生活垃圾焚烧炉渣与生活垃圾混合填埋的重金溶出行为及生态风险研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市土地资源的日益稀缺,焚烧技术在垃圾处理系统中的应用日益广泛,由此也产生了大量的生活垃圾焚烧炉渣。生活垃圾焚烧炉渣含有高浓度的重金属,使其在回用或填埋处置的过程中都存在一定的环境风险。为评估炉渣中的重金属污染,本研究在我国生活垃圾焚烧厂分布最多的浙江省选取了6个不同城市的典型生活垃圾焚烧厂进行炉渣取样,并分析了炉渣样品中重金属浓度和形态分布。根据重金属浓度和形态分析结果,选取Cu、Zn、Pb作为研究对象,结合炉渣的酸缓冲能力、重金属形态分布、pH-重金属溶出试验和Visual MINTEQ模型综合分析炉渣中Cu、Zn、Pb的溶出行为和溶出机理。根据溶出试验结果,进一步选择Cu和Zn作为研究对象,研究了风化预处理对炉渣中重金属形态分布和溶出行为的影响。基于以上结果,构建了三套模拟填埋场,动态探讨了不同比例炉渣与生活垃圾混合填埋对填埋场重金属释放行为及其生态风险的影响;并同时构建了两套模拟填埋场,探讨了渗滤液回灌对炉渣和生活垃圾混合填埋场的稳定化进程、重金属释放行为和生态风险的影响。主要结论为:
     (1)生活垃圾焚烧炉渣中含有高浓度的重金属,各重金属元素按照平均浓度从高到低依次为Zn>Mn>Cu>Pb>Cr>As>Ni>Co>Mo>Cd。其中,Zn、Mn、Cu、Pb和Cr是主要的金属元素,其平均含量均超过300mg/kg。形态分析的结果表明,炉渣中有一定比例的重金属以不稳定的可交换态和碳酸盐结合态的形式存在。据计算,1kg炉渣样品中平均有95.2mg的Cu、19.4mg的Pb和363.8mg的Zn以可交换态和碳酸盐结合态的形式存在,这些不稳定的重金属若完全溶出将对环境造成较大的影响。
     (2)在碱性环境下,炉渣中Cu、Zn、Pb的溶出水平较低;但当环境pH分别低于6.0、6.7和7.0时,炉渣中的Cu、Zn和Pb会大量溶出。而且,在酸性环境下,溶出的Cu、Zn和Pb具有更强的生物可利用性。炉渣中Cu和Zn的溶出受其形态的限制,而Pb的溶出则可能受到特殊矿物溶解平衡的控制,使其溶出率低于Cu和Zn。试验中,Cu和Zn的最高溶出率分别达到72.4%和45.0%,而Pb的最高溶出率仅为1.9%。由于炉渣具有较强的酸缓冲能力,单纯依靠酸性降雨很难使炉渣pH降至酸性从而使重金属大量溶出,因而一般在回用的过程中,炉渣对环境的影响不大。然而,当炉渣被置于含有大量有机酸的生活垃圾填埋场时,炉渣可能面临着较大的重金属溶出风险。
     (3)风化预处理改变了炉渣中Cu和Zn的形态分布。经过风化处理,炉渣中以可交换态、碳酸盐结合态和Fe-Mn氧化物结合态形式存在的Zn的比例分别由0.3%、17.1%、19.6%上升至0.7%、22.7%、36.7%;以有机物结合态形式存在的Zn的比例基本不变,而以残渣态形式存在的Zn的比例从55.1%下降至30.9%。同时,风化处理使炉渣中以有机物结合态形式存在的Cu的比例从68.7%下降至36.8%,以可交换态、碳酸盐结合态、Fe-Mn氧化物结合态和残渣态形式存在的Cu的比例分别从1.8%、2.5%、2.8%、24.1%上升至2.7%、3.7%、3.8%、53.7%。以可交换态、碳酸盐结合态和Fe-Mn氧化物结合态存在的Cu和Zn的比例升高表明,风化处理一定程度上提高了炉渣中Cu和Zn的迁移性。SPLP浸出试验结果表明,炉渣中Cu、Zn的溶出量随着风化处理的进行而有所降低。但在TCLP浸出试验中,炉渣中Cu、Zn的溶出量随着风化处理的进行有所升高。炉渣中Cu、Zn在SPLP浸出试验中溶出量的降低与风化处理使炉渣中无定形氢氧化铝含量的增加有关。但是在酸性的TCLP浸提液中,无定形氢氧化铝对金属的吸附能力受到抑制。由于风化处理提高了炉渣中Cu、Zn以可交换态、碳酸盐结合态、Fe-Mn氧化物结合态存在的比例,风化处理后,炉渣中的Cu和Zn在TCLP浸出试验中的溶出量有所升高。
     (4)炉渣与生活垃圾混合填埋对填埋场渗滤液中Cu浓度的影响不大,但对Zn浓度具有一定影响,其影响程度与填入炉渣的比例有关。填埋场中填入10%的炉渣会提高渗滤液中Zn的浓度,使填埋场Zn的环境释放量提高30%;填埋场填入20%的炉渣则由于填埋场的pH环境升高、反而使渗滤液中Zn的浓度有所降低。渗滤液中的Cu基本以有机物结合态的形式存在,炉渣填入填埋场不会对其形态产生较大影响。但是,炉渣的填入可以促使渗滤液中的Zn由小分子形态向大分子形态转化,降低其生物可利用性。
     填埋场运行初期,填入10%和20%的炉渣分别使渗滤液的EC50。值由530mmL/L下降至254mL/L和264mL/L,表明炉渣的填入增加了填埋场运行初期渗滤液的生态毒性。但是随着填埋的进行,10%和20%的炉渣填入使渗滤液的EC50值由258mL/L分别升高至294mL/L和314mL/L。这表明,炉渣的填入降低了填埋场运行后期渗滤液的生态毒性。
     另外,炉渣填入垃圾填埋场提高了填埋场下层垃圾的Cu、Zn含量,增加了填埋场重金属的潜在污染威胁。因而,必须加强相应的污染防范措施,防止由于内部或外部环境变化而引起填埋场重金属的非正常释放。
     (5)渗滤液回灌使炉渣与生活垃圾混合填埋场渗滤液pH、DOC和氨氮等理化性质快速稳定,加快了炉渣和生活垃圾混合填埋场的稳定化进程。渗滤液的回灌不会对渗滤液中Cu的浓度造成较大影响,但可以显著降低渗滤液中Zn的浓度。回灌使炉渣与生活垃圾混合填埋场CL,和Zn的累积释放量分别从11.47mg、144.01mg降低至4.71mg和14.69mg。同时,回灌促使渗滤液中的CLl和Zn从小分子形态向大分子形态转化,降低了其生物可利用性。渗滤液生态毒性试验结果表明,渗滤液的回灌使渗滤液的生态毒性有所降低。渗滤液回灌型炉渣与生活垃圾混合填埋场不但加速了填埋场的稳定化进程,而且降低了填埋场重金属的环境释放及渗滤液的生态毒性,这为新型填埋场的设计提供了新的思路。
     然而,渗滤液回灌会提高填埋场下层垃圾的重金属含量,增加了填埋场潜在污染威胁。因此必须加强相应的污染防范措施,防止由于内部或外部环境变化而引起回灌型炉渣和生活垃圾混合填埋场重金属的非正常释放。
Due to the scarity of the land resource, incineration became a popular way for the treatment of the municipal solid waste (MSW), which resulted in the large production of municipal solid waste incinerator (MSWI) bottom ash. However, MSWI bottom ash contains high level of heavy metals. The leaching of heavy metals may inhibit its potential beneficial reuse as a secondary construction material and cause serious environmental pollution after landfill disposal. In this study, bottom ash from six typical MSW incinerators located in different cities of Zhejiang province was sampled. The content and speciation distribution of the heavy metal were analysed. Based on the results, Cu, Zn and Pb were chosen to study the long-term leaching behavior and the leaching mechanism of the heavy metals, by the combination analysis with acid neutralizing capacity (ANC), heavy metal speciation distribution, pH depending leaching test and Visual MINTEQ model. According to the leaching test. Cu and Zn were chosen to study the effect of weathering pre-treatment on the speciation distribution and leaching behavior of heavy metals in MSWI bottom ash. Based on above results, three sets of simulated landfills were designed to study the effect of different mass proportion of MSWI bottom ash co-disposal with MSW on the leaching behavior of Cu and Zn as well as the biological risk. Furthermore, two sets of simulated landfills were designed to study the effect of leachate recalculation on the stabilization process, heavy metal leaching behavior and biological risk of the MSWI and MSW co-disposal landfill. The main conclusions of this study were listed below.
     (1) MSWI bottom ash contains high level of heavy metals, and the average heavy metal content in the bottom ash followed the sequence of Zn> Mn> Cu> Pb> Cr> As> Ni> Co> Mo> Cd> Hg. Zn, Cu, Cr, Mn and Pb were the major heavy metals whose contents were above 300 mg/kg. Considerable amounts of heavy metals were presented as the exchangeable fraction and carbonate bound fraction. According to the calculation, there were 95.3 mg of Cu,19.4 mg of Pb and 363.8 mg of Zn presented as exchangeable fraction and carbonate bound fraction in 1 kg MSWI bottom ash. which had the potential to leach out and cause serious pollution to the surrounding environment.
     (2) The leaching of Cu, Zn, Pb was relatively low in alkine condition. However. they would be greatly leached when the pH was below 6.0,6.7 and 7.0, respectively. Moreover, the leached heavy metals had higher bioavailability in the acidic environment. The leaching of Cu and Zn was limited by their speciation distribution in MSWI bottom ash, while Pb leaching might be controlled by the precipitation and dissolution equilibrium of specific minerals, which resulted in the relatively low level of Pb leaching compared with Cu and Zn. In this study, the leaching ratio could be up to 72.4% and 45.0 for Cu and Zn. while the leaching ratio of Pb was only 1.9%. Generally. decreasing the bottom ash pH to the acid condition by acid precipitation would be a long process because of the high ANC of MSWI bottom ash. suggesting the environmental impact was negative when MSWI bottom ash was reused. However, if the MSWI bottom ash was disposed in the MSW landfill. the heavy metal might be greatly leached due to the high level of organic acid in the MSW landfill.
     (3) Weathering treatment could change the fractionation of Cu and Zn in MSWI bottom ash. After weathering treatment, the exchangeable fraction, carbonate bound fraction and Fe-Mn oxides bound fraction of Zn increased from 0.3%,17.1%,19.6% to 0.7%,22.7% and 36.7%, respectively. The organic matter bound fraction kept relatively steady, while the residual fraction of Zn reduced from 55.1% to 30.9%. The organic matter bound fraction of Cu decreased from 68.7% to 36.8% while the exchangeable fraction, carbonate bound fraction and Fe-Mn oxides bound fraction of Cu increased from 1.8%.2.5%,2.8%,24.1% to 2.7%,3.7%,3.8%,53.7%, respectively. It indicated the weathering treatment could increase the potential leaching ability of the heavy metals. The leaching of Cu and Zn decreased in SPLP procedure, which was probably caused by the increase of the aluminum (hydr)-oxides during the weathering treatment. However, their leaching increased in TCLP procedure, in which the leachate pH was acidic. It might be attributed to the fact that the adsorption capacity of the aluminum (hydr)-oxides was restricted in the acidic condition, and the increasing of leaching ability of Cu and Zn after the weathering treatment was therefore expressed.
     (4) MSWI bottom ash co-disposal with MSW had little impact on the Cu concentration in leachate. However, it had some influence on the Zn concentration in the leachate, which was depended on the mass proportion of MSWI bottom ash disposed in the landfill. If 10% mass proportion of MSWI bottom ash was disposed in MSW landfill, Zn concentration in the leachate could be notably increased and the total leaching amount of Zn could be increased by 30%. However, if 20% mass proportion of MSWI bottom ash was disposed in MSW landfill, Zn concentration could be decreased, constrastly. It might be ascribed to the fact that 20% mass proportion of MSWI bottom ash would significantly increase the pH of landfill, which restricted the mobility of Zn. Cu was mainly presented as organic matter bound fraction in the leachate. The co-disposal of MSWI bottom ash with MSW in landfill had little impact on the fractionation of Cu in the leachate. However, it could facilitate the transformation of Zn fractionation from the small molecular to big molecular, which decreased the bio-availability of the leached Zn.
     10% and 20% mass proportion of MSWI bottom ash co-disposed with MSW would decrease EC50 of the leachate from 530 mL/L to 294 mL/L and 314 mL/L at the beginning of landfilling, respectively, indicating the co-disposal could increase the biotoxicity of the leachate. However, the EC50 of the leachate was increased from 258 mL/L to 294 mL/L and 314 mL/L at the late phase of the landfilling, indicating the co-disposal of MSWI bottom ash and MSW could decrease the biotoxicity of the leachate with the process of landfilling.
     Besides, Cu and Zn content of MSW from the bottom layer was higher in MSWI bottom ash and MSW co-disposed landfill than that of MSW landfill, which increased the potential threat of the landfill. Corresponding pollution prevention measures should be enhanced to prevent the potential pollution by the abnormal heavy metals releasing from the MSWI bottom ash and MSW co-disposed landfill.
     (5) The recirculation of leachate could accelerate the stabilization process of MSWI bottom ash and MSW co-disposed landfill. It had little impact on the Cu concentration in leachate. However, it could notably reduce the Zn concentration in the leachate. The recirculation of leachate significantly reduced the accumulated leaching amounts of Cu and Zn from 11.47mg,144.01mg to 4.71mg and 14.69mg. respectively. Due to the recirculation, the bioavailability of the leached Cu and Zn was also reduced, which meant the environmental risk by the discharge of heavy metal from landfill was greatly migrated. The bioreactor operation with leachate recirculation of MSWI bottom ash and MSW co-disposed landfill not only accerated the stabilization process of landfill, but also reduced the release of pollutant and the bio-toxicity of the leachate. providing a new idea for the designing of the landfill. However, leachate recirculation treatment would increase the heavy metal contents of MSW in the bottom layer of MSWI bottom ash and MSW co-disposed landfill, which may probably lead to the increasing of the potential environmental risk. To prevent the potential pollution by the abnormal heavy metals releasing from the landfill, relevant pollution prevention measures should be enhanced.
引文
[1]中华人民共和国国家统计局.中国统计年鉴2009[M].北京:中国统计出版社,2010.
    [2]Chindaprasirt P, Jaturapitakkul C, Chalee W, Rattanasak U. Comparative study on the characteristics of fly ash and bottom ash geopolymers [J]. Waste Management 2009.29:539-543.
    [3]Chang MB. Chung YT. Dioxin contents in fly ashes of MSW incineration in Taiwan [J]. Chemosphere 1998,36:1959-1968.
    [4]Youcai Z, Lijie S. Guojian L. Chemical stabilization of MSW incinerator fly ashes [J]. Journal of Hazardous Materials 2002,95:47-63.
    [5]Liu Y, Ma L. Liu Y, Kong G. Investigation of novel incineration technology for hospital waste [J]. Environmental Science & Technology 2006,40:6411-6417.
    [6]Cheng H, Zhang Y, Meng A, Li Q. Municipal solid waste fueled power generation in China:A case study of waste-to-energy in Changchun city [J]. Environmental Science & Technology 2007, 41:7509-7515.
    [7]Chimenos JM, Segarra M, Fernandez MA, Espiell F. Characterization of the bottom ash in municipal solid waste incinerator [J]. Journal of Hazardous Materials 1999,64:211-222.
    [8]Polettini A, Pomi R, Fortuna E. Chemical activation in view of MSWI bottom ash recycling in cement-based systems [J]. Journal of Hazardous Materials 2009,162:1292-1299.
    [9]国家环境保护部,公家质量监督检疫总局.GB 16889-2008,生活垃圾填埋场污染控制标准[S].北京:中国环境科学出版社.2008.
    [10]Long YY, Hu LF, Fang CR. He R, Shen D-S. Releasing behavior of zinc in recirculated bioreactor landfill [J]. Science of The Total Environment 2009,407:4110-4116.
    [11]Long YY, Hu LF, Fang CR, Wu YY, Shen DS. An evaluation of the modified BCR sequential extraction procedure to assess the potential mobility of copper and zinc in MSW [J]. Microchemical Journal 2009,91:1-5.
    [12]Long YY, Hu LF, Jiang CJ, Fang CR. Wang FP, Shen DS. Releasing behavior of copper in recirculated bioreactor landfill [J]. Bioresource Technology 2009,100:2419-2424.
    [13]Eighmy TT, Eusden JD, Krzanowski JE, Domingo DS, Staempfli D, Martin JR, Erickson PM. Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipitator ash [J]. Environmental Science & Technology 1995,29:629-646.
    [14]陆胜勇,陆胜勇,严建华,李晓东,倪明江,岑可法,池涌.初始pH值、液固比对某焚烧炉灰重金属渗滤的影响[J].环境科学学报2005,26:152-156.
    [15]章骅,何品晶.李忻洁.邵立明.模型化研究pH对垃圾焚烧飞灰金属浸出的影响机制[J].环境科学2008,29:268-272.
    [16]Bayuseno AP. Schmahl WW. Characterization of MSWI fly ash through mineralogy and water extraction [J]. Resources, Conservation and Recycling 2011,55:524-534.
    [17]Gines O, Chimenos JM, Vizcarro A, Formosa J, Rosell JR. Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation:Environmental and mechanical considerations [J]. Journal of Hazardous Materials 2009.169:643-650.
    [18]Bayuseno AP, Schmahl WW, Mullejans T. Hydrothermal processing of MSWI fly ash-towards new stable minerals and fixation of heavy metals [J]. Journal of Hazardous Materials 2009,167: 250-259.
    [19]Shi HS, Kan LL. Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete [J]. Journal of Hazardous Materials 2009.164:750-754.
    [20]Belevi H, Stampfli DM, Baccini P. Chemical behaviour of municipal solid waste incinerator bottom ash in monofills [J]. Waste Management & Research 1992.10:153-167.
    [21]宋立杰.生活垃圾焚烧炉渣特性及其在废水处理中的应用研究[D].同济大学博士学位论文2006.
    [22]Bethanis S, Cheeseman CR, Sollars CJ. Properties and microstructure of sintered incinerator bottom ash [J]. Ceramics International 2002,28:881-886.
    [23]Meima JA, Comans RNJ. Geochemical modeling of weathering reactions in municipal solid waste incinerator bottom ash [J]. Environ Science & Technology 1997,31:1269-1276.
    [24]Verhulst D, Buekens A, Spencer PJ, Eriksson G. Thermodynamic behavior of metal chlorides and sulfates under the conditions of incineration furnaces [J]. Environ Science & Technology 1996, 30:50-56.
    [25]Jung CH, Matsuto T, Tanaka N, Okada T. Metal distribution in incineration residues of municipal solid waste (MSW) in Japan [J]. Waste Management 2004.24:381-391.
    [26]Zhang H. He PJ, Shao LM. Implication of heavy metals distribution for a municipal solid waste management system-a case study in Shanghai [J]. Science of the Total Environment 2008,402: 257-267.
    [27]Belevi H, Moench H. Factors determining the element behavior in municipal solid waste incinerators.1. field studies [J]. Environ Science & Technology 2000.34:2501-2506.
    [28]Suna Erses A, Fazal MA, Onay TT, Craig WH. Determination of solid waste sorption capacity for selected heavy metals in landfills [J]. Journal of Hazardous Materials 2005.121:223-232.
    [29]Belevi H, Langmeier M. Factors Determining the element behavior in municipal solid waste incinerators.2. laboratory experiments [J]. Environ Science & Technology 2000,34:2507-2512.
    [30]Shi DZ, Wu WX, Lu SY, Chen T, Huang HL, Chen YX, Yan JH. Effect of MSW source-classified collection on the emission of PCDDs/Fs and heavy metals from incineration in China [J]. Journal of Hazardous Materials 2008,153:685-694.
    [31]Lin CF, Wu CH, Liu YC. Long-term leaching test of incinerator bottom ash:Evaluation of Cu partition [J]. Waste Management 2007,27:954-960.
    [32]国家环境保护部,国家技术监督局.GB 15618-1995土壤环境质量标准[S].北京:中国环境科学出版社,1995.
    [33]国家环境监测总站.中国土壤环境背景值调查[M].北京:中国环境科学出版社,1995.
    [34]Lin YC, Panchangam SC, Wu CH, Hong PK.A. Lin CF. Effects of water washing on removing organic residues in bottom ashes of municipal solid waste incinerators [J]. Chemosphere 2010,82: 502-506.
    [35]Jiang Y, Xi B, Li X, Zhang L, Wei Z. Effect of water-extraction on characteristics of melting and solidification of fly ash from municipal solid waste incinerator [J]. Journal of Hazardous Materials 2009,161:871-877.
    [36]Wang KS, Chiang KY, Lin KL, Sun CJ. Effects of a water-extraction process on heavy metal behavior in municipal solid waste incinerator fly ash [J]. Hydrometallurgy 2001,62:73-81.
    [37]宋立杰.城市垃圾焚烧炉渣的稳定化处理研究[D].同济大学硕士学位论文2001.
    [38]严建华,马增益,彭雯,李晓东,李建新.岑可法.沥青固化城市生活垃圾焚烧飞灰的实验研究[J].环境科学学报2004,24:730-733.
    [39]蒋建国,王伟.重金属螯合剂处理焚烧飞灰的稳定化技术研究[J].环境科学1999,20:13-17.
    [40]Takaoka M, Takeda N, Miura S. The behaviour of heavy metals and phosphorus in an ash melting process [J]. Water Science and Technology 1997,36:275-282.
    [41]Nowak B. Pessl A, Aschenbrenner P, Szentannai P, Mattenberger H, Rechberger H. Hermann L, Winter F. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment [J]. Journal of Hazardous Materials 2011,179:323-331.
    [42]Sakai Si, Hiraoka M. Municipal solid waste incinerator residue recycling by thermal processes [J]. Waste Management 2000,20:249-258.
    [43]Yang Y, Xiao Y, Voncken JHL, Wilson N. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator [J]. Journal of Hazardous Materials 2008,154:871-879.
    [44]Dijkstra JJ, Van Zomeren A, Meeussen JCL. Comans RNJ. Effect of accelerated aging of MSW1 bottom ash on the leaching mechanisms of copper and molybdenum [J]. Environmental Science & Technology 2006,40:4481-4487.
    [45]Chimenos JM, Fernandez AI, Nadal R, Espiell F. Short-term natural weathering of MSWI bottom ash [J]. Journal of Hazardous Materials 2000,79:287-299.
    [46]Campanella L, D'Orazio D, Petronio BM, Pietrantonio E. Proposal for a metal speciation study in sediments [J]. Analytica Chimica Acta 1995,309:387-393.
    [47]Luo M, Li J, Cao W, Wang M. Study of heavy metal speciation in branch sediments of Poyang Lake [J]. Journal of Environmental Sciences 2008,20:161-166.
    [48]Pardo R, Barrado E, Lourdes P, Vega M. Determination and speciation of heavy metals in sediments of the Pisuerga river [J]. Water Research 1990,24:373-379.
    [49]Yuan X, Huang H, Zeng G, Li H, Wang JY, Zhou CF, Zhu HN, Pei XK, Liu ZF, Liu, ZT. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge [J]. Bioresource Technology 2010,102:4104-4110.
    [50]Alonso E, Santos A, Callejon M, Jimenez JC. Speciation as a screening tool for the determination of heavy metal surface water pollution in the Guadiamar river basin [J]. Chemosphere 2004,56: 561-570.
    [51]Sabbas T, Polettini A, Pomi R, Astrup T, Hjelmar O. Mostbauer P. Cappai G, Magel G. Salhofer S, Speiser C, Heuss-Assbichler S, Klein R, Lechner P. Management of municipal solid waste incineration residues [J]. Waste Management 2003,23:61-88.
    [52]Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical chemistry 1979,51:844-851.
    [53]Zhang J, Liu J, Li C, Nie Y, Jin Y. Comparison of the fixation of heavy metals in raw material, clinker and mortar using a BCR sequential extraction procedure and NEN7341 test [J]. Cement and Concrete Research 2008,38:675-680.
    [54]Kersten M, Schulz-Dobrick B, Lichtensteiger T. Johnson CA. Speciation of Cr in Leachates of a MSWI Bottom Ash Landfill [J]. Environ Science & Technology 1998,32:3448-3448.
    [55]Krishnamurti GSR, Naidu R. Solid-solution speciation and phytoavailability of copper and zinc in Soils [J]. Environmental Science & Technology 2002,36:2645-2651.
    [56]Wan X, Wang W, Ye T. Guo Y, Gao X. A study on the chemical and mineralogical characterization of MSWI fly ash using a sequential extraction procedure [J]. Journal of Hazardous Materials 2006, 134:197-201.
    [57]Zhao L, Zhang FS, Zhang J. Chemical properties of rare earth elements in typical medical waste incinerator ashes in China [J]. Journal of Hazardous Materials 2008,158:465-470.
    [58]Yao J. Li W-B. Kong QN. Wu YY, He R. Shen DS. Content, mobility and transfer behavior of heavy metals in MSWI bottom ash in Zhejiang province, China [J]. Fuel 2010,89:616-622.
    [59]Ecke H, Aberg A. Quantification of the effects of environmental leaching factors on emissions from bottom ash in road construction [J]. Science of The Total Environment 2006,362:42-49.
    [60]Van Gerven T, Cooreman H, Imbrechts K, Hindrix K, Vandecasteele C. Extraction of heavy metals from municipal solid waste incinerator (MSWI) bottom ash with organic solutions [J]. Journal of Hazardous Materials 2007,140:376-381.
    [61]Vitkov M, Ettler V, Sebek O, Sebek O, Mihaljevic M, Grygar T, Rohovec J. The pH-dependent leaching of inorganic contaminants from secondary lead smelter fly ash [J]. Journal of Hazardous Materials 2009,167:427-433.
    [62]Johnson CA, Kersten M, Ziegler F, Moor HC. Leaching behaviour and solubility--Controlling solid phases of heavy metals in municipal solid waste incinerator ash [J]. Waste Management 1996,16:129-134.
    [63]Johnson CA, Brandenberger S, Baccini P. Acid neutralizing capacity of municipal waste incinerator bottom ash. Environ Science & Technology 1995,29:142-147.
    [64]Olsson S, Gustafsson JP, Berggren Kleja D, Bendz D, Persson I. Metal leaching from MSWI bottom ash as affected by salt or dissolved organic matter [J]. Waste Management 2009,29: 506-512.
    [65]Zomeren AV, Comans RNJ. Carbon speciation in municipal solid waste incinerator (MSWI) bottom ash in relation to facilitated metal leaching [J]. Waste Management 2009,29:2059-2064.
    [66]Meima JA, van Zomeren A, Comans RNJ. Complexation of Cu with dissolved organic carbon in municipal solid waste incinerator bottom ash leachates [J]. Environ Science & Technology 1999, 33:1424-1429.
    [67]Olsson S, van Schaik JWJ, Gustafsson JP, Kleja DB, van Hees PAW. Copper(Ⅱ) binding to dissolved organic matter fractions in municipal solid waste incinerator bottom ash leachate [J]. Environmental Science & Technology 2007,41:4286-4291.
    [68]Hyks J, Astrup T, Christensen TH. Leaching from MSWI bottom ash:Evaluation of non-equilibrium in column percolation experiments [J]. Waste Management 2009,29:522-529.
    [69]Christensen JB, Christensen TH. Complexation of Cd, Ni, and Zn by DOC in polluted groundwater:A comparison of approaches using resin exchange, aquifer material sorption, and computer speciation models (WHAM and MINTEQA2) [J]. Environmental Science and Technology 1999,33:3857-3863.
    [70]Christensen JB, Botma JJ, Christensen TH. Complexation of Cu and Pb by DOC in polluted groundwater:a comparison of experimental data and predictions by computer speciation models (WHAM and MINTEQA2) [J]. Water Research 1999.33:3231-3238.
    [71]Van Zomeren A, Comans RNJ. Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash [J]. Environmental Science & Technology 2004,38: 3927-3932.
    [72]Stegemann JA, Schneider J, Baetz BW, Murphy KL. Lysimeter washing of MSW incinerator bottom ash [J]. Waste Management & Research 1995.13:149-165.
    [73]Lind BB, Norrman J, Larsson LB, Ohlsson S-A, Bristav H. Geochemical anomalies from bottom ash in a road construction-Comparison of the leaching potential between an ash road and the surroundings [J]. Waste Management 2008.28:170-180.
    [74]Hjelmar O, Holm J, Crillesen K. Utilisation of MSWI bottom ash as sub-base in road construction: First results from a large-scale test site [J]. Journal of Hazardous Materials 2007,139:471-480.
    [75]Flyhammar P. Estimation of heavy metal transformations in municipal solid waste [J]. Science of The Total Environment 1997,198:123-133.
    [76]Abu-Rukah Y, Abu-Aljarayesh I. Thermodynamic assessment in heavy metal migration at El-Akader landfill site. North Jordan [J]. Waste Management 2002,22:727-738.
    [77]Bellir K, Bencheikh-Lehocine M. Meniai AH, Gherbi N. Study of the retention of heavy metals by natural material used as liners in landfills [J]. Desalination 2005,185:111-119.
    [78]Belevi H, Baccini P. Long-term behavior of municipal solid waste landfills. Waste Management & Research 1989,7:43-56.
    [79]Oygard JK. Mage A. Gjengedal E. Estimation of the mass-balance of selected metals in four sanitary landfills in Western Norway, with emphasis on the heavy metal content of the deposited waste and the leachate [J]. Water Research 2004.38:2851-2858.
    [80]Jensen DL, Ledin A, Christensen TH. Speciation of heavy metals in landfill-leachate polluted groundwater [J]. Water Research 1999,33:2642-2650.
    [81]Prechthai T, Parkpian P. Visvanathan C. Assessment of heavy metal contamination and its mobilization from municipal solid waste open dumping site [J]. Journal of Hazardous Materials 2008,156:86-94.
    [82]沈东升,何若,刘宏远.生活垃圾填埋生物处理技术[M].北京:化学工业出版社,2003.
    [83]Long YY, Shen DS, Wang HT, Lu WJ. Migration behavior of Cu and Zn in landfill with different operation modes [J]. Journal of Hazardous Materials 2010,179:883-890.
    [84]龙於洋.生物反应器填埋场中重金属Cu和Zn的迁移转化机理研究[D].浙江大学博士学位论文2009.
    [85]Christensen TH, Kjeldsen P, Bjerg PL, Jensen D L, Christensen JB, Baun A, Albrechtsen HJ, Heron G. Biogeochemistry of landfill leachate plumes [J]. Applied Geochemistry 2001.16: 659-718.
    [86]Jensen DL, Christensen TH. Colloidal and dissolved metals in leachates from four Danish landfills [J]. Water Research 1999,33:2139-2147.
    [87]Zheljazkov VD, Warman PR. Phytoavailability and fractionation of copper, manganese, and zinc in soil following application of two composts to four crops [J]. Environmental Pollution 2004,131: 187-195.
    [88]Dimambro ME, Lillywhite RD RC. The physical, chemical and microbial characteristics of biodegradable municipal waste derived composts [J]. Compost science & utilization 2007,15 243-252.
    [89]Pichtel J, Anderson M. Trace metal bioavailability in municipal solid waste and sewage sludge composts [J]. Bioresource Technology 1997,60:223-229.
    [90]Sharma VK CM, Fortuna F, Cornacchia G. Processing of urban and agro-industial residues by aerobic composting:review [J]. Energy conversation & management 1997,38:453-478.
    [91]Soumar M, Demeyer A. Tack FMG, Verloo MG. Chemical characteristics of Malian and Belgian solid waste composts [J]. Bioresource Technology 2002,81:97-101.
    [92]Amlinger F PM, Favoino E. Heavy metal and organic compounds from wastes used as organic fertilizaers [Z]. ENZA2/ETU/2001/0024 Final reports to DG Environment, Brussels 2004.
    [93]Lo HM. Metals behaviors of MSWI bottom ash co-digested Anaerobically with MSW [J]. Resources, Conservation and Recycling 2005.43:263-280.
    [94]Lo HM, Lin KC, Liu MH, Pai TZ, Lin CY, Liu WF, Fang GC, Lu C, Chiang C F, Wang S C, Chen PH, Chen JK, Chiu HY, Wu KC. Solubility of heavy metals added to MSW [J]. Journal of Hazardous Materials 2009,161:294-299.
    [95]Inane B. Inoue Y, Yamada M, Ono Y, Nagamori M. Heavy metal leaching from aerobic and anaerobic landfill bioreactors of co-disposed municipal solid waste incineration bottom ash and shredded low-organic residues [J]. Journal of Hazardous Materials 2007,141:793-802.
    [96]Baun DL, Christensen CT. Speciation of heavy metals in landfill leachate:a review [J]. Waste Management & Research 2004,22:3-23.
    [97]胡立芳.有机砷废渣的半固相Fenton氧化脱毒及稳定化/固化研究机理[D].浙江大学博士学位论文2010.
    [98]Ferrari BJD, Masfaraud JF, Maul A. Ferard JF. Predicting uncertainty in the ecotoxicological assessment of solid waste leachates [J]. Environmental Science & Technology 2006,40: 7012-7017.
    [99]Bloor MC, Banks CJ. Acute and sub-lethal toxicity of landfill leachate towards two aquatic macro-invertebrates:Demonstrating the remediation potential of air stripping [J]. Environment International 2005.31:1114-1122.
    [100]Dave G, Nilsson E. Increased reproductive toxicity of landfill leachate after degradation was caused by nitrite [J]. Aquatic Toxicology 2005,73:11-30.
    [101]Theepharaksapan S. Chiemchaisri C, Chiemchaisri W, Yamamoto K. Removal of pollutants and reduction of bio-toxicity in a full scale chemical coagulation and reverse osmosis leachate treatment system [J]. Bioresource Technology 2011,102:5381-5388.
    [102]Bernard C, Guido P, Colin J, Le Du-Delepierre A. Estimation of the hazard of landfills through toxicity testing of leachates--Ⅰ. Determination of leachate toxicity with a battery of acute tests [J]. Chemosphere 1996,33:2303-2320.
    [103]Wu YY, Zhou SQ, Chen DY, Zhao R, Li HS, Lin YM. Transformation of metals speciation in a combined landfill leachate treatment [J]. Science of The Total Environment 2011,409:1613-1620.
    [104]Prechthai T, Parkpian P, Visvanathan C. Assessment of heavy metal contamination and its mobilization from municipal solid waste open dumping site [J]. Journal of Hazardous Materials 2008,156:86-94.
    [105]王云,魏复盛.上壤环境元素化学[M].北京:中国环境科学出版社,1995.
    [106]Arickx S. Van Gerven T, Boydens E, L'hoest P. Blanpain B, Vandecasteele C. Speciation of Cu in MSWI bottom ash and its relation to Cu leaching [J]. Applied Geochemistry 2008.23:3642-3650.
    [107]Fanfani L, Zuddas P, Chessa A. Heavy metals speciation analysis as a tool for studying mine tailings weathering [J]. Journal of Geochemical Exploration 1997,58:241-248.
    [108]Yamasaki. Digestion methods for total analysis. In, Japanese Society of Soil Science and Plant Nutrition (Ed), Soil Environment Analysis [M]. Tokyo:Hakuyusya,1997.
    [109]中华人民共和国林业部.GB 7878-1987森林土壤烧失量的测定[S].北京:中国标准出版社,1987.
    [110]Lemann M, Walder R. Schwyn A. Heavy metals in municipal solid waste incineration residues [J]. Journal of Power Sources 1995,57:55-59.
    [111]Zhang H, He PJ. Shao LM. Flow Analysis of heavy metals in MSW incinerators for investigating contamination of hazardous components [J]. Environmental Science & Technology 2008,42: 6211-6217.
    [112]Paquin PR, Santore RC, Wu KB. Kavvadas CD, Di Toro DM. The biotic ligand model:a model of the acute toxicity of metals to aquatic life [J]. Environmental Science & Policy 2000,3: 175-182.
    [113]Huang WJ, Tsai JL, Liao MH. Cytotoxicity of municipal solid waste incinerator ash wastes toward mammalian kidney cell lines [J]. Chemosphere 2008,71:1860-1865.
    [114]Johnson CA, Furrer G. Influence of biodegradation processes on the duration of CaCO, as a pH buffer in municipal solid waste incinerator bottom ash [J]. Environ Science & Technol 2002,36: 215-220.
    [115]Hyks J, Astrup T, Christensen TH. Long-term leaching from MSWI air-pollution-control residues: Leaching characterization and modeling [J]. Journal of Hazardous Materials 2009,162:80-91.
    [116]国家技术监督局.GB/T 14202-1993铁矿石(烧结矿,球团矿)容积密度测定方法[S].北京:中国标准出版社,1993.
    [117]Allison J D. Brown D S, Novo-gradac KJ. MINTEQA2/PRODEFA2, a geochemical assessment model for environmentalsystems:version 3.11 databases and version 3.0 user's manual [M]. GA:Athens,1991.
    [118]Polettini A, Pomi R. The leaching behavior of incinerator bottom ash as affected by accelerated ageing [J]. Journal of Hazardous Materials 2004,113:209-215.
    [119]Van Zomeren A, Costa A, Pinheiro JP, Comans RNJ. Proton binding properties of humic substances originating from natural and contaminated materials [J]. Environmental Science & Technology 2009.43:1393-1399.
    [120]Arickx S, Van Gerven T, Vandecasteele C. Accelerated carbonation for treatment of MSWI bottom ash [J]. Journal of Hazardous Materials 2006,137:235-243.
    [121]Meima JA, Comans RNJ. The leaching of trace elements from municipal solid waste incinerator bottom ash at different stages of weathering [J]. Applied Geochemistry 1999,14:159-171.
    [122]USEPA. Test methods for evaluating solid waste, third ed [M]. Washington, DC:Office of Solid Waste and Emergency Response,1996.
    [123]Blakemore LCS, Daly B K. Methods for chemical analysis of soils, sci. rep.80 [M]. New Zealand NZ Soil Bureau:Lower Hutt,1997.
    [124]王静.垃圾生物覆盖土对填埋场甲烷减排的机理研究[D].浙江大学硕士学位论文2011.
    [125]Heron G, Bjerg PL, Gravesen P, Ludvigsen L, Christensen TH. Geology and sediment geochemistry of a landfill leachate contaminated aquifer (Grindsted, Denmark) [J]. Journal of Contaminant Hydrology 1998,29:301-317.
    [126]Baumann T, Fruhstorfer P, Klein T, Niessner R. Colloid and heavy metal transport at landfill sites in direct contact with groundwater [J]. Water Research 2006,40:2776-2786.
    [127]Qu X, He PJ, Shao LM, Lee DJ. Heavy metals mobility in full-scale bioreactor landfill:Initial stage [J]. Chemosphere 2008,70:769-777.
    [128]Suna Erses A, Onay TT. In situ heavy metal attenuation in landfills under methanogenic conditions [J]. Journal of Hazardous Materials 2003,99:159-175.
    [129]Hellweg S, Hofstetter TB, Hungerbuhler K. Time-dependent life-cycle assessment of slag landfills with the help of scenario analysis:the example of Cd and Cu [J]. Journal of Cleaner Production 2005,13:301-320.
    [130]Slack R.I. Gronow JR. Voulvoulis N. Household hazardous waste in municipal landfills: contaminants in leachate [J]. Science of The Total Environment 2005,337:119-137.
    [131]Oxley T. The detection of catastrophic discontinuities in the acid-phosphorus relationship (A complex systems model) [J]. Water, Air,& Soil Pollution 2000,117:39-59.
    [132]Driscoll CT. A procedure for the fractionation of aqueous aluminum in dilute acidic waters [M]. Abingdon:Taylor & Francis,1984.
    [133]Oygard JK. Gjengedal Royset E. Size charge fractionation of metals in municipal solid waste landfill leachate [J]. Water Research 2007,41:47-54.
    [134]国家环境保护部.GB/T 15441-1995水质急性毒性的测定发光细菌法[S].北京:中国环境科学出版社,1995.
    [135]Fang CR, Long YY, Lu YY, Shen DS. Behavior of dimethyl phthalate (DMP) in simulated landfill bioreactors with different operation modes [J]. International Biodeterioration & Biodegradation 2009.63:732-738
    [136]Long Y, Guo QW. Fang CR, Zhu YM, Shen DS. In situ nitrogen removal in phase-separate bioreactor landfill [J]. Bioresource Technology 2008,99:5352-5361.
    [137]Long Y, Long YY, Liu HC, Shen DS. Degradation of refuse in hybrid bioreactor landfill [J]. Biomedical and Environmental Sciences 2009,22:303-310.
    [138]Mariam T, Nghiem LD. Landfill leachate treatment using hybrid coagulation-nanofiltration processes [J]. Desalination 2010,250:677-681.
    [139]He P.I, Xue JF, Shao LM, Li GJ, Lee DJ. Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill [J]. Water Research 2006,40:1465-1473.
    [140]Wang F, Smith DW, Gamal El-Din M. Aged raw landfill leachate:Membrane fractionation, O3 only and O3/H2O2 oxidation, and molecular size distribution analysis [J]. Water Research 2006,40: 463-474.
    [141]Li R, Yue D, Liu J, Nie Y. Size fractionation of organic matter and heavy metals in raw and treated leachate [J]. Waste Management 2009.29:2527-2533.
    [142]Ward ML, Bitton G, Townsend T. Heavy metal binding capacity (HMBC) of municipal solid waste landfill leachates [J]. Chemosphere 2005,60:206-215.
    [143]Christensen JB, Christensen TH. The effect of pH on the complexation of Cd, Ni and Zn by dissolved organic carbon from leachate-polluted groundwater [J]. Water Research 2000,34: 3743-3754.
    [144]Seco JI, Fernandez-Pereira C, Vale J. A study of the leachate toxicity of metal-containing solid wastes using Daphnia magna [J]. Ecotoxicology and Environmental Safety 2003.56:339-350.
    [145]Koshy L, Paris E. Ling S, Jones T, BeruBe K. Bioreactivity of leachate from municipal solid waste landfills--assessment of toxicity [J]. Science of The Total Environment 2007,384: 171-181.
    [146]He R, Shen D-s. Nitrogen removal in the bioreactor landfill system with intermittent aeration at the top of landfilled waste [J]. Journal of Hazardous Materials 2006,136:784-790.
    [147]He R, Liu XW, Zhang ZJ, Shen DS. Characteristics of the bioreactor landfill system using an anaerobic-aerobic process for nitrogen removal [J]. Bioresource Technology 2007,98:2526-2532.
    [148]Bae JH, Cho KW. Lee SJ, Bum BS, Yoon BH. Effects of leachate recycle and anaerobic digester sludge recycle on the methane production from solid wastes [J]. Water Science and Technology 1998.38:159-168.
    [149]O'Keefe DM, Chynoweth DP. Influence of phase separation, leachate recycle and aeration on treatment of municipal solid waste in simulated landfill cells [J]. Bioresource Technology 2000. 72:55-66.
    [150]Martin DJ. Accelerated biogas production without leachate recycle [J]. Renewable Energy 2001. 24:535-538.
    [151]Reinhart DR. Landfill bioreactor design & operation [M]. Boca Raton:FL:Lewis Publishers, 1998.
    [152]Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P. Landfill leachate treatment:Review and opportunity [J]. Journal of Hazardous Materials 2008,150:468-493.
    [153]lm JH, Woo HJ, Choi MW, Flan KB, Kim CW. Simultaneous organic and nitrogen removal from municipal landfill leachate using an anaerobic-aerobic system [J]. Water Research 2001,35: 2403-2410.
    [154]Li XZ, Zhao QL. Efficiency of biological treatment affected by high strength of ammonium-nitrogen in leachate and chemical precipitation of ammonium-nitrogen as pretreatment [J]. Chemosphere 2001,44:37-43.
    [155]Rivas FJ, Beltran F, Gimeno O, Acedo B, Carvalho F. Stabilized leachates:ozone-activated carbon treatment and kinetics [J]. Water Research 2003.37:4823-4834.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700