技术发展的重要因素。
     本文采用碘量法及扫描电镜、X-射线衍射仪、粒度分布、热重-差热分析仪等现代分析测试手段,对三种脱硫灰的化学组成、物理性质、颗粒形貌和热稳定性等理化特性进行了分析和研究。结果表明:
     1)钢厂和电厂脱硫灰化学成分无明显差别,物相成分主要有CaSO3、CaSO4、CaCO3、刚玉及莫来石等。钢厂脱硫灰CaSO3和MgO的含量相对低,而CaO和Fe2O3的含量较高。
     2)钢厂半干法脱硫灰的粒径主要分布在7.24~8.06μm之间,其中位径为5.83μm;而电厂脱硫灰的粒径主要分布在222.66~247.83μm之间,其中位径分别为206.68μm、208.11μm,钢厂脱硫灰颗粒直径小于电厂脱硫灰直径。
     3)钢厂烧结烟气脱硫灰颗粒为不规则形,呈多孔状颗粒,表面光滑,结构疏松。
     通过以脱硫灰、粉煤灰为主要原料,掺加一定量的激发剂、骨料,制备蒸养砖的研究表明:2#灰转试块最优配比为:脱硫灰25%,粉煤灰49%,砂石比2:3的骨料25%,1%复合激发剂NH。3#最优配比为:脱硫灰40%,粉煤灰34%,砂石比2:3的骨料25%,1%复合激发剂NH。在最优配方基础上,对影响脱硫灰砖主要工艺参数进行了研究,确定2#、3#脱硫灰砖的掺水量为25%。消化时间分别为36 h、24 h。养护制度分别为:养护温度90℃、95℃;养护时间7 h、8 h的条件下,对2#脱硫灰砖进行耐久性实验,其抗冻性、收缩性良好,砖力学性能均符合JC239-2001《粉煤灰砖》MU15强度等级标准。
     在工业化扩大中试验中,通过对制备的标准砖和空心砖进行抗压、抗折强度,15次冻融循环损失率,干收缩值的测试表明,其各项指标均符合GB/T2542-2003《砌墙砖试验方法》和JC239-2001《粉煤灰砖》中的标准要求。
Semi-dry FGD technology has some advantages, such as simple process, small space-occupy and no sewage discharge, but the output of byproduct—desulfurization ash is higher, which is composed of calcium sulfate, calcium sulfite and residual desulfurizer etc. Desulfurization ash is a potential resource, direct stacking and landfill is the mainly approach ,which is not only cause environmental pollution, but also a waste of useful resources. Therefore, the comprehensive utilization of ash on desulfurization research become the current pressing problems, and also a constraint to the development of flue gas desulphurization technology .
     In this paper, chemical composition, physical properties, particle orphology ,thermal stability of the three kinds of desulfurization ash were analysised and studied by odometric method and scanning electron microscopy, X-ray diffraction, particle size distribution, TG - DTA and other modern analytical methods.The results are as follows.
     1) There is no significant difference in chemical composition of the three desulfurization ash.Phase composition are mainly CaSO3, CaSO4, CaCO3, corundum and mullite, etc.Steel desulfurization ash has lower content of CaSO3 and MgO ,while the higher content of CaO and Fe2O3.
     2) Steel desulfurization ash particle size is 7.24 ~ 8.06μm, with median diameter is 5.83μm; while the power plant desulfurization ash particle size is222.66 ~ 247.83μm, with median diameter, respectively 206.68μm, 208.11μm, therefore steel desulfurization ash particle diameter is less than diameter of power plant desulfurization ash.
     3) The research on steam-cured brick preparated by desulfurization ash, fly ash as main raw material, admixing a certain amount of excitation agent, aggregate,
     Studies have shown that the optimal ratio of 2# ash turn are as follows: desulfurization ash25%, fly ash49%, sand and gravel aggregate than the 2:3 of 25%, 1% of the compound activator NH; 3# ash turn: desulfurization ash40%, fly ash34%, sand and gravel aggregate than the 2:3 of 25%, 1% of the compound activator NH. Based on the optimal formula , the main process parameters were studied, water 25% , digestion time 36h,24h, curing 7 h at 90℃,8h at 95℃.2# desulfurization gray bricks on the durability test carried out:frost resistance and shrinkage of the steam-cured bricks perform well and the technical performance can meet the requirements of MU15 in"fly ash brick"(JC239-2001).
     In industrialized expanding test, prepared standard brick and hollow bricks for compressive, flexural strength, 15 times the loss rate of freeze-thaw cycles, dry shrinkage value of the test that its indicators are in line with "puzzle wall test method"(GB/T2542-2003)and "fly ash bricks"(JC239-2001).
引文
[1]胡少华,齐美富.锅炉烟气脱硫技术进展.能源研究与信息, 2003, 19(2): 95
    [2]陈俊峰,黄振仁,廖传华.烟气脱硫在我国的发展现状及研究进展.电站系统工程, 2008, 24(4): 4-6
    [3]钱骏,徐强.干法脱硫灰渣的性能及应用探索.粉煤灰, 2003(5): 43-46
    [4]付晓茹,翟建平,黎飞虎,等.金陵热电厂脱硫灰的理化性能研究.粉煤灰综合利用, 2005(2): 14-16
    [5]孙俊民,姚强,曹慧芳,等.燃煤固体产物的资源特性与应用前景.粉煤灰, 2004(4): 34-38
    [6]田刚,王红梅,张凡.脱硫灰的综合利用.能源环境保护, 2003, 17(6): 49-53
    [7]王乾,段钰锋.半干法烟气脱硫技术.能源研究与利用, 2007(4): 1-4
    [8] Hill, F. F. flue Gas Desulfurization by Sp ray Dry Absorption, Chem. Eng. Process, 2000, 39: 45-531
    [9] Fabrizio , S. Absorption with Instantaneous Reaction in a Drop let with Sparingly Soluble Fines. A IChEJ , 2002, 48: 1719-1726
    [10] TAKESHITA.M. FGD Performance and Experience on Coal-Firedplants. London: IEA Coal Research, 1993: 35-58
    [11]谭忠超.循环流化床排烟脱硫系统中的浆滴蒸发.清华大学学报(自然科学版), 2000, 40(4): 62-65
    [12]樊保国.循环流化床排烟脱硫机理研究.环境科学, 1998, 19(3): 14-17
    [13] J.H.GAO. Influence Factors on the Flue Gas Desulfurization in the Circulating Fluidized Bed Reactor. Proc. Annu. Int. Pittsburgh Coal Conf. 1997(14): P2/90-P2/93
    [14]谢建军,钟秦.循环流化床烟气脱硫研究进展.重庆环境科学, 2001, 23(1): 29-34
    [15]党辉,王洪升,杨爱丽.循环流化床脱硫灰渣的特性及应用初探.国际电力, 2004, 8(6): 35-38
    [16]张悦,祁宁,陆诗诣.关于循环流化床烟气脱硫机理的研究.辽宁化工, 2003, 32(4): 172-174
    [17]葛能强.烟气循环流化床一体化脱硫、脱硝技术.江苏电机工程, 2006, (25) 31
    [18] D.E.MACPEE, E. LACHOWSHI. Effect of Fine Steel Slag Power on the Early Hydration Process of Protland Cement. Ncrway, 2006, 21(1): 147
    [19]闫振甲,何艳君.工业废渣生产建筑材料实用技术.北京:化学工业出版社, 2002(1): 12-34
    [20] NEHTA P K, MANMOHAN D. Sustainable high-performance concrete strikers. Cons, 2006, 28(7): 37-42
    [21]田刚,王红梅,张凡.脱硫灰的综合利用.脱硫灰. 2003(6): 45-49
    [22]邹伟斌,钢渣,矿渣.石灰石复合硅酸盐水泥的研制.山西:山西建材出版社, 1999(4): 02-05
    [23]吴中伟,廉慧珍.高性能混凝土.北京:中国铁道出版社, 1992, 14(3):03-25
    [24]苏达根,陈康,韩潇,等.脱硫灰在水泥工业中的应用.矿产综合利用, 2006(5): 39-42
    [25]傅伯和,葛介龙,郑月华.干法脱硫灰用作水泥混合材及缓凝剂的可行性研究.电力环境保护, 2002, 16(4): 35-38
    [26]林贤熊,叶光锐.排烟脱硫副产品亚硫酸钙作水泥缓凝剂的研究.粉煤灰, 2003, 15(2): 15-17
    [27]王文龙,任丽,董勇,等.半干法烟气脱硫产物对水泥缓凝作用的研究.水泥, 2008(3): 1-4
    [28] R. B. CLARK, K. D. RITCHEY, V. C. BALIGAR. Benefits and constraints for use of FGD products on agricultural land. Fuel, 2001(80): 821-828
    [29]黄永新,王兆云.蒸压砖的应用生产技术.砖瓦世界, 2005(3): 25-29
    [30]郝武文,文琦.高掺量脱硫灰蒸压砖的研制与生产.砖瓦, 2008(8): 40-41
    [31] JERRY.M.B, DAVID.A.K, RICHARD.C.S, et al. Mineralogical and Engineering Characteristics of Dry Flue Gas Desulfurization Products. Fuel, 2006(84): 1839-1848
    [32] X.W.LIU, M.HU, Y.H.HU. Chemical Composition and Surface Charge Properties of Montmorillonite. Journal of Central South University of Technology, 2008, 15(2): 193-197
    [33] P.TAERAKUL, P.SUN, H.WALKER, et al. Variability of Inorganic and Organic Constituents in Lime Spray Dryer Ash. Fuel, 2006, 84(14-15): 1820-1829
    [34] X.C. QIAO, C.S.POON, C.CHEESEMAN, et al. Use of Flue Gas Desulphurisation (FGD) Waste and Rejected Fly Ash in Waste Stabilization/Solidification Systems. Waste Management, 2006, 26(2): 141-149
    [35]乔龄山.水泥凝结时间的新检测方法——电导率的测定.水泥, 2005(1): 65
    [36]周明凯,周丽娜,魏小胜.电阻率法研究磷及石灰对水泥凝结硬化的影响.武汉理工大学学报, 2007, 29(8): 37-40
    [37]谌军.脱硫灰改良路基软土特性研究及工程应用. [河海大学硕士论文]. 2007
    [38]纪宪坤.流化床燃煤固硫灰渣几种特性利用研究. [重庆大学硕士论文]. 2007
    [39]包正宇.不同类型脱硫渣的主要特性及资源化利用研究. [武汉理工大学硕士论文]. 2006
    [40]段玖祥,薛建明.炉内喷钙炉后活化脱硫副产品的综合利用.电力环境保护, 2005, 21(2): 7-9
    [41]钱枫,曹慧芳,张漆芳.钙基脱硫灰渣浸出特性研究.北京工商大学学报(自然科学版),2003, 21(l): 19-24
    [42]田刚.半干半湿法脱硫灰在水泥行业中应用的实验研究. [北京化工大学硕士论文]. 2004: 19-21
    [43]朱法华,尤一安,张宝康.原西德燃煤电厂固体废弃物填埋技术. 1996, 12(2): 32-36
    [44] J. ODAA, S. NOMURAA, A. YASUHARA, et al. Mobile Sources of Atmospheric Olycyclic Aromatic Hydrocarbons in a Roadway Tunnel. Atmospheric Environment. 2001, 35(28): 4819-4827
    [45] B. M. KIM, C. H. RONALD. APPlication of Safer Model to the Los Angeles PM10 Data. Atmospheric Environment, 2000, 34(11): 1747-1759
    [46] S. V. PISUPATI, R. S. WASCO, A. W. SCARONI. An Investigation on Polycyclic Aromatic Hydrocarbon Emissions from Pulverized Coal Combustion Systems. Hazardous Materials, 2000, 74(1-2): 91-107
    [47] K. L. LIU, W. XIE, Z. B. ZHAO, et al. Investigation of Polycyclic Aromatic Hydrocarbons in Fly Ash from Fluidized Bed Combustion Systems. Environment Science & Technology, 2000, 34: 2273-2279
    [48] P. SUN, L. K. WEAVERS, P. TAERAKUL, et al. Characterization of Polycyclic Aromatic Hydrocarbons (PAHs) on Lime Spray Dryer (LSD) Ash Using Different Extraction Methods. Chemosphere, 2006, 62(2): 265-274
    [49]陆胜勇,徐旭,李晓东,等.燃煤流化床锅炉PAHs排放的试验研究.环境科学学报, 2002, 22(1): 123-125
    [50]张巨松,邓嫔,高云胜,等.矿物掺合料及硫酸钠对混凝土早期电导率的影响.沈阳建筑大学学报(自然科学版), 2008, 24(5): 814-818
    [51] Z. HE, Z. J. LI. Non-contact Resistivity Measurement for Characterization of the Hydration Process of Cement-paste with Excess Alkali. Advanced in Cement Research, 2004, 15(1): 29-34.
    [52] P. XIE, M. S. TANG. Effect of Portland Cement Paste-aggregated Interface on Electrical Conductivity. Cemento, 1998(1): 85-89
    [53] Y. SHEN, Z. Z. XU. A New Method of Enhancing Cement-aggregate InterfaceⅡMechanical Properties and Sulphate Attack Resistance of Mortar. Cement and Concrete Research, 1992, 22(5):132-135
    [54]赛俊聪,吴少华,汪洪涛,等.中国烟气脱硫技术现状及国产化问题.电站系统工程, 2003, 19(1): 53-54
    [55] H.EW.Taylor. TheehemistryofCement.AeademiePress, 1994
    [56]朱明,胡曙光,丁庆军.钢渣综合利用的途径.建材发展导向, 2005(1): 41-45
    [57] A. A. LAGOSZ, J. A. MALOLEPSZY, S. B. GARRAULT. Hydration of Tricalcium Aluminatein the Presence of Various Amounts of Calcium Sulphite Hemihydrate: Conductivity Tests. Cement and Concrete Research, 2006(36): 1016-1022

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700