MRAlO_4(M=Sr,Ca;R=La,Nd,Sm,Y)微波介质陶瓷的基础问题及其改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统地研究了属于14/mmm空间群的MRAlO_4(M=Sr,Ca;R=La,Nd,Sm,Y)基微波介质陶瓷的制备、结构、微波介电性能及其随成分与结构变化的规律,并基于上述规律对CaSmAlO_4基陶瓷进行了改性,取得如下主要结论与成果:
     建立了一套包括开腔法和闭腔法的微波介电性能的测量评价系统。对复介电常数的数值计算的算法进行了改进,大幅度提高了计算效率,从而间接地提高了计算精度,并利用改进算法拓展了闭腔法的应用范围。
     通过XRD全谱拟合对MRAlO_4(M=Sr,Ca;R=La,Nd,Sm,Y)陶瓷的晶体结构进行精修。AlO_6八面体和(M,R)P_9十二面体在c轴方向分别受到强烈拉伸和强烈压缩,而在ab平面内的情况则正好相反。层间尺寸失配和层间极化是造成多面体畸变的两个主要原因,它们可以分别用结构许容因子和氧八面体畸变程度(或者(M,R)O_9中心阳离子与O(2a)原子面的距离)来衡量。随着结构许容因子的减小,(M,R)O。的畸变加剧,而AlO_6的畸变基本保持不变。根据键价理论的分析,SrYAlO_4的不稳定性和CaLaAlO_4的亚稳定性分别是由共同占据A位的两种阳离子的离子半径相差太大和离子价态相差太大造成的。
     为了从极性声子模的角度理解MRAlO_4(M=Sr,Ca;R=La,Nd,Sm,Y)陶瓷的微波介电响应的本质,测量了MRAlO_4陶瓷50~4000cm~(-1)范围内的红外反射光谱,利用K-K关系、经典谐振子模型对红外数据进行分析,并将红外数据外推到微波频段以估计本征微波介电损耗。(M,R)-AlO_6沿着ab平面的弯曲振动模和沿着c轴的伸缩振动模是对微波介电常数和介电损耗起主要贡献的两个模式。(M,R)O_9十二面体的畸变极大地影响了这两个模式的色散参数,从而决定了极化率和本证损耗,这就是MRAlO_4实测的极化率大幅度偏离氧化物加和法则得到的预测值以及MRAlO_4的Qf计算值随着结构许容因子的减小而减小的原因。减小本征介电损耗的关键是减小(M,R)O_9十二面体的畸变。Qf计算值大大高于实测值,表明通过优化微结构还能大幅度减小非本征损耗。
     通过改变CaO、Sm_2O_3和Al_2O_3的配比,研究了CaSmAlO_4基陶瓷的相组成及其对微结构和微波介电性能的影响。在(2+2x)CaO~(1-x)Sm_2O_3~Al_2O_3(x=-0.10,-0.05,0,0.05,0.10,0.20)陶瓷中,当x>0时检测到Ca_3Al_2O_6和CaO第二相,而当x≤0时则是SmAlO_3和Sm_2O_3第二相。在(2+2x)CaO·Sm_2O_3·Al_2O_3(x=-0.02,-0.01,0,0.02,0.04)陶瓷中,当x>0时检测到CaSmAl_3O_7、CaO和Sm_2O_3第二相,而当x≤0时,检测到SmAlO_3第二相。Ca_3Al_2O_6和SmAlO_3第二相会大幅度降低体系的Qf值,而CaSmAl_3O_7、CaO和Sm_2O_3第二相对体系的Qf值的不利影响很小甚至有利于Qf值的提高。在(2+2x)CaO·Sm_2O_3·Al_2O_3(x=0.02,0.03,0.04)陶瓷中获得了优异的微波介电性能:ε_r=19,Qf=120,000~125,300GHz,τ_f=-10~-9ppm/℃。
     通过Ca/Ti协同置换对CaSmAlO_4进行改性,得到了Ca_(1+x)Sm_(1-x)Al_(1-x)Ti_xO_4(0≤x≤0.4)陶瓷。对于Ca_(1+x)Sm_(1-x)Al_(1-x)Ti_xO_4主相而言,随着x的增大,晶胞参数a和c分别线性地增大和减小;(Al,Ti)O_6八面体的畸变略有减小,而(M,R)O_9十二面体的畸变逐渐加大,后者是晶胞参数c减小的原因。Ca_(1+x)Sm_(1-x)Al_(1-x)Ti_xO_4陶瓷具有良好的微波介电性能,尤其是当0.06≤x≤0.2时(ε_r≈20,Qf=96,500~118,700GHz,τ_f=-8~2ppm/℃)。当x=0时检测到了少量的SmAlO_3第二相,而当x≥0.15时检测到了微量的CaTiO_3第二相;在x=0和0.02成分点1500℃烧结的样品中观察到晶粒的异常长大。抑制这些微结构的产生有助于改善体系的微波介电性能。适当加入过量的CaO,Ca_(1+x)Sm_(1-x)Al_(1-x)Ti_xO_4基陶瓷的微波介电性能得到进一步改善,当x=0.15时,实现了极其优异的微波介电性能(ε_r=20.2,Qf=100,000GHz和τ_f=0.5 ppm/℃)。
Synthesis,structures,and microwave dielectric properties of MRAlO_4-based(M=Ca, Sr;R=La,Nd,Sm,Y) ceramics with I4/mmm space group were systermatically investigated together with their property-structure relationship,and based on these findings,the modification of microwave dielectric properties was carried out for CaSmAlO_4 ceramics through structure tailoring and microstructure control.The following primary findings and/or achiements were obtained:
     An evaluation system involving the open cavity method and the closed cavity method was built up to characterize the microwave dielectric properties with high accurately.An innovative algorithm for numerical calculation of complex permittivity was developed,and the computational efficiency was improved greatly.With the algorithm,the application scope of the close cavity method was significantly extended.
     Crystal structure refinements were carried out for MRAlO_4 ceramics by Rietveld method.Along the c axis,AlO_6 octahedra and(M,R)O_9 dodecahedra were heavily stretched and compressed,respectively,while within the ab plane,the situation was reversed.The interlayer size mismatch and the interlayer electric polarization were the primary reasons for these distortions,and they could be evaluated with the tolerance factor and the deformation degree of octahedron(or the distance from(M,R) cation to O(2a) atomic plane),respectively.As the tolerance factor decreased,the distortion of AlO_6 octahedra kept nearly unchanged,while that of(M,R)O_9 increased.Based on the analysis by the bond valence method,the instability of SrYAlO_4 and the metastability of CaLaAlO_4 were attributed to large differences of ionic radius and of apparent bond valence between M and R cations,respectively.
     To understand the dielectric nature of MRAlO_4 ceramics in terms of phonon modes,Fourier transform infrared reflectivity spectra in the range of 50-4000 cm~(-1) were measured and evaluated by means of K-K ananlysis and classical oscillator fit.The data were extrapolated below the measured frequency range to estimate the intrinsic microwave losses.The bending and stretching vibration modes of(M,R)-AlO_6 gave primary contributions to the microwave complex permittivity,therefore the distortion of (M,R)O_9 dodecahedra greatly affected the dispersion parameters of these two modes and consequently dominated polarizabilities and intrinsic dielectric losses of MRAlO_4. This could explain the great deviation of measured polarizabilities from those predicted by the oxide additivity law and the variation of calculated Qf values with the tolerance factor.To minimize the intrinsic dielectric loss,it was the keypoint to reduce the distortion of(M,R)O_9 dodecahedra.Moreover,the fact that the calculated Qf values were much higher than the measured ones suggested a great opportunity to improve Qf through optimizing the microstructures.
     By changing molar ratios among CaO,Sm_2O_3,and Al_2O_3,the effects of secondary phases on mcirostructures and microwave dielectric properties were investigated for CaSmAlO_4-based ceramics.In(2+2x)CaO·(1-x)Sm_2O_3·Al_2O_3(x=-0.10,-0.05,0,0.05, 0.10,0.20)ceramics,Ca_3Al_2O_6 and CaO secondary phases were observed at x>0,while SmAlO_3 and Sm_2O_3 secondary phases were observed at x≤0.In (2+2x)CaO·Sm_2O_3·Al_2O_3(x=-0.02,-0.01,0,0.02,0.04) ceramics,CaSmAl_3O_7,CaO, and Sm_2O_3 secondary phases were observed at x>0,while SmAlO_3 secondary phase was observed at x≤0.The secondary phases Ca_3Al_2O_6 and SmAlO_3 decreased the Qf values greatly,whereas CaSmAl_3O_7,CaO and Sm_2O_3 had much weaker minus effects on Qf values.Good microwave dielectric properties were achieved in (2+2x)CaO·Sm_2O_3·Al_2O_3(x=0.02,0.03,0.04) ceramics:ε_r≈19,Qf =120,000~125,300 GHz,τ_f=-10~-9ppm/℃.
     Modification of CaSmAlO_4 was performed by cosubstitution of Ca on A site and Ti on B site,and Ca_(1+x)Sm_(1-x)Al_(1-x)Ti_xO_4(0≤x≤0.4) ceramics were prepared and characterized.For Ca_(1+x)Sm_(1-x)Al_(1-x)Ti_xO_4 phases,as x increased,lattice parameter a increased linearly whereas lattice parameter c decreased linearly;the distortion of (Al,Ti)O_6 octahedra reduced slightly,whereas(M,R)O_9 dodecahedra were further compressed along the c axis,and this was responsible for the decrease in lattice parameter c.Ca_(1+x)Sm_(1-x)Al_(1-x)Ti_xO_4 ceramics showed very good microwave dielectric properties,especially when 0.06≤x≤0.2(ε_r≈20,Qf=96,500~118,700GHz,andτ_f=-8~2 ppm/℃).SmAlO_3 secondary phase was detected at x=0,and trace amount of CaTiO_3 secondary phase was detected at x≥0.15;abnormal grain growth was observed in samples with x=0,0.02 and sintering temperature of 1500℃. Suppression of these microstructures would help Ca_(1+x)Sm_(1+x)Al_(1-x)Ti_xO_4 ceramics maintain high Qf values.With certain amount of excessive CaO in composition, microwave dielectric properties of Ca_(1+x)Sm_(1-x)Al_(1-x)Ti_xO_4-based ceramics were further improved and excellent microwave dielectric properties(ε_r=20.2,Qf=100,000GH,τ_f=0.5 ppm/℃) were achieved at x=0.15.
引文
1 T.A.Vanderah,"Talking ceramics",Science,298(2002) 1182-1184.
    2 S.J.Fiedziuszko,I.C.Hunter,T.Itoh,Y.Kobayashi,T.Nishikawa,S.N.Stitzer,and K.Wakino,"Dielectric materials,devices,and circuits",IEEE Trans.Microw.Theory Tech.,50(2002) 706-720.
    3 D.Crnickshank,"1-2 GHz dielectrics and ferrites:overview and perspectives",J.Eur.Ceram.Soc.,23(2003) 2721-2726.
    4 S.J.Fiedziuszko and S.Holme,"Dielectric resonators raise your high-Q",IEEE Microw.Mag.,2(2001) 51-60.
    5 R.D.Richtmyer,"Dielectric resonators",J.Appl.Phys.,10(1939) 391-398.
    6 A.Okaya,"The rutile microwave resonator",Proc.IRE.,48(1960) 1921.
    7 A.Okaya and L.F.Barash,"The dielectric microwave resonator",Proc.IRE,50(1962)2081-2092.
    8 S.B.Cohn,"Microwave bandpass filters containing high-Q dielectric resonators",IEEE Trans.Microw.Theory Tech.,16(1968) 218-227.
    9 D.J.Masse,R.A.Pucel,D.W.Readey,E.A.Maguire,and C.P.Hartwig,"A new low-loss high-k temperature-compensated dielectric for microwave applications",Proc.IEEE,59(1971) 1628-1629.
    10 H.M.O'Bryan,J.Thomson,J.K.Plourde,"A new BaO-TiO_2 compound with temperature stable high permittivity and low microwave loss",J.Am.Ceram.Soc.,57(1974) 450-453.
    11 J.K.Plourde,D.F.Linn,H.M.O'Bryan,and J.Thomson,"Ba_2Ti_9O_(20) as a microwave dielectric resonator",J.Am.Ceram.Soc.,58(1975) 418-420.
    12 I.M.Reaney and D.Iddles,"Microwave dielectric ceramics for resonators and filters in mobile phone networks",J.Am.Ceram Soc.,89(2006) 2063-2072.
    13 秦霓,Ba_(6-3x)Ln_(8+2x)Ti_(18)O_(54)基微波介质陶瓷的改性及若干基础问题,博士学位论文,杭州,浙江大学,2006,12。
    14 Y.Higuchi and H.Tamura,"Recent progress on the dielectric properties of dielectric resonator materials with their applications from microwave to optical frequencies",J.Eur.Ceram.Soc.,23(2003) 2683-2688.
    15 M.T.Sebastian,A.K.Axelsson,and N.M.N.Alford,"List of microwave dielectric resonator materials and their properties",London South Bank University-Physical Electronics and Materials group,URL http://www.lsbu.ac.uk/dielectric-materials/.
    16 J.D.Breeze,X.Aupi,and N.M.N.Alford,"Ultralow loss polycrystalline alumina",Appl.Phys Lett.,81(2002) 5021-5023.
    17 J.Breeze,S.J.Penn,M.Poole,and N.M.N.Alford,"Layered Al_2O_3-TiO_2 composite dielectric resonators",Elect.Lett.,36(2000) 883-884.
    18 H.Ohsato,T.Tsunooka,A.Kan,Y.Ohishi,Y.Miyauchi,Y.Tohdo,T.Okawa,K.Kakimoto,and H.Ogawa,"Microwave-millimeterwave dielectric materials",Key Eng.Mater.,269(2004) 195-198.
    19 H.Ogawa,A.Kan,S.Ishiwara,and Y.Higashida,"Crystal structure of corundum type Mg_4(Nb_(2-x)Ta_x)O_9 microwave dielectric ceramics with low dielectric loss",J.Eur.Ceram.Soc.,23(2003) 2485-2488.
    20 R.Freer,"Microwave dielectric ceramics-an overview",Silicates Industriels,9-10(1993)191-194.
    21 C.L.Huang,C.L.Pan,and J.F.Hsu,"Dielectric properties of(1-x)(Mg_(0.95)Co_(0.05))TiO_3-xCaTiO_(3))ceramic system at microwave frequency",Mater.Res.Bull.,37(2002) 2483-2490.
    22 A.Kan,H.Ogawa,H.Ohsato,and S.Ishihara,"Crystal structure of Y_2Ba(Cu_(1-x)Zn_xO_5(x=0 to 1)solid solutions",Mater Lett.,49(2001) 34-37.
    23 S.Y.Cho,I.T.Kim,and K.S.Hong,"Microwave dielectric properties and applications of rare-earth aluminates",J.Mater Res.,14(1999) 114-119.
    24 X.M.Chen,D.Liu,R.Z.Hou,X.Hu,and X.Q.Liu,"Microstructure and microwave dielectric characteristics of Ca(Zn_(1/3)Nb_(2/3))O_3 ceramics",J.Am.Ceram.Soc.,87(2004) 2208-2212."
    25 J.Takahashi,K.Kageyama,and K Kodaira,"Microwave dielectric properties of lanthanide titanate ceramics",Jpn.J.Appl.Phys.,32(1993) 4327-4331.
    26 P.W.Bijumon,P.Mohanan,and M.T.Sebastian,"High dielectric constant low loss microwave dielectric ceramics in the Ca_5Nb_(2-x)Ta_x TiO_(12) system",Mater.Lett.,57(2003) 1380-1384.
    27 I.N.Jawahar,M.I.Santha,M.T.Sebastan,and P.Mohanan,"Microwave dielectric properties of MO-La_2O_3-TiO_2(M=Ca,Sr,Ba) ceramics",J.Mater.Res.,17(2002) 3084-3088.
    28 T.Okawa,K.Kiuchi,H.Okabe,and H.Ohsato,"Microwave dielectric properties of Ba_nLa_4Ti_(3+n)O_(12+3n) homologous series",Jpn.J.Appl.Phys.,40(2001) 5779-5782.
    29 A.Borisevich,and P.K.Davies,"Microwave dielectric properties of Li_(1+x-y)M_(1-x-3y)Ti_(x+4y)O_3(M=Nb~(5+),Ta~(5+)) solid solutions",J.Eur.Ceram.Soc.,21(2001) 1719-1722.
    30 H.F.Cheng,Y.H.Chen,Y.M.Tsau,P.Kuzel,J.Petzelt,Y.H.Zhu,and I.N.Lin,"Dielectric properties of Bi_2(Zn_(1/3)Nb_(2/3))_2O_7 electroceramics and thin films",J.Eur.Ceram.Soc.,21(2001)1605-1608.
    31 Y.C.Chen,and C.L.Huang,"Microwave dielectric properties of Ba_(2-x)Sm_(4+2/3x)Ti_9O_(26) ceramics with zero temperature coefficient",Mater Sci.Eng.A,334(2002) 250-256.
    32 H.Ohsato,A.Komura,Y.Takagi,S.Nishigai,and F.Okuda,"Microwave dielectric properties and sintering of Ba_(6-3x)R_(8+2x)Ti_(18)O_(54)(R=Sm,x=2/3) solid solution with added rutile",Jpn.J.Appl.Phys.,37(1998) 5357-5359.
    33 C.Hoffmann and R.Wasser,"Hot-forging of Ba_(6-3x)RE_(8+2x)Ti_(18)O_(54) ceramics(RE=La,Ce,Nd,Sm)",Ferroelectrics,201(1997) 127-135.
    34 I.S.Kim,W.H.Jung,Y.Inaguma,T.Nakamura,and M.Itoh,"Dielectric properties of A-site deficient perovskite-type lanthanum-calcium-titanium solid solution system[(1-x)La_(2/3)TiO_3-xCaTiO_3]",Mater.Res.Bull.,30(1995) 307-316.
    35 C.L.Huang,and M.H.Weng,"The effect of PbO loss on microwave dielectric properties of (Pb,Ca)(Zr,Ti)O_3 ceramics",Mater.Res.Bull.,36(1992) 3144-3147.
    36 R.Ubic,I.M.Reaney,and W.E.Lee,"Microwave dielectric solid-solution phase in system BaO-Ln_2O_3-TiO_2(Ln=lanthanide cation)",Intern.Mater.Rev.,43(1998) 205-219.
    37 D.W.Kim,B.Park,J.H.Chung,and K.S.Hong,"Mixture behavior and microwave dielectric properties in the low-fired TiO_2-CuO system",Jpn.J.Appl.Phys.,39(2000) 2696-2700.
    38 A.Templeton,X.Wang,S.J.Penn,S.J.Webb,L.E Cohn,and N.M.N.Alford,"Microwave dielectric loss of titanium oxide",J.Am.Ceram.Soc.,83(2000) 95-100.
    39 K.Ezaki,Y.Baba,H.Takahashi,K.Shibata,and S.Nakano,"Microwave dielectric properties of CaO-Li_2O-Ln_2O_3-TiO_2 ceramics",Jpn.J.Appl.Phys.,32(1993)4319-4322.
    40 C.L Huang,J.T.Tsai,and Y.B.Chen,"Dielectric properties of(l-y)Ca_(1-x)La_(2x/3)TiO_(3-y)-(Li,Nd)_(1/2)TiO_3 ceramic system at microwave frequency",Mater.Res.Bull.,36(2001) 547-556.
    41 P.L.Wise,I.M.Reaney,W.E.Lee,T.J.Price,D.M.Iddles,and D.S.Cannell,"Structure-microwave property relations of Ca and Sr titanates",J.Eur Ceram.Soc.,21(2001)2629-2632.
    42 W.S.Kim,E.S.Kim and K.H ~oon,"Effects of Sm~(3+) substitution on dielectric properties of Ca_(1-x)Sm_(2x/3)TiO_3 ceramics at microwave frequencies," J.Am.Ceram.Soc.,82(1999) 2111-2115.
    43 N.Ichinose and K.Mutoh,"Microwave dielectric properties in the(1-x)(Na_(1/2)La_(1/2))TiO_3-x(Li_(1/2)Sm_(1/2))TiO_3ceramic system",J.Eur.Ceram.Soc.,23(2003) 2455-2459.
    44 殷之文,电介质物理学,北京:科学出版社,2003。
    45 ‘钟维烈,铁电体物理学,北京:科学出版社,2000。
    46 M.P.McNeal,S.J.Jang and R.E.Newnham,"The effect of grain and particle size on the microwave properties of barium titanate(BaTiO_3)",J.Appl.Phys.,83(1998) 3288-3297.
    47 金维芳,电介质物理学,北京:机械工业出版社,1995。
    48.Roberts,"Polarizabilities of ions in perovskite-type crystals",Phys.Rev.,81(1951) 865-868.
    49 R.D.Shannon,"Dielectric polarizabilities of ions in oxides and fluorides",J.Appl.Phys.,73(1993) 348-366.
    50 V.J.Fratello and C.D.Brandle,"Calculation of dielectric polarizabilities of perovsikte substrate materials for high-temperature superconductors",J.Mater Res.,9(1994) 2554-2560.
    51 V.M.Ferreira,J.L.Baptista,S.Kamba,and J.Petzelt,"Dielectric spectroscopy of MgTiO_3-based ceramics in the 10~9-10~(14) Hz region," J.Mater Sci.,28(1993) 5894-5900.
    52 S.Kawashima,M.Nishida,I.Ueda,and H.Ouchi,"Ba(Zn_(1/3)Ta_(2/3))O_3 ceramics with low dielectric loss at microwave frequencies," J.Am.Ceram.Soc.,66(1983) 421-423.
    53 F.Galasso and J.Pyle,"Ordering in compounds of the A(B_(0.33)Ta_(0.67))O_3type," Inorg.Chem.,2(1963) 482-484.
    54 I.M.Reaney,P.L.Wise,I.Qazi,C.A.Miller,T.J.Price,D.S.Cannell,D.M.Iddles,M.J.Rosseinsky,S.M.Moussa,M.Biermger,and L.D.Noailles,"Ordering and quality factor in 0.95BaZn_(1/3)Ta_(2/3)O_3-0.05SrGa_(1/2)Ta_(1/2)O_3 production resonators," J.Eur Ceram.Soc.,23(2003)3021-3034.
    55 I.M.Reaney,I.Qazi,and W.E.Lee,"Order-disorder behaviour in Ba(Zn_(1/3)Ta_(2/3))O_3," J.Appl.Phys.,88(2000) 6708-6714.
    56 S.B.Desu and H.M.O'Bryan,"Microwave loss quality of Ba(Zn_(1/3)Ta_(2/3))O_3 ceramics," J.Am.Ceram.Soc.,68(1985) 546-551.
    57 T.Negas,G.Yeager,S.Bell,N.Coates,and I.Minis,"BaTi4O_9/Ba_2Ti_9O_(20)-based ceramics ressurected for modern microwave applications," Am.Ceram.Soc.Bull.,72(1993) 80-89.
    58 J.M.Herbert,Ceramic Dielectrics and Capacitors.Gordon and Breach,London,1985.
    59 R.J.D.Tilley,Defect Chemistry and its Applications.Blackie,Glasgow,1986.
    60 I.M.Reaney,P.L.Wise,R.Ubic,J.Breeze,N.M.N.Alford,D.Iddles,D.Cannell,and T.Price,"On the temperature coefficient of resonant frequency in microwave dielectrics," Philos.Mag.,81(2001) 501-510.
    61 L.M.Rodriguez Martinez and J.P.Attfield,"Cation disorder and size effects in magnetoresistive manganese oxide perovskites," Phys.Rev.B,54(1996) 15622-15625.
    62 I.M.Reaney,J.Petzelt,V.V.Voitsekhovskii,F.Chu,and N.Setter,"B-site order and infrared reflectivity in A(B'B")O_3 complex perovskite ceramics," J.App.Phys.,76(1994) 2086-2092.
    63 H.Zheng,I.M.Reaney,G.D.Gyorgyfalva,R.Ubic,J.Yarwood,M.P.Seabra,and V.M.Ferreira,"Raman spectroscopy of CaTiO_3-based perovskite solid solutions," J.Mater Res.,19(2004) 488-495.
    64 S.J.Webb,J.Breeze,R.1.Scott.D.S.Cannell,D.M.Iddles,and N.M.N.Alford,"Raman spectroscopic study of gallium-doped Ba(Zn_(1/3)Ta_(2/3))O_3," J.Am.Ceram.Soc.,85(2002) 1753-1756.
    65 M.P.Seabra,V.M.Ferreira,H.Zheng,and I.M.Reaney,"'Structure property relations in La(Mg_(1/2)Ti_(1/2))O_3-based solid solutions," J.Appl.Phys.,97(2005) 033525.
    66 E.A.Nenasheva,L.P.Mudroliubova,and N.F.Kartenko,"Microwave dielectric properties of ceramics based on CaTiO_3-LnMO_3 system(Ln-La,Nd;M-Al,Ga)," J.Eur.Ceram.Soc.,23(2003)2443-2448.
    67 A.J.Bosman and E.E.Havinga,"Temperature dependence of dielectric constants of cubic ionic compounds",Phys.Rev.129(1963) 1593-1600.
    68 P.J.Harrop,"Temperature Coefficients of Capacitance of Solids",J.Mater.Sci.,4(1969)370-374.
    69 E.L.Colla,I.M.Reaney,and N.Setter,"Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity," J.Appl.Phys.,74(1993) 3414-3425.
    70 I.M.Reaney,E.L.Colla,and N.Setter,"Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor," Jpn.J.Appl.Phys.,33(1994)3984-3990.
    71 R.E.Schaak and T.E.Mallouk,"Perovskites by design:a toolbox of solid-state reactions",Chem.Mater.,14(2002) 1455-1471.
    72 J.G.Bednorz and K.A.Muller,"possible high-Tc superconductivity in the Ba-La-Cu-O system",Z.Phys.B,64(1986) 189-193.
    73 p.Ganguly and C.N.R.Rao,"Crystal-chemistry and magnetic-properties of layered metal-oxides possessing the K_2NiF_4 or related structures",J.Solid State Chem.,53(1984) 193-216.
    74 C.N.R.Rao,P.Ganguly,K.K.Singh,and R.A.M.Ram,"A comparative-study of the magnetic and electrical-properties of perovskite oxides and the corresponding two-dimensional oxides of K_2NiF_4",J.SolidState Chem.,72(1988) 14-23.
    75 R.Brown,V.Pendrick,D.Kalokitis,and B.H.T.Chai,"Low-loss substrate for microwave application of high-temperature superconductor films",Appl.Phys.Lett.,57(1990) 1351-1353.
    76 R.Sobolewski,P.Gierlowski,W.Kula,S.Zarembinski,S.J.Lewandowski,M.Berkowski,A.Pajaczkowska,B.P.Gorshunov,D.B.Lyudmirski,and O.I.Sirotinski,"High-T_c thin films on low microwave loss alkaline-rare-earth-alurninate crystals",IEEE Trans.Magn.,27(1991) 876-879.
    77 R.D.Shannon,R.A.Oswald,J.B.Parise,B.H.T.Chai,P.Byszewski,A.Pajaczkowska,P.Sobolewski,"Dielectric constants and crystal structures of CaYAlO_4,CaNdAlO_4,and SrLaAlO_4,and deviations from the oxide additivity rule",J.Solid State Chem.,98(1992) 90-98.
    78 I.Sosnowska,R.Przeenioslo,A.Pajaczkowska,and P.Fischer,"Neutron-diffraction studies of the crystal structure of CaNdAlO_4",Physica B,213&214(1995) 417-419.
    79 A.Pajaczkowska and A.Gloubokov,"Synthesis,growth and characterization of tetragonal ABCO_4 crystals",Prog.Co,sial Growth Charact.,36(1998) 123-162.
    80 A.Magrez,M.Caldes,O.Joubert,and M.Ganne,"A new 'Chimie Douce' approach to the synthesis of Sr_(1-x)La_(1+x)Al_(1-x)Mg_xO_4 with K_2NiF_4 structure type",Solid State lonics,151(2002)365-370.
    81 X.Q.Liu,X.M.Chen and Y.Xiao,"Preparation and characterization of SrLaAlO_4 microwave dielectric ceramics",Mater Sci.Eng.B,103(2003) 276-280.
    82 X.M.Chen,Y.Xiao,X.Q.Liu and X.Hu,"SrLnAlO_4(Ln=Nd and Sm) microwave dielectric ceramics",J.Electroceram.,10(2003) 111-115.
    83 y.Xiao,X.M.Chen and X.Q.Liu,"Microstructures and microwave dielectric characteristics of CaReAlO_4(Re=Nd,Sm and Y) ceramics with tetragonal K_2NiF_4 structure",J.Am.Ceram.Soc.,87(2004) 2143-2146.
    84 J.H.Haeni,C.D.Theis,D.G.Schlorn,W.Tian,X.Q.Pan,H.Chang,I.Takeuchi,and X.D.Xiang,"Epitaxial growth of the first five members of the Sr_(n+1)Ti_nO_(3n+1) Ruddlesden-Popper homologous series",Appl.Phys.Lett.,78(2001)3292-3294.
    85 C.M.Jantzen and R.R.Neurgaonkar,"Solid state reactions in the system Al_2O_3-Nd_2O_3-CaO:a system pertinent to radioactive waste disposal",Mat.Res.Bull.,16(1981) 519-524.
    86 V.F.Popova,E.A.Tugova,I.A.Zvereva,and V.V.Gusarov,"Phase equilibria in the LaAlO_3-LaSrAlO_4 system",Glass Phys.Chem.,30(2004) 564-567.
    87 R.Uecker,P.Reiche,S.Ganschow,P.M.Wilde,D.C.Uecker,H.Worzala,and D.Schultze,"Growth conditions and composition of SrPrGaO_4 single crystals",J.Cryst.l Growth.174(1997)320-323.
    88 R.Uecker,P.Reiche,S.Ganschow,D.C.Uecker,and D.Schultze,"Investigation of crystal growth of SrPrGaO_4 and SrLaGaO_4",Acta Phys.Pol.A,92(1997) 23-34.
    89 S.Hontsu,J.Ishii,T.Kawai,and S.Kawai,"LaSrGaO_4 substrate gives oriented crystalline YBa_2Cu_3O_(7-y) films",Appl.Phys.Lett.,59(1991) 2886-2888.
    90 J.Krupka,K.Derzakowski,M.Tobar,J.Hartnett,and R.Geyer,"Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures",Meas.Sci.Tech,10(1999) 387-392.
    91 A.Benabbas,"Review of polyhedral distortions as a multi-scale minimization of the electric polarization and their correlations with physical properties",Acta Cryst.B,62(2006) 9-15.
    92 R.D.Shannon."Revised effective ionic radii and systematic studies of interatomic distances in Halides and chalcogenides",Acta Cryst.A,32(1976) 751-767.
    93 J.Krupka and C.Weil,"Recent advances in metrology for the electromagnetic characterization of materials at microwave frequencies",Conference MIKON '98,May 20-22,1998,Cracow,Poland,243-253.
    94 小林禧夫,介质谐振器滤波器入门讲座,技术资料,1990。
    95 J.Baker-Jarvis,R.G.Geyer,Jr.J.H.Grosvenor,M.D.Janezic,C.A.Jones,B.Riddle,C.M.Weil, and J.Krupka,"Dielectric characterization of low-loss materials a comparison of techniques",IEEE Trans.Dielectr Electr.Insul.,5(1998)571-577.
    96 倪尔瑚,介质谐振器的微波测量,北京:科学出版社,2006。
    97 J.Krupka,K.Derzakowski,A.Abramowicz,M.E.Tobar,and R.G.Geyer,"Use of whispering-gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials",IEEE Trans.Microw.Theory Tech.,47(1999) 752-759.
    98 D.Kajfez,P.Guillon,Dielectric Resonator,Noble Publishing Corp.,2~(nd) Edition,(1998).
    99 R.F.Harrington,Time-Harmonic Electromagnetic Fields,McGraw-Hill,(1961) 321-326.
    100 B.W.Hakki and P.D.Coleman,"A dielectric resonator method of measuring inductive capacities in the millimeter range",IRE Trans.Microw.Theory Tech.,8(1960) 402-410.
    101 S.B.Cohn and K.C.Kelly,"Microwave measurement of high dielectric constant materials",IEEE Trans.Microw.Theory Tech.,8(1966) 406-410.
    102 W.E.Courtney,"Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators",IEEE Trans.Microw.Theory Tech.,18(1970) 476-485.
    103 y.Kobayashi and S.Tanaka,"Resonant modes of a dielectric rod resonator short-curcuited at both ends by parallel conducting plates",IEEE Trans.Microw.Theory Tech.,28(1980) 1077-1085.
    104 Y.Kobayashi,T.Aoki,and Y.Kabe,"Influence of conductor shields on the Q-factors of a TE dielectric resonator",IEEE Trans.Microw.Theory Tech.,33(1985)1361-1366.
    105 Y.Kobayashi and M.Katoh,"Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method",IEEE Trans.Microw.Theory Tech.,33(1985)586-592.
    106 W.E.Courtney,"Complex permittivity of GaAs and CdTe at microwave frequencies",IEEE Trans.Microw.Theory Tech.,25(1977) 697-700.
    107 X.C.Fan,X.M.Chen,and X.Q.Liu,"Complex-permittivity measurement on high-Q materials via combined numerical approaches",IEEE Trans.Microw.Theory Tech.,53(2005) 3130-3134.
    108 D.Kajfez and E.J.Hwan,"Q-factor measurement with network analyzer",IEEE Trans.Microw.Theory Tech.,32(1984) 666-670.
    109 D.Kajfez,"Linear fractional curve fitting for measurement of high Q factor",IEEE Trans.Microw.Theory Tech.,42(1994) 1149-1153.
    110 D.Kajfez,Q Factor,Vector Forum,Oxford,MS,(1994).
    111 D.Kajfez,S.Chebolu,M.R.Abdul-Gaffoor,and A.A.Kishk,"Uncertainty analysis of the transmission-type measurement of Q-factor",IEEE Trans.Microw.Theorv Tech.,47(1999)367-371.
    112 D.Kajfez,"Random and systematic uncertainties of reflection-type Q-factor measurement with network analyzer",IEEE Trans.Microw.Theory Tech.,51(2003) 512-519.
    113 http://www.sartorius_mechatronies.com/fileadmin/sartorius_pdf/BedAnltg/deutsch/YDK01_YDK 01-0D_YDK01LP.pdf.
    114 J.Rodriguez-Carvajal,"Recent developments of the program FULLPROF",Commission on Powder Diffraction(IUCr).Newsletter,26(2001) 12-19.
    115 M.M.Mao,X.C.Fan,and X.M.Chen,"Effects of composition tailoring on structure and microwave dielectric characteristics of SrSmAlO_4 ceramics",J.Eur.Ceram.Soc.,in press.
    116 I.D.Brown,"Chemical and steric constraints in inorganic solids",Acta Crystallogr B,48(1992)553-572.
    117 A.Sanches-Salinas,J.L.Garcia-Munoz,J.Rodriguez-Carvajal,R.Saez-Puche,and J.L.Martinez,"Structural characterization of R_2BaCuO_5(R= Y,Lu,Yb,Tm,Er,Ho,Dy,Gd,Eu and Sm) oxides by X-ray and neutron diffraction",J.Solid State Chem.,100(1992) 201-211.
    180.Müller,R.Roy,The Major Ternary Structural Families,Springer,Berlin,(1974).
    119 A.E.Lavat,E.J.Baran,"IR-spectroscopic behaviour of AA'BO_4 oxides belonging to the K_2NiF_4structural type",J.Alloys Compd.,368(2004) 130-134.
    120 I.Zvereva,L.Zueva,and J.Choisnet,"Metastability of the K_2NiF_4 type structure of the solid solution LaCa(Cr_xAl_(1-x))O_4(0≤x≤0.10)",J.Mater Sci.,30(1995) 3598-3602.
    121 A.Magrez,M.Cochet,O.Joubert,G.Louarn,M.Ganne,and O.Chauvet,"High internal stresses in Sr_(1-x)La_(1+x)Al_(1+x)Mg_xO_4 solid solution(0≤x≤0.7) characterized by infrared and Raman spectroscopies coupled with crystal structure refinement",Chem.Mater,13(2001) 3893-3898.
    122 L.Bellaiche,and D.Vanderbilt,"Electrostatic model of atomic ordering in complex perovskite alloys",Phys.Rev.Lett.,81(1998) 1318-1321.
    123 I.Zvereva,Yr.Smirnov,and J.Choisnet,"Demixion of the K_2NiF_4 type aluminate LaCaAlO_4:precursor role of the local ordering of lanthanum and calcium",Mater Chem.Phys.,60(1999)63-69.
    124 K.K.Singh,and P.Ganguly,"Infrared spectra of some oxides of K_2NiF_4 and related structures",Spectrochim Acta,40A(1984) 539-545.
    125 G.Bums,F.H.Dacol,and M.W.Shafer,"Raman measurement of materials with the K_2NiF_4structure",Solid State Commun.,62(1987) 687-689.
    126 E.T.Heyen,R.Liu,M.Cardona,S.Pinol,R.J.Melville,D.McK.Paul,E.Morán,and M.A.Alario-Franco,"Phonon anomalies and structural stability in the R_(2-x)Ce_xCuO_4 system (R=Gd,Sm,Nd,Pr)".Phys.Rev.B,43(1991) 2857-2865.
    127 S.Kambaa,P.Samoukhinaa,F.Kadleca,J.Pokorny,J.Petzelta,I.M.Reaney,and P.L.Wiseb,"Composition dependence of the lattice vibrations in Sr_(n+1)Ti_nO_(3n+1) Ruddlesden-Popper homologous series",J.Eur.Ceram.Soc.,23(2003) 2639-2645.
    128 C.J.Fennie,K.M.Rabe,"Structural and dielectric properties of Sr_2TiO_4 from first principles",Phys.Rev.B,68(2003) 184111.
    129 V.G.Hadjiev,M.Cardona,I.Ivanov,V.Popov,M.Gyulmezov,M.N.Iliev,M.Berkowski,"Optical phonons probe of the SrLaAIO4 crystal structure",J.Alloy Compd.,251(1997) 7-10.
    130 D.M.Egales,"Polar modes of lattice vibration and polaron coupling constants in rutile(TiO_2)",J.Phys.Chem.Solids,25(1964) 1243-1212.
    131 A.V.Hippel,J.Kalnajs and W.B.Westphal,"Protons,dipoles,and charge carrires in rutile",J.Phys.Chem.Solids,23(1962) 779-799.
    132 D.L.Rousseau,R.P.Bauman,and S.P.S.Porto,"Normal mode determination in crystals",J.Raman Spectrosc.,10(1981) 253-290.
    133 N.Ogita,M.Udagawa,K.Kojma,and K.Ohbayashi,"Infrared and Raman study of (La_(1-x)Sr_x)_2NiO_4 and La_2(Ni_(1-x)Cu_x)O_4",J.Phys.Soc.Jpn.,57(1988) 3932-3940.
    134 L.Pintschovius,J.M.Bassat,P.Odier,E Gervais,G.Chevrier,W.Reichardt,F.Gompf,"Lattice dynamics of La_2NiO_4",Phys.Rev.B,40(1989) 2229-2238.
    135 F.Gervais,"Electromagnetic Wave Phenomena in Matter",Infrared and Millimeter Waves,edited by K.J.Button,Actademic,New York,8(1983) 279-399.
    136 K.Wakino,M.Murata,and H.Tamura,"Far infrared reflection spectra of Ba(Zn,Ta)O_3-BaZrO_3dielectric resonator material",J.Am.Ceram Soc.,69(1986) 34-37.
    137 R.Zurmühlen,J.Petzelt,S.Kamba,V.V.Voitsekhovskii,E.Colla,and N.Setter,"Dielectric spectroscopy of Ba(B'_(1/2)B"_(1/2))O_3 complex perovskite ceramics:Correlations between ionic parameters and microwave dielectric properties.Ⅰ.Infrared reflectivity study(10~(12)-10~(14) Hz)",J.Appl.Phys.,77(1995) 5341-5350.
    138 D.W.Berreman and EC.Unterwald,"Ajusting poles and zeros of dielectric dispersion to fit reststrahlen of PrCl_3 and LaCl_3",Phys.Rev.,174(1968) 791-799.
    139 W.Gurevich and A.Tagantsev,"Intrinsic dielectric loss in crystals",Adv.Phys.,40(1991)719-767.
    140 R.Stolen and K.Dransfeld,"Far-infrared lattice absorption in alkali halide crystals",Phys.Rev.,16(1965) A1295-A1230.
    141 G.J.Coombs and R.A.Cowley,"Paraelectric,piezoelectric and pyroelectric crystals:Ⅰ.Dielectric properties",J.Phys.C:Solid State Phys.,6(1973) 121-142.
    142 W.H.Weber,C.R.Peters,B.M.Wanklyn,C.K.Chen,and B.E.Watts,"Raman investigation of the orthorhombic-tetragonal phase transition in La_(2-x)Sr_xCuO_4 superconductors",Solid State Commun.,68(1988) 61-65.
    143 W.Ryba-Romanowski,S.Golab,J.Hanuza,M.Maczka,and A.Pietraszko,"Optical study of CaNdAlO_4",J.Phys.Chem.Solids,52(1991) 1043-1049.
    141 K.P.Surendran,M.T.Sebastian,P.Mohanan,R.L.Moreira,and A.Dias,"Effect of nonstoichiometry on the structure and microwave dielectric properties of Ba(Mg_(0.33)Ta_(0.67))O_3",Chem.Mater,17(2005)142-151.
    145 H.Wu and P.K.Davies,"Influence of non-stoichiometry on the structure and properties of Ba(Zn_(1/3)Nb_(2/3))O_3 microwave dielectrics:Ⅱ.Compositional variations in pure BZN",J.Am.Ceram.Soc.,89(2006) 2250-2263.
    146 F.Azough,C.Leach,and R.Freer,"Effect of nonstoichiometry on the structure and microwave dielectric properties of Ba(Co_(1/3)Nb_(2/3))O_3 ceramics",J.Eur Ceram.Soc.,26(2006) 2877-2884.
    147 B.Jancar,M.Valant,and D.Suvorov,"Solid-state reactions occurring durmg the synthesis of CaTiO_3-NdAlO_3 perovskite solid solutions",Chem.Mater,16(2004) 1075-1082.
    148 K.X.Song,X.M.Chen,X.C.Fan,"Effects of Mg/Si ratio on microwave dielectric characteristics of forsterite ceramics",J.Am.Ceram.Soc.,90(2007) 1808-1811.
    149 W.S.Rasband,ImageJ,National Institutes of Health,Bethesda,Maryland,USA,http://rsb.info.nih.gov/ij/,(1997-2008).
    150 S.J.Penn,N.M.N.Alford,A.Templeton,X.R.Wang,M.S.Xu,M.Reece,and K.Schrapel,"Effect of porosity and grain size on the microwave dielectric properties of sintered alumina",J.Am.Ceram.Soc.,80(1997) 1885-1888.
    151 I.Zvereva,L.Zueva,F.Archaimbault,M.Crespin,J.CHoisnet,and J.Lecomte,"Crystallochemical magnetic and electrical properties of the K_2NiF_4 type dilute solid solution Y_(0.9)Ca_(1.1)Cr_yAl_(1-y)O_(4-δ)(y ≤0.10):evidence for a partial Cr~(3+)→Cr~(4+) oxidation",Mater Chem.Phys.,48(1997) 103-110.
    152 J.J.Wang,C.H.Hsu,C.L.Huang,and R.J.Lin,"Effect of CuO additives on sintering and microwave dielectric behaviors of 0.95Ba(Zn_(1/3)Nb_(2/3))O_(3-0.05)BaZrO_3 ceramics",Jpn.J.Appl.Phys.,44(2005) 8039-8042.
    153 C.F.Tseng,C.L.Huang,W.R.Yang,and C.H.Hsuw,"Dielectric characteristics of Nd(Zn_(1/2)Ti_(1/2))O_3 ceramics at microwave frequencies",J.Am.Ceram.Soc.,89(2006) 1465-1470.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700