高性能BCTZ基无铅压电陶瓷的改性与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:基于(Ba0.85Ca0.15)(Ti0.90Zr0.1)O3(BCTZ)钙钛矿型无铅压电陶瓷具有压电常数高、介电常数大、损耗小、制备与废弃处理对环境污染低等优点,并根据其目前存在烧结温度高、居里温度低等问题。本文首先采用Ag2O, MnO2掺杂改性BCTZ基体,研究对陶瓷烧结特性的影响;其次采用In2O3, Ga2O3, Sb2O3掺杂改性BCTZ基体,研究对陶瓷的晶粒生长规律的影响;之后采用BiAlO3, BiYbO3, Ba(Cu0.5W0.5)O3复合取代BCTZ基体,研究对陶瓷居里温度的影响规律;根据前面的研究结果,采用In2O3, Ga2O3, Ba(Cu0.5W0.5)O3掺杂(复合)(Ba0.85Ca0.15)(Ti0.90Zr0.1)O3(BCTZ99)基体,研究对陶瓷的晶粒及居里温度的影响规律;最后对比分析了In2O3, Ga2O3, Ba(Cu0.5W0.5)O3对BCTZ和BCTZ99基体的影响和作用机理。本文研究的主要内容如下:
     系统研究了BCTZ-Ag, BCTZ-Mn体系陶瓷的组成与相结构、显微组织、密度及电性能的影响关系,并对比分析了Ag2O, MnO2对BCTZ陶瓷的影响规律。XRD表明:BCTZ-Ag陶瓷的MPB在x=0.1附近;BCTZ-Mn陶瓷的MPB在0.06≤x≤0.10内。陶瓷的最佳性能为:BCTZ-Ag陶瓷x=0.08时,d33=616pC/N,kp=58.1%, r=5.6Ω, tan δ=0.63%; BCTZ-Mn陶瓷x=0.08时,d33=495pC/N,kp=49.6%, tan δ=1.58%, Pr=10.9μC/cm2。对比发现:BCTZ-0.08%Ag陶瓷的晶粒尺寸为50-90μm,远大于BCTZ-0.08%Mn陶瓷的30-40μm。
     系统研究了BCTZ-In, BCTZ-Ga, BCTZ-Sb体系陶瓷的组成与相结构、显微晶相组织、密度及电性能的影响关系,探讨陶瓷相变与铁电温谱的关系,并对比分析了In2O3, Ga2O3, Sb2O3对BCTZ陶瓷晶粒生长的影响规律。SEM表明:BCTZ-In陶瓷呈现小晶粒长大数量逐渐增多;BCTZ-Ga陶瓷的晶粒逐渐长大;BCTZ-Sb陶瓷的晶粒均匀长大。陶瓷的最佳性能为:BCTZ-In陶瓷x=0.08时,d33=605pC/N, kp=57.7%, r=6.8Ω, tanδ=1.56%, Pr=11.1μC/cm2; BCTZ-Ga陶瓷x=0.10时,d33=705pC/N,kp=61%, r=5.2Ω, tan δ=1.75%, Pr=11.3μC/cm2; BCTZ-Sb陶瓷x=0.1时,d33=556pC/N,kp=52%, r=5.2Ω, tan δ=1.3%, Pr=12.6μC/cm2。铁电温谱表明:BCTZ-0.1%Ga陶瓷的TR-T相变在25-40℃内;BCTZ-0.1%Sb陶瓷在-60-20℃内Pr达到饱和为15μC/cm2,TR-T相变在20-40℃内。比较BCTZ-In, BCTZ-Ga, BCTZ-Sb, BCTZ陶瓷发现,最大晶粒尺寸分别80μm,50μm,15μm,5μm。
     系统研究了BCTZ-BA, BCTZ-BY, BCTZ-BCW体系陶瓷的组成与相结构、显微组织及电性能的影响关系,探讨陶瓷相变与铁电温谱的关系,并对比分析了BiAlO3, BiYbO3, Ba(Cu0.5W0.5)O3对BCTZ陶瓷居里温度的影响规律。结果表明:BCTZ-BA和BCTZ-BY陶瓷的Tc向低温移动;BCTZ-BCW陶瓷的Tc向高温推移,并在0.05%≤Tc-BY>Tc-BA。
     系统研究了BCTZ99-Ga, BCTZ99-In, BCTZ99-BCW体系陶瓷的组成与相结构、显微组织及电性能的影响关系,探讨陶瓷相变与铁电温谱的关系。结果表明:BCTZ99-In陶瓷的PPT相变在0.04≤x≤0.06内,晶粒均匀长大,Tc稍微降低;BCTZ99-Ga陶瓷的晶粒长大,Tc向高温推移;BCTZ99-BCW陶瓷的MPB在0.05%≤x≤0.20%内,晶粒均匀长大,Tc提高到127℃。陶瓷的最佳性能为:BCTZ99-In陶瓷x=0.06时,d33=507pC/N, kp=49.8%, tan δ=1.35%, Pr=14.9μC/cm2; BCTZ99-Ga陶瓷x=0.08时,d33=440pC/N, kp=56%, r=7.6Ω, Pr=15.3μC/cm2; BCTZ99-BCW陶瓷x=0.1%时,d33=300pC/N,kp=30%, tanδ=1.6%, Pr=14.8μC/cm2。铁电温谱表明:BCTZ99-0.08%Ga陶瓷的To-T相变在20-40℃内。
     对比研究了BCTZ与BCTZ99, BCTZ-0.08%In与BCTZ99-0.06%In, BCTZ-0.1%Ga与BCTZ99-0.08%Ga, BCTZ-0.1%BCW与BCTZ99-0.1%BCW陶瓷的εr-f关系, tan δ-f关系,θ-f关系,Z-f关系,介电弥散相变和压电性能的退极化规律。结果表明:BCTZ-0.08%In和BCTZ99-0.06%In陶瓷在40-10M Hz内均呈现低的tan δ,均属于硬性掺杂,增强并稳定了压电性能;BCTZ99-0.06%In陶瓷呈现弥散相变特征。BCTZ-0.1%Ga和BCTZ99-0.08%Ga陶瓷在40-10M Hz内均呈现低的tanδ和较高的εr,且均属于硬性掺杂,增强并稳定了压电性能;BCTZ99-0.08%Ga陶瓷呈现弥散相变特征。BCTZ99-0.1%BCW陶瓷主要表现出硬性掺杂,增强了温度稳定性,但压电性能降低;BCTZ-0.1%BCW陶瓷主要表现出软性掺杂,降低了压电性能和温度稳定性;BCTZ-0.1%BCW和BCTZ99-0.1%BCW陶瓷均呈现弥散相变特征。
Abstract:Based on the fact that perovskite type of (Ba0.85Ca0.15)(Ti0.90Zr0.1)O3lead-free piezoelectric material have high piezoelectric properties, big dielectric constant, low dielectric loss, the less pollution of preparation and waste disposal, and according to the problems of high sintering temperature and the low Curie temperature. First, Ag2O and MnO2were added into BCTZ system ceramics respective, the sintering characteristics of the BCTZ system ceramics were studied. Secondly, In2O3, Ga2O3and Sb2O3were added into BCTZ system ceramics respective, the orderliness of crystal growth of the BCTZ system ceramics was studied. Third, BiAlO3, BiYbO3and Ba(Cu0.5W0.5)O3were compounded into BCTZ system ceramics respective, the orderliness of Curie temperature of the BCTZ system ceramics were studied. According to the previous results, In2O3, Ga2O3and Ba(Cu0.5Wo.5)03were added into BCTZ system ceramics respective, the orderliness of Curie temperature and crystal growth of the BCTZ system ceramics were studied. Last, the influence and mechanisms of In2O3, Ga2O3and Ba(Cu0.5W0.5)O3in the BCTZ and BCTZ99ceramics were studied by contrast. Several important conclusions can be summarized as follows:
     The relation between composition and crystalline structure, microstructure, density, electric properties of BCTZ-Ag and BCTZ-Mn new systems ceramics were systemically investigated. The influence of Ag2O, MnO2in the BCTZ and BCTZ99ceramics were studied by contrast. It was found that the Morphotropic Phase Boundary (MPB) for the BCTZ-Mn ceramic lies in the range of0.06≤x≤0.10; the Morphotropic Phase Boundary (MPB) for the BCTZ-Ag ceramic lies in the range of x=0.1. The best piezoelectric properties ofd33=616pC/N, kp=58.1%, r=5.6Ω, tan δ=0.63%for the BCTZ-Ag ceramic at x=0.08; d33=495pC/N,kp=49.6%, tan δ=1.58%,Pr=10.9μC/cm2for the BCTZ-Mn ceramic at x=0.08. The grain size of the BCTZ-0.08%Ag ceramic (50-90μm) is bigger than the BCTZ-0.08%Mn ceramic (30-40μm) by contrast.
     The relation between composition and crystalline structure, microstructure, density, electric properties of BCTZ-In, BCTZ-Ga and BCTZ-Sb new systems ceramics were systemically investigated. The relation between the ferroelectric properties as a function of temperature and the phase transformation for the ceramics were studied, and the influences on crystal growth of In2O3, Ga2O3and Sb2O3in the BCTZ ceramics were studied by contrast. It was found that the big grains of the BCTZ-In ceramics were increased gradually; the grains of BCTZ-Ga and BCTZ-Sb ceramics were grown up averagely. The best piezoelectric properties of d33=605pC/N, kp=51.1%, r=6.8Ω, tan δ=1.56%, Pr=11.1μC/cm2for the BCTZ-In ceramic at x=0.08; d33=705pC/N, kp=61%, r=5.2Ω, tan δ=1.75%, Pr=11.3μC/cm2for the BCTZ-Ga ceramic at x=0.10; d33=556pC/N,kp=52%, tan δ=1.3%, Pr=12.6μC/cm2for the BCTZ-Sb ceramic at x=0.10. It was found that TR-T of the BCTZ-0.1%Ga ceramic lies in the range of25-40℃; TR-T of the BCTZ-0.1%Sb ceramic lies in the range of20-40℃; Pr of BCTZ-0.1%Sb ceramic was reach the maximum value15μC/cm2in the range of-60-20℃by the ferroelectric properties as a function of temperature. The grain size of BCTZ-0.08%In, BCTZ-0.1%Ga, BCTZ-0.1%Sb and BCTZ ceramics were80μm,50μm,15μm and5μm by contrast.
     The relation between composition and crystalline structure, microstructure, density, electric properties of BCTZ-BA, BCTZ-BY and BCTZ-BCW systems ceramics were systemically investigated. The relation between the ferroelectric properties as a function of temperature and the phase transformation for the ceramics were studied, and the influences on the Curie temperature of BiAlO3, BiYbO3and Ba(Cu0.5W0.5)O3in the BCTZ ceramics were studied by contrast. It was found that Tc of the BCTZ-BA and BCTZ-BY ceramics were shifted to a lower temperature; Tc of the BCTZ-BCW ceramics were shifted to a higher temperature, and the Morphotropic Phase Boundary (MPB) lies in the range of0.05%≤x≤0.30%. The best piezoelectric properties of d33=536pC/N,kp=55.6%, tan δ=1.26%, Pr=10.8μC/cm2for the BCTZ-BA ceramic at x=0.1%; d33=580pC/N,kp=56.4%, r=10.9Ω, tan δ=1.12%, Pr=12.18μC/cm2for the BCTZ-BY ceramic at x=0.1%;d33=555pC/N, kp=55.3%, r=8.6Ω, tan δ=1.2%, Pr=11.0μC/cm2for the BCTZ-BCW ceramic at x=0.1%. It was found that Pr of BCTZ-0.1%Sb ceramic was reach the maximum value15μC/cm2at-50℃, and TR-T lies in the range of30-40℃; Pr of BCTZ-0.1%BY ceramic was linear decrease in the range of-60-20℃, and TR-T lies in the range of20-40℃by the ferroelectric properties as a function of temperature. The Curie temperature Tc of BCTZ-0.1%BA, BCTZ-0.1%BY and BCTZ-0.1%BCW ceramics were Tc-BCW>Tc-BY> Tc-BA by contrast.
     The relation between composition and crystalline structure, microstructure, density, electric properties of BCTZ99-Ga, BCTZ99-In and BCTZ99-BCW systems ceramics were systemically investigated, and the relation between the ferroelectric properties as a function of temperature and the phase transformation for the ceramics were studied. It was found that the Polymorphic Phase Transition (PPT) for the BCTZ99-In ceramic lies in the range of0.04     Studied on comparing the relaxor characteristics and depolarization temperature, and the frequency dependence of the dielectric properties, impedance and phase angle of BCTZ and BCTZ99, BCTZ-0.08%In and BCTZ99-0.06%In, BCTZ-0.1%Ga and BCTZ99-0.08%Ga, BCTZ-0.1%BCW and BCTZ99-0.1%BCW ceramics. The results showed that tan δ of BCTZ-0.08%In and BCTZ99-0.06%In ceramics were all lower than the based ceramics in the range of40-10M Hz, the BCTZ-0.08%In and BCTZ99-0.06%In ceramics showed "hard" characteristics and have enhanced piezoelectric properties; The BCTZ99-0.06%In ceramic showed the relaxor characteristics. Tan δ of BCTZ-0.1%Ga and BCTZ99-0.08%Ga ceramics showed a low values, but εr of the ceramics showed a high values. The BCTZ-0.1%Ga and BCTZ99-0.08%Ga ceramics showed "hard" characteristics and have enhanced piezoelectric properties. The BCTZ99-0.08%Ga ceramic showed the relaxor characteristics. The BCTZ99-0.1%BCW ceramic clear showed "hard" characteristics, and had enhanced temperature stability, but reduced the piezoelectric properties of the ceramic. The BCTZ-0.1%BCW ceramic clear showed "soft" characteristics, and reduced the piezoelectric properties and temperature stability. The BCTZ-0.1%BCW and BCTZ99-0.1%BCW ceramics showed the relaxor characteristics.
引文
[1]肖定全.关于无铅压电陶瓷及其应用的几个问题[J].电子元件与材料,2004,23(11):1-4.
    [2]张沛霖,钟维烈.压电材料与器件物理[M].济南:山东科学技术出版社,1994.5-7.
    [3]张传忠.压电材料的发展及应用[J].压电与声光,1993,15(3):64-70.
    [4]Jaffe B, Roth R S, Marzullo S. Piezoelectric properties of piezoelectric ceramics in the solid-solution series lead titanate lead zirconate-lead oxides:tin oxide and lead titanate-lead hafnate [J]. J Res Nal Bur Standars,1955,55(5):239-254.
    [5]Jaffe B, Roth R S, Marzullo S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics [J]. J Appl Phys,1954,25(6):809-810.
    [6]魏文森,徐慧芳,陈建飞.Pb(Sb2/3Mn1/3)O3-PbZrO3-PbTiO3三元系滤波器用低kp压电瓷料[J].压电与声光,1979,1(5):41-47.
    [7]赁敦敏,肖定全,朱建国,等.从发明专利看无铅压电陶瓷的研究与发展-无铅压电陶瓷20年发明专利分析之一[J].功能材料,2003,34(3):250-254.
    [8]Erling Ringgaard, Thom Wurlitzer. Lead-free piezoeleceramics based on alkali niobates [J]. J Euro Ceram Soc,2005,25(12):2701-2706.
    [9]Takenaka T, Nagata H, Hiruma Y. Current developments and prospective of lead-free piezoelectric ceramics [J]. Jpn J Appl Phys,2008,47(5):3787-3801.
    [10]晏伯武,林汝湛,张海波,等.高温高频用改性PbTiO3压电陶瓷材料的研究[J].压电与声光,2005,27(4):418-420.
    [11]smolensky G A, Isupov V A, Agranovskaja A I, et al. Ferroelectrics of the oxygenoctahedral type with layered structure [J]. Sov Phys Solid State (FTT), 1961,3(2):651-665.
    [12]L. Wang, T. K. Song, S.C. Lee, et al. Dielectric and piezoelectric properties of Li-substituted lead-free (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3-BaTiO3 ceramics [J]. Curr Appl Phys,2010,10(4):1059-1061.
    [13]Jingna Yang, Peng Liu, Xiaobing Bian, et al. Dielectric, ferroelectric and piezoelectric properties of Bi0.5Na0.5TiO3-(Ba0.7Ca0.3)TiO3 ceramics at morphotropic phase boundary composition [J]. Mat Sci Eng B,2011,176(3): 260-265.
    [14]Dunmin Lin, K.W. Kwok. Effect of Li-substitution on piezoelectric and ferroelectric properties of (Bi0.92Na0.92-xLix)0.5Ba0.06Sr0.02TiO3 lead-free ceramics [J]. Curr Appl Phys,2010,10(4):1196-1202.
    [15]Dunmin Lina, K.W. Kwok, H.L.W. Chan. Ferroelectric and piezoelectric properties of Bi0.5Na0.5TiO3-SrTiO3-Bi0.5Li0.5TiO3 lead-free ceramics [J]. J Alloy Compd,2009,481(1-2):310-315.
    [16]Minjiang Zou, Huiqing Fan, Lei Chen, et al. Microstructure and electrical properties of (1-x)(0.82Bi0.5Na0.5TiO3-0.18Bi0.5K0.5TiO3)-xBiFeO3 lead-free piezoelectric ceramics [J]. J Alloy Compd,2010,495(1):280-283.
    [17]Lang Wua, Dingquan Xiao, Fei Zhou, et al. Microstructure, ferroelectric, and piezoelectric properties of (1-x-y)Bi0.5Na0.5TiO3-xBaTiO3-yBi0.5Ag0.5TiO3 lead-free ceramics [J]. J Alloy Compd,2011,509(2):466-470.
    [18]Zhonghua Yao, Hanxing Liu, Lei Chen, et al. Morphotropic phase boundary and piezoelectric properties of (Bi1/2Na1/2)1-x(Bi1/2K1/2)xTiO3-0.03(Na0.5K0.5)NbO3 ferroelectric ceramics [J]. Mater Lett,2009,63(5):547-550.
    [19]Xiaoming Chen, Yunwen Liao, Huaiping Wang, et al. Phase structure and electric properties of Bi0.5(Na0.825K0.175)0.5TiO3 ceramics prepared by a sol-gel method [J]. J Alloy Compd,2010,493(1-2):368-371.
    [20]Lang Wu, Naiming Liu, Fei Zhou, et al. Phase structure and electrical properties of lead-free (1-x)(Bi0.5Na0.5)0.88Ba0.12TiO3-xAg0.9Li0.1NbO3 piezoelectric ceramics [J]. J Alloy Compd,2010,507(2):479-483.
    [21]Dunmin Lin, K.W. Kwok. Structure, ferroelectric and piezoelectric properties of (Bi1-x-y,Na0.925-x-yLi0.075)0.5BaxSryTiO3 lead-free piezoelectric ceramics [J]. Curr Appl Phys,2009,9(6):1369-1374.
    [22]Zupei Yang, Yuting Hou, Hong Pan, et al. Structure, microstructure and electrical properties of (1-x-y)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3-yBi0.6Li0.6TiO3 lead-free piezoelectric ceramics [J]. J Alloy Compd,2009,480(2):246-253.
    [23]Man-Soon Yoon, Neamul Hayet Khansur, Soon-Chul Ur. The effect of pre-milling pre-synthesis process and excess Ba on the microstructure and dielectric piezoelectric properties of nano-sized 0.94(Bi0.5Na0.5)TiO3-0.06Ba(1+x)TiO3 [J]. Ceram Int,2010,36(4):1265-1275.
    [24]Dunmin Lin, K.W. Kwok. Dielectric and piezoelectric properties of (Bi1-x-yNdxNa1-y)0.5BayTiO3 lead-free ceramics [J]. Curr Appl Phys,2010,10(2): 422-427.
    [25]Changrong Zhou, Xinyu Liu, Weizhou Li, et al. Dielectric and piezoelectric properties of Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-BiCrO3 lead-free piezoelectric ceramics [J]. J Alloy Compd,2009,478(1-2):381-385.
    [26]Rattiphorn Sumang, Naratip Vittayakorn, Theerachai Bongkarn. Crystal structure, microstructure and electrical properties of (1-x-y)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3-yBiFeO3 ceramics near MPB prepared via the combustion technique [J]. Ceram Int,2013,39(10):S409-S413.
    [27]Deepam Maurya, Abhijit Pramanick, Ke An, et el. Enhanced piezoelectricity and nature of electric-field induced structural phase transformation in textured lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3 ceramics [J]. Appl Phys Lett,2012, 100(4):172906-172906-5.
    [28]Egerton L, Dillon D M. Piezoelectric and dielectric properties of ceramics in the system of potassium-sodium niobate [J]. J Am Ceram Soc,1959,42(9):438-442.
    [29]Hongliang Du, Fusheng Tang, Daijun Liu, et al. The microstructure and ferroelectric properties of (K0.5Na0.5)NbO3-LiNbO3 lead-free piezoelectric ceramics [J]. Mater Sci Eng B,2007,136 (2-3):165-169.
    [30]S. J. Zhang, R. Xia, T. R. Shrout, et al. Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free ceramics [J]. J Appl Phys,2006, 100(10):104-108.
    [31]H. Y. Park, J. Y. Choi, M. K. Choi. Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramies [J]. J Am Ceram Soc,2008,91(7):2374-2377.
    [32]J. F. Li, K. Wang, B. P. Zhang. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering [J]. J Am Ceram Soc,2006,89(2):706-709.
    [33]Minhong Jiang, Xinyu Liu, Guohua Chen. Phase structures and electrical properties of new lead-free Na0.5K0.5NbO3-LiSbO3-BiFeO3 ceramics [J]. Scripta Mater,2009,60(10):909-912.
    [34]Jigong Hao, Chenggen Ye, Bo Shen, et al. Enhanced piezoelectric properties of <001> textured lead-free (KxNa1-x)0.946Li0.054NbO3 ceramics with large strain [J]. Phys Status Solidi A,2012,209(7):1343-1349.
    [35]Jia-Jun Zhou, Jing-Feng Li, Xiao-Wen Zhang. BiFeO3-modified (Li, K, Na)(Nb, Ta)O3 lead-free piezoelectric ceramics with temperature-stable piezoelectric property and enhanced mechanical strength [J]. J Mater Sci,2012,47(9): 1767-1773.
    [36]Xuhai Li, Jiliang Zhu, Mingsong Wang, et al. BiScO3-modified (K0.475Na0.475Li0.05)(Nb0.95Sb0.05)O3 lead-free piezoelectric ceramics [J]. J Alloy Compd,2010,499(2):L1-L4.
    [37]Y. S. Sung, S. Baik, J. H. Lee, et al. Enhanced piezoelectric properties of (Nao.5+y+zK0.5+y)(Nb1-xTax)03 ceramics [J]. Appl Phys Lett,2012,101(7): 012902-012902-4.
    [38]Aurivillius B. Mixed bismuth oxides with layer lattices [J]. Arkiv Kemi,1949, 1(6):499-512.
    [39]Subbarao E C. A family of ferroelectric bismuth compounds [J]. J Phys Chem Solids,1962,23(6):665-676.
    [40]Shulman H S, Testorf M, Damjanovic D, et al. Microstructure, electrical conductivity, and piezoelectric properties of bismuth titanate [J]. J Am Ceram Soc, 1996,79(12):3124-3128.
    [41]Pardo L, Castro A, Millan P. (Bi3TiNbO9)x(SrBi2Nb2O9)1-x aurivillius type structure piezoelectric ceramics obtained from mechanochemically activated oxides [J]. Acta Mater,2000,48(9):2421-2428.
    [42]H. X. Yan, H. T. Zhang, R. IJbic, et al. A lead-free high-curie-point ferroelectric ceramic CaBi2Nb2O9 [J]. Adv Mater,2005,17(10):1261-1265.
    [43]Takenaka, Sakata K. Grain orientation effects on electrical properties of bismuth layer-structured ferroelectric Pb(1-X)(NaCe)x/2Bi4Ti4O15 solid solution [J]. J Appl Phys,1984,55(4):1092-1099.
    [44]Yan H, Li C G, Zhou J G, et al. A-site (MCe) substitution effects on the structures and properties of CaBi4Ti4O15 ceramics [J]. Jpn J Appl Phys,2000,39(11): 6339-6342.
    [45]冯元元.高温铋层压电陶瓷Na0.5Bi4.5Ti4O15和Na0.5Bi4.5Nb2O9的改性研究[D].济南:山东大学,2012.
    [46]尹娜,王春明,王矜奉.稀土元素Pr替位改性的高温CaBi2Nb209压电陶瓷[J].电子元件与材料,2011,30(2):1-3.
    [47]宗立超,曾江涛,赵苏串,等.含铋层状结构陶瓷CaBi2Nb209的A位掺杂改性研究[J].无机材料学报,2012,27(7):726-730.
    [48]李玉成,姚烈,董显林.一种改性CaBi2Nb209铋层状结构压电陶瓷材料及其制备方法[P].中国专利,ZL201010189011.0,2011-11.
    [49]周昌荣.无铅压电陶瓷BNT-BKT-BiMeO3 (Me=Fe、Cr、Co)电性能及其机理研究[D].长沙:中南大学,2008.
    [50]Umakantham K, Narayana S. Effect of rare-earth ions on the properties of modified (SrBa)Nb2O6 ceramics [J]. J Mater Lett,1987,6(5):565-567.
    [51]Masahiko K, Tadahiro M, Arira A. Temperature characteristics of (Ba1-xSrx)2NaNb5O15 ceramics [J]. Jpn J Appl Phys,1997,36(9B):6051-6054.
    [52]Sambasiva R K, Satyanarayana C. Piezoelectric and ferroelectric properties of rare-earth modified filled tungsten bronze barium silver niobate ceramics [J]. Ferroelectrics,1994,154(1-4):195-200.
    [53]Robin A I, Prasada R A V, Sabasiva R, et al. Effect of rare earth substitution on the dielectric and piezoelectric properties of Ba2AgNb5O15 [J]. Ferroelectrics, 1994,153(1-4):285-290.
    [54]Robin A I, Prasada R A V. Ferroelectric and piezoelectric studies of lanthanum and praseodymium modified Ba2AgNb5O15 ceramics [J]. J Mater Lett,1994, 13(19):1381-1383.
    [55]Kakimoto K, Yoshifuji T, Ohsato H. Densification of tungsten-bronze KBa2Nb5O15 lead-free piezoceramics [J]. J Euro Ceram Soc,2007,27(13): 4111-4114.
    [56]Ke S M, Fan H Q, Huang H, et al. Dielectric dispersion behavior of BaZrxTi1-xO3 solid solutions with a quasi-ferroelectric state [J]. J Appl Phys,2008,104(3): 034108-034108-6.
    [57]张金升,王美婷,许风秀.先进陶瓷导论[M].北京:化学工业出版社,2007.35-37.
    [58]Liu W F, Ren X B. Large piezoelectric effect in Pb-free ceramics [J]. Phys Rev Lett,2009,103(25):257602-257602-4.
    [59]Wada S, Pulpan P. Domain wall engineering in lead-free piezoelectric materials [J]. Key Eng Mat,2010,421-422(12):13-16.
    [60]W. P. Mason. Piezoelectric or electrostrictive effect in barium titanate ceramics [J]. Phys Rev Lett,1948,73(11):1398-1399.
    [61]Hirofumi Takahashi. Development of lead-free BaTiO3 ceramics possessing enhanced piezoelectric properties [J]. Electr Commun Japan,2012,95(4):20-25.
    [62]L.G.D. Silveira, M. F. S. Alves, L. F. Cotica, et al. Dielectric investigations in nanostructured tetragonal BaTiO3 ceramics [J]. Mater Res Bull,2013,48(1): 1772-1777.
    [63]Wei-Gang Yang, Bo-Ping Zhang, Nan Ma, et al. High piezoelectric properties of BaTiO3-xLiF ceramics sintered at low temperatures [J]. J Eur Ceram Soc,2012, 32(10):899-904.
    [64]Nan Ma, Bo-Ping Zhang, Wei-Gang Yang. Low-temperature sintering of BaTiO3 lead-free piezoelectric ceramics [J]. J Electroceram,2012, 28(5):275-280.
    [65]Nan Ma, Bo-Ping Zhang, Wei-Gang Yang, Phase structure and nano-domain in high performance of BaTiO3 piezoelectric ceramics [J]. J Eur Ceram Soc,2012, 32(12):1059-1066.
    [66]T. Karaki, S. Maruyama, R. Chikazawa, Modified BaTiO3 piezoelectric ceramics with Bi2O3-Li2O additive [J]. Ferroelectrics,2012,439(10):83-87.
    [67]Dun Wu, Bijun Fang, Qingbo Du, et al. Preparation and properties of La and K co-doped BaTiO3 lead-free piezoelectric ceramics [J]. Ferroelectrics,2012, 432(1):81-91.
    [68]M.R. Panigrahi, S.Panigrahi. Structural analysis of 100% relative intense peak of Ba1-xCaxTiO3 ceramics by X-ray powder diffraction method [J]. Phys B,2010, 405(1):1787-1791.
    [69]Cai-Xia Li, Bin Yang, Shan-Tao Zhang, et al. Effects of sintering temperature and poling conditions on the electrical properties of Ba0.70Ca0.30TiO3 diphasic piezoelectric ceramics [J]. Ceram Int,2013,39(10):2967-2973.
    [70]Wei Cai, Chunlin Fu, Jiacheng Gao, et al. Effect of hafnium on the microstructure, dielectric and ferroelectric properties of Ba(Zr0.2Ti0.8)O3 ceramics [J]. Ceram Int, 2012,38(12):3367-3375.
    [71]Hiroshi Maiwa. Electromechanical properties of Ba(Zr0.2Ti0.8)O3 ceramics prepared by spark plasma sintering [J]. Ceram Int,2012,38S(5):S219-S223.
    [72]P. Jarupoom, K. Pengpat, G. Rujijanagul. Enhanced piezoelectric properties and lowered sintering temperature of Ba(Zr0.07Ti0.93)O3 by B2O3 addition [J]. Curr Appl Phys,2010,10(7):557-560.
    [73]Parkpoom Jarupoom, Gobwute Rujijanagul. Improvement in piezoelectric strain of annealed Ba(Zr0.07Ti0.93)O3 based ceramics [J]. J Appl Phys,2013,114(7): 027018-027018-4.
    [74]Sandeep Mahajan, Divya Haridas, K. Sreenivas, et al. Enhancement in electro-strainb ehavior by La3+ substitution in lead free BaZr0.05Ti0.95O3 ceramics [J]. Mater Lett,2013,97(1):40-43.
    [75]S.J. Kuang, X.G. Tang, L.Y. Li, et al. Influence of Zr dopant on the dielectric properties and Curie temperatures of Ba(ZrxTi1-x)O3 (0≤x≤0.12) ceramics [J]. Scripta Mater,2009,61(3):68-71.
    [76]S. Bhaskar Reddy, K. Prasad Rao, M. S. Ramachandra Rao. Influence of A-site Gd doping on the microstructure and dielectric properties of Ba(Zr0.1Ti0.9)O3 ceramics. [J]. J Alloy Compd,2011,509(10):1266-1270.
    [77]P. Zheng, K.X. Song, H.B. Qin, et al. Piezoelectric activities and domain patterns of orthorhombic Ba(Zr, Ti)O3 ceramics [J]. Curr Appl Phys,2013,13(6): 1064-1068.
    [78]Wangfeng Bai, Jigong Hao, Bo Shen, et al. Processing optimization and piezoelectric properties of textured Ba(Zr, Ti)O3 ceramics [J]. J Alloy Compd, 2012,536(9):189-197.
    [79]Hirofumi Takahashi, Yoshiki Numamoto. Piezoelectric properties of BaTiO3 ceramics with high performance fabricated by microwave sintering [J]. Jpn J Appl Phys,2006,45(9):7405-7408.
    [80]T. Karaki, Kang Yan, Masatoshi Adachi. Barium titanate piezoelectric ceramics manufactured by two-step sintering [J]. Jpn J Appl Phys,2007,46(10): 7035-7038
    [81]S.Wada k, Tadeda T, Muraishi. Preparation of [110] grain oriented barium titanate ceramics by template grain growth method and their piezoelectric properties [J]. Jpn J Appl Phys,2007,46(6B):7039-7043.
    [82]S Shao, J Zhang, Z Zhang, et al. High piezoelectric properties and domain configuration in BaTiO3 ceramics obtained through the solid-state reaction route [J]. J Phys D Appl Phys,2008,41(12):125408-125408-5.
    [83]Wenfeng Liu, Xiaobing Ren. Large piezoelectric effect in Pb-free ceramics [J]. Phys Rev Lett,2009,103(25):257602-257602-4.
    [84]Jiagang Wu, Dingquan Xiao, Wenjuan Wu, et al. Composition and poling condition-induced electrical behavior of (Ba0.85Ca0.15)(Ti1-xZrx)O3 lead-free piezoelectric ceramics [J]. J Eur Ceram Soc,2012,32(4):891-898.
    [85]Ye Tian, Xiaolian Chao, Lingling Wei, et al. Phase transition behavior and electrical properties of lead-free (Ba1-xCax)(Zr0.1Ti0.9)O3 piezoelectric ceramics [J]. J Appl Phys,2013,113(18):184107-184107-7.
    [86]Ye Tian, Lingling Wei, Xiaolian Chao, et al. Phase transition behavior and large piezoelectricity near the morphotropic phase boundary of lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics [J]. J Am Ceram Soc,2013,96(2):496-502.
    [87]Shi Su, Ruzhong Zuo, Shengbo Lu, et al. Poling dependence and stability of piezoelectric properties of Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics with huge piezoelectric coefficients [J]. Curr Appl Phys,2011,11(3):S120-S123.
    [88]Paul Praveen J, Kranti Kumar, James Raju K C, et al. A study of piezoelectric properties of (Ba0.85Ca0.15)(Zr0.9Ti0.1)O3 ceramics synthesized by Sol-Gel process [J].Conf Proceed,2013,1536(2):891-892.
    [89]Jigong Hao, Wangfeng Bai, Wei Li, et al. Correlation between the microstructure and electrical properties in high-performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free [J]. J Am Ceram Soc,2012,95(6):1998-2006.
    [90]Jiagang Wu, Dingquan Xiao, Wenjuan Wu, et al. Effect of dwell time during sintering on piezoelectric properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics [J]. J Alloy Compd,2011,509(41):L359-L361.
    [91]Dragan Damjanovic, Alberto Biancoli, Leili Batooli, et al. Elastic, dielectric, and piezoelectric anomalies and Raman spectroscopy of 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 [J]. Appl Phys Lett,2012,100(19): 192907-192907-4.
    [92]Wei Li, ZhijunXu, RuiqingChu, et al. Polymorphic phase transition and piezoelectric properties of (Ba1-xCax)(Ti0.9Zr0.1)O3 lead-free ceramics [J]. Phys B, 2010,405(21):4513-4516.
    [93]S. K. Ye, J. Y. H. Fuh, L. Lu. Structure and electrical properties of<001> textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free piezoelectric ceramics [J]. Appl Phys Lett,2012,100(25):252906-252906-4.
    [94]Venkata Ramana E., A. Mahajan, M.P.F. Graca, et al. Structure and ferroelectric studies of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 piezoelectric ceramics [J]. Mater Res Bull, 2013,48(10):4395-4401.
    [95]Min Wang, Ruzhong Zuo, Shishun Qi, et al. Synthesis and characterization of sol-gel derived (Ba, Ca)(Ti, Zr)O3 nanoparticles [J]. J Mater Sci Mater Electron, 2012,23(8):753-757.
    [96]I.-K. Jeong, J. S. Ahn, et al. The atomic structure of lead-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 by using neutron total scattering analysis [J]. Appl Phys Lett,2012,101(24):242901-242901-5.
    [97]Wei Lin, Linli Fan, Dunmin Lin, et al. Phase transition, ferroelectric and piezoelectric properties of Ba1-xCaxTi1-yZryO3 lead-free ceramics [J]. Curr Appl Phys,2013,13(1):159-164.
    [98]Tao Chen, Ting Zhang, Guangchang Wang, et al. Effect of CuO on the microstructure and electrical properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoceramics [J]. J Mater Sci,2012,47(2):4612-4619.
    [99]Tao Chen, Ting Zhang, Jifang Zhou, et al. Ferroelectric and piezoelectric properties of [(Ba1-3x/2Bix)0.85Ca0.15](Ti0.90Zr0.10)O3 lead-free piezoelectric ceramics [J]. Mater Res Bull,2012,47(4):1104-1106.
    [100]Qin Lin, Meng Jiang, Dunmin Lin, et al. Effects of La-doping on microstructure, dielectric and piezoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 lead-free ceramics [J]. J Mater Sci Mater Electron,2013,24(6):734-739.
    [101]Meng Jiang, Qin Lin, Dunmin Lin, et al. Effects of MnO2 and sintering temperature on microstructure, ferroelectric, and piezoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 lead-free ceramics [J]. J Mater Sci,2013,48(9): 1035-1041.
    [102]Chao Han, Jiagang Wu, Chaohui Pu, et al. High piezoelectric coefficient of Pr2O3-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 ceramics [J]. Ceram Int,2012,138(8): 6359-6363.
    [103]Wangfeng Bai, Wei Li, Bo Shen, et al. Piezoelectric and strain properties of strontium-doped BZT-BCT lead-free ceramics [J]. Key Engineering Materials, 2012,512-515:1385-1389.
    [104]Jiagang Wu, Dingquan Xiao, Wenjun Wu, et al. Role of room-temperature phase transition in the electrical properties of (Ba, Ca)(Ti, Zr)O3 ceramics [J]. Scripta Mater,2011,65(9):771-774.
    [105]Wangfeng Bai, Jigong Hao, Bo Shen, et al. Dielectric properties and relaxor behavior of high Curie temperature (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-Bi(Mg0.5Ti0.5)O3 Lead-free ceramics [J]. Ceram Int,2013,39(5):S19-S23.
    [106]Bei Xu, Feng Gao, Xiao Cao, et al. Microstructure and dielectric relaxor behavior of Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3-BaBi4Ti4O15 ceramics by tape casting [J]. J Mater Sci Mater Electron,2012,23(3):1809-1816.
    [107]Tao Chen, Ting Zhang, Jifang Zhou, et al. Microstructure and electrical properties of (Ba0.85Ca0.15)1-xLix(Ti0.90Zr0.10)1-xNbxO3 ceramics with a low dielectric loss and a low sintering temperature [J]. Ceram Int,2012,38(5): 3591-3594.
    [108]Jiagang Wu, Wenjuan Wu, Dingquan Xiao, et al. (Ba, Ca)(Ti, Zr)O3-BiFeO3 lead-free piezoelectric ceramics [J]. Curr Appl Phys,2012,12(2):534-538.
    [109]Wei Li, Zhijun Xu, Ruiqing Chu, et al. High piezoelectric d33 coefficient in (Ba1-xCax)(Ti0.98Zr0.02)O3 lead-free ceramics with relative high Curie temperature [J]. Mater Lett,2010,64(21):2325-2327.
    [110]Wei Li, Zhijun Xu, Ruiqing Chu, et al. Effect of Ho doping on piezoelectric properties of BCTZ ceramics [J]. Ceram Int,2012,38(5):4353-4355.
    [111]Wei Li, Jigong Hao, Wangfeng Bai, et al. Enhancement of the temperature stabilities in yttrium doped (Ba0.99Ca0.01)(Ti0.98Zr0.02)O3 ceramics [J]. J Alloy Compd,2012,531(8):46-49.
    [112]Wei Li, Zhijun Xu, Ruiqing Chu, et al. Temperature stability in Dy-doped (Ba0.99Ca0.01)(Ti0.98Zr0.02)O3 lead-free ceramics with high piezoelectric coefficient [J]. J Am Ceram Soc,2011,94(10):3181-3183.
    [113]Wei Li, Zhijun Xu, Ruiqing Chu, et al. Piezoelectric and dielectric properties of (Ba1-xCax)(Ti0.95Zr0.05)O3 lead-free ceramics [J]. J Am Ceram Soc,2010,93(10): 2942-2944.
    [114]Wei Li, Zhijun Xu, Ruiqing Chu, et al. Structural and dielectric properties in the (Ba1-xCax)(Ti0.95Zr0.05)O3 ceramics [J]. Curr Appl Phys,2012,12(3):748-751.
    [115]Wei Li, Zhijun Xu, Ruiqing Chu, High piezoelectric d33 coefficient of lead-free (Ba0.93Ca0.07)(Ti0.95Zr0.05)O3 ceramics sintered at optimal temperature [J]. Mater Sci Eng B,2011,176(1):65-67.
    [116]Xiang-Ping Jiang, Lu Li, Chao Chen, et al. Effects of Mn-doping on the properties of (Ba0.92Ca0.08)(Ti0.95Zr0.05)O3 lead-free ceramics [J]. J Alloy Compd, 2013,574(10):88-91.
    [117]Sui Yang, Hailong. Zhang, Su-Wei Zhang, Electrical properties tailoring in Ni-particle-dispersed (Ba0.95Ca0.05)(Ti0.96Zr0.04)O3 composites [J]. Mater Chem Phys,2011,126(3):729-733.
    [118]Kamal Jain, Gurvinderjit Singh, G. K. Upadhyaya, et al. Investigation of dielectric and structural behaviour of lead free (Ba1-xCax)(Zr0.05Ti0.95)O3 ceramics [J] Conf proceed,2013,1512(1):42-43.
    [119]Suwei Zhang, Hailong Zhang, Boping Zhang, et al. Phase-transition behavior and piezoelectric properties of lead-free (Bao.95Cao.o5)(Ti1-xZrx)O3 ceramics [J]. J Alloy Compd,2010,506(1):131-135.
    [120]Gurvinderjit Singh, V. S. Tiwari, P. K. Gupta. Thermal stability of piezoelectric coefficients in (Ba1-xCax)(Zr0.05Ti0.95)O3:A lead-free piezoelectric ceramic [J]. Appl Phys Lett,2013,102(16):162905-162905-5.
    [121]Chandan Bhardwaj, Ashvani Kumar, Davinder.Kaur, Structural and electrical analysis of lead free BZT-xBCT ceramics [J]. Conf Proceed,2010,1313(9): 269-271.
    [122]Matthias C. Ehmke, John Daniels, Julia Glaum, et al. Reduction of the piezoelectric performance in lead-free (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoceramics under uniaxial compressive stress [J]. J Appl Phys,2012,112(11): 114108-114108-5.
    [123]Dean S. Keeble, Feres Benabdallah, Pam A. Thomas, et al. Revised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3) [J]. Appl Phys Lett,2013, 102(9):092903-092903-5.
    [124]Zhong.W L, Zhang P L, Liu S D. Piezoeleetric ceramics with high coupling and high temperature stabilitiy [J]. Ferroelectrics,1990,101(1):173-177.
    [125]钟维烈.铁电物理学[M].北京:科学出版社,2000.
    [126]Yu C S, Hsieh H L. Piezoelectric properties of Pb(Ni1/3Sb2/3)O3-PbTiO3-PbZrO3 ceramics modified with MnO2 additive [J]. J Euro Ceram Soc,2005,25(12): 2425-2427.
    [127]Du H L, Pei Z B, Zhou W C, et al. Effect of addition of MnO2 on piezoelectric properties of PNW-PMS-PZT ceramics [J]. Mater Sci Eng A,2006,421(2): 286-289.
    [128]殷之文.电介质物理学(第二版)[M].北京:科学出版社,2003.
    [129]Shirane G, Suzuki K. Crystal Structure of Pb(Zr-Ti)O3 [J]. J Phys Soc Jpn 1952, 7(3):333-333.
    [130]Jaffe B, Roth R S, Marzullo S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics [J]. J Appl Phys,1954,25(6):809-810.
    [131]Service R E. Shape-changing crystals get shiftier [J]. Science,1997,275(6):1878
    [132]Park S E, Shrout T R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals [J]. J Appl Phys,1997,82(4):1804-1811.
    [133]潘劲松.钙钛矿型铁电固溶体在准同型相界附近的结构和性能’[D].北京:清华大学,2006.
    [134]PMN和KNN铁电材料的电子显微学及第一性原理研究[D].北京:清华大学,2010.
    [135]Pan Wang, Yongxiang Li, Yiqing Lu. Enhanced piezoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics by optimizing calcinations and sintering temperature [J]. J Eur Ceram Soc,2011,31(11):2005-2012.
    [136]Chuenshii Chou, Chingliang Liu, Chinmin Hsiung, et al. Preparation and characterization of the lead-free piezoelectric ceramic of Bi0.5Na0.5TiO3 doped with CuO [J]. Powder Technol,2011,210(3):212-219.
    [137]Hongqiang Wang, Ruzhong Zuo, Li Wang, et al. Preparation and piezoelectric properties of CuO-doped (Na0.5K0.5)NbO3 ceramics by the citrate precursor method [J]. J Mater Sci Mater Electron,2011,22(5):458-462.
    [138]Yerang cui, xinyu liu, minhong jiang, et al. lead-free (Ba0.7Ca0.3)TiO3-Ba(Zr0.2Ti0.8)O3-xwt%CuO ceramics with high piezoelectric coefficient by low-temperature sintering [J]. J Mater Sci Mater Electron,2012, 23(7):1342-1345.
    [139]Cheng-Che Tsai, Sheng-Yuan Chu, Cheng-Shong Hong, et al. Effects of ZnO on the dielectric, conductive and piezoelectric properties of low-temperature-sintered PMnN-PZT based hard piezoelectric ceramics [J]. J Eur Ceram Soc,2011,31(11):2013-2022.
    [140]Jianzhou Du, Jinhao Qiu, Kongjun Zhu, et al. Microstructure, temperature stability and electrical properties of ZnO-modified Pb(Ni1/3Nb2/3)O3-Pb(Fe1/2Nb1/2)O3-Pb(Zr0.3Ti0.7)O3 piezoelectric ceramics [J]. Ceram Int,2013,39(8):9385-9390.
    [141]Yongke Yan, Kyung-Hoon Cho, Shashank Priya. Identification and effect of secondary phase in MnO2-doped 0.8Pb(Zr0.52Ti0.48)O3-0.2Pb(Zn1/3Nb2/3)O3 piezoelectric ceramics [J]. J Am Ceram Soc,2011,94(11):3953-3959.
    [142]Minho Park, Juhyun Yoo. Piezoelectric and dielectric properties of nonstoichiometric (Na0.5K0.5)0.97(Nb0.90Ta0.1)O3 ceramics doped with MnO2 [J]. J Electron Mater,2012,41(11):3095-3099.
    [143]Tae-Ho Lee, Sung-Gap Lee, Jin-Ho Yeo, et al. Piezoelectric properties of (Na0.465K0.465Bi0.07)(Nb0.93Ti0.07)O3 ceramics with MnO2 addition [J]. J Electroceram,2013,30(4):213-216.
    [144]Seung-Hwan Lee, Sang-Don Baek, Hyun-Ju Kim, et al. Dielectric and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 ceramics with Ag2O contents [J]. Electron Mater Lett,2012,8(6):577-580.
    [145]Kyoung-Soo Lee, Seok-Woo Yun, Jung-Hyuk Koh. The dielectric and electrical properties of Ag2O doped 0.9(Na0.52K0.48)Nb03-0.1LiTa03 ceramics [J]. Curr Appl Phys,2011,11(3):S86-S89.
    [146]Yanjie Zhang, Ruiqing Chu, Zhijun Xu, et al. Effects of Li2CO3 on the sintering behavior and piezoelectric properties of Bi2O3-excess (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics [J]. Curr Appl Phys,2012,12(1):204-209.
    [147]Juhyun Yoo, Changbae Lee, Yeongho Jeong, et al. Microstructural and piezoelectric properties of low temperature sintering PMN-PZT ceramics with the amount of Li2CO3 addition [J]. Mater Chem Phys,2005,90(2-3):386-390.
    [148]Rui Zhang, Zupei Yang, Xiaolian Chao, et al. Effects of CeO2 addition on the piezoelectric properties of PNW-PMN-PZT ceramics [J]. Ceram Int,2009, 35(1):99-204.
    [149]Jinhua Shi, Wanmin Yang. Piezoelectric and dielectric properties of CeO2-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics [J]. J Alloy Compd,2009,472(1-2): 267-270.
    [150]Peng Du, Laihui Luo, Weiping Li, et al. Photoluminescence and piezoelectric properties of Pr-doped NBT-xBZT ceramics:Sensitive to structure transition [J]. J Alloy Compd,2013,559(5):92-96.
    [151]Dengfeng Peng, Haiqin Sun, Xusheng Wang, et al. Red emission in Pr doped CaBi4Ti4O15 ferroelectric ceramics [J]. Mater Sci Eng B,2011,176(18): 1513-1516.
    [152]Chen Zhi-Hui, Ding Jian-Ning, Mei Lin, et al. Piezoelectric and dielectric properties of Dy2O3-doped Bi0.5(Na0o.82K0.18)0.5TiO3 lead-free ceramics [J]. Ferroelectrics,2011,425(1):63-71.
    [153]Chen Zhi-hui, Ding Jian-ning, Mei Lin, et al. Piezoelectric and dielectric properties of Dy2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics [J]. J Alloy Compd,2011,509(2):482-485.
    [154]Zuo R Z, Ye C, Fang X S. K0.5NaNbO3-BiFeO3 lead-free piezoelectric ceramics [J]. J Phys Chem Solids,2008,69(1):230-235.
    [155]Jaffe B, Marzullo S, Piezoelectric properties of lead zirconate-lead titanate solid solution ceramics [J]. J Appl Phys,1954,25(6):809-810.
    [156]尹丹,周昌荣,刘心宇,等.In203掺杂Bi0.5(Na0.82K0.18)0.5TiO3无铅压电陶瓷的研究[J].电子元件与材料,2010,29(5):5-7.
    [157]朱斌,文忠,高扬,等.铟掺杂PZT铁电陶瓷性能研究[J].功能材料,2013,44(5):614-617.
    [158]杨振,张武森,王斌科,等.Ga3+取代Sc3+对BSPT64高温压电陶瓷的性能影响[J].空军工程大学学报,2009,10(6):83-86.
    [159]樊慧庆,邹敏江.掺杂三氧化二锑的钛酸铋钠钾陶瓷的显微结构和电学性能[J].硅酸盐学报,2012,40(4):529-533.
    [160]Huang Xinyou, Gao Chunhua, Wei Minxian, et al. Influence of Sb2O3 doping on the properties of KBN-NBT-BT lead-free piezoelectric ceramics [J]. Rare Met, 2011,30(1):72-75.
    [161]Li YM, Chen W, Xu Q, et al. Piezoelectric and dielectric properties of Sb2O3 doped (Na0.84K0.16)0.5Bi0.5TiO3 lead-free ceramics [J]. Rare Met Mat Eng,2006, 35(2):273-276.
    [162]Taosheng Zhou, Shimin Wang, Haoshuang Gu, et al. The effect of doping Sb2O3 in high d33·g33 PZT piezoelelctric ceramics [J]. Ferroelectrics,1997,195(1): 101-104.
    [163]Yong Liu, Ruiqing Chu, Zhijun Xu, et al. Effects of BiAlO3 on structure and electrical properties of K0.5Na0.5NbO3-LiSbO3 lead-free piezoceramics [J]. Mater Sci Eng B,2011,176(18):1463-1466.
    [164]Ruzhong Zuo, Danya Lv, Jian Fu, et al. Phase transition and electrical properties of lead free (Na0.5K0.5)NbO3-BiAlO3 ceramics [J]. J Alloy Compd,2009, 476(1-2):836-839.
    [165]Peng Fu, Zhijun Xu, Ruiqing Chu, et al. Structure and electrical properties of (Bi0.5Na0.5)0.94Ba0.06TiO3-Bi0.5(Na0.82K0.18)0.5TiO3-BiAlO3 lead free piezoelectric ceramics [J]. Mater Chem Phys,2013,138(1):140-145.
    [166]Gao Feng, Hong Rongzi, Liu Jiaji, et al. Phase formation and characterization of high Curie temperature xBiYbO3-(1-x)PbTiO3 piezoelectric ceramics [J]. J Eur Ceram Soc,2009,29(9):1687-1693.
    [167]Xiaoxing Wang, Helen Lai-Wa Chan, Chung-Loong Choy. (Bi1/2Na1/2)TiO3-Ba(Cu1/2W1/2)O3 Lead-Free Piezoelectric Ceramics [J]. J Am Ceram. Soc,2003,86(1.0):1809-1811.
    [168]江向平,卫巍,陈超,等.K0.5Na0.5NbO3-BaCu0.5W0.5O3无铅压电陶瓷的结构与性能[J].硅酸盐学报,2011,39(7):1155-1159.
    [169]金维芳.电介质物理学[M].西安:西安交通大学出版社,1997.
    [170]Nader M H. Lead-free piezoelectric ceramics and transducers in potassium sodium niobate-solid solution system [D]. New jersey: The State University of New Jersey,2007.
    [171]Tanaka M, Makino Y. Recrystallizing processes and dielectric properties in BaTiO3-SiO2 glass system [J]. Jpn J Appl Phys,1985,24(2):984-986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700