铁矿石烧结优化配矿的基础与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代钢铁工业的不断发展,铁矿石资源日趋紧张,使得国内烧结厂原料结构波动大,生产极不稳定。如何在有限的资源条件下,快速准确地获得产质量指标满足要求、经济性好的配矿方案及相应的工艺参数,在原料条件发生变化时能快速稳定烧结生产过程已成为烧结乃至炼铁工作者的研究热点和重点。
     本文以原料主要靠外购的涟钢烧结厂作为主要研究和成果应用对象,在系统研究了原料物化性能、制粒性能、成矿性能和烧结性能及其关系的基础上,将理论计算模型、BP神经网络模型、遗传优化模型和专家系统相结合,构建了烧结优化配矿专家系统,并在涟钢进行了工业应用,取得了良好的效果。
     采用Access2003数据库技术构建了系统数据库,包括原料基础性能(物化性能、制粒性能和成矿性能)数据库、混合料烧结性能(单矿及配矿烧结)数据库、烧结生产信息库(配矿方案、工艺参数、产质量指标)、配矿专家知识库、模型库(模型参数及BP网络模型)等;并采用VC++软件开发工具,搭建了数据管理、模型建立和知识管理平台,实现了文字、数据和图片等多种信息的综合管理。数据管理系统具有添加、删除、修改、查找、加载、保存文件等功能。
     根据烧结杯试验研究结果,结合生产经验,以混合料的化学成分、矿物组成、碱度、不同粒径颗粒的含量等作为输入参数,以烧结速度(利用系数)、转鼓强度和固体燃耗作为模型的输出参数;采用三层BP神经网络模型对烧结矿的产质量指标进行了预测,模型的预报命中率达85%以上;系统还提供了建模平台,用户可根据预报效果要求修正模型的输入、输出参数,模型学习参数等,模型的适应性强。
     根据原料物化性能、制粒性能、成矿性能和烧结性能的研究结果,采用线性回归分析的方法,建立了烧结适宜混合料水分和燃料配比计算模型,模型准确率达到了93%以上。
     系统获得烧结优化配矿方案的过程如下:在已知原料条件(原料物化性能、供应条件)和烧结矿产质量指标要求的条件下,先采用线性规划法获得化学成分满足要求的配料方案组;采用产质量指标预测模型和工艺参数优化模型,预测各方案的产质量指标和适宜的工艺参数,根据配矿经济模型评价各方案的经济性;在成分满足要求的配矿方案组内,以产质量指标作为约束函数,以经济性作为评价函数,采用遗传算法获得产质量指标满足要求、经济性好的配矿方案,并给出配矿方案相应的工艺参数、产质量指标;若用户对系统提供的方案不满意,可以采用配矿调整专家系统,根据专家经验对方案进行调整,直到用户满意为止。
With the development of modern steel industry, iron ore resource shortage becomes more and more severe, which causes major fluctuations of domestic raw material structure, and the production is very unstable. Obtaining qualified and economical ore proportioning scheme and corresponding technological parameters under the condition of limited resources to stabilize sinter production under fluctuant raw materials condition becomes a hotspot and key point of sintering and even iron making groups.
     In this paper, sinter plant of Liangang which is outsourcing materials relied is the main object of research and application. Expert system of ore proportioning optimization of sintering is constructed combining computation model, BP neural network model, genetic optimization model and expert system, based on study of physical and chemical properties of raw materials, granulation properties, metallogenic properties, sintering properties and their relationships. This system was put into application and good results were achieved.
     Database was built up by using Access2000database technology, including basic properties database of raw materials (physical and chemical properties, granulation properties and metallogenic properties), sintering properties database (data of single ore and ore proportioning sinter pot test), sintering information database (ore proportioning schemes, technological parameters and indicators of yield and quality), knowledge base of ore proportioning, model library (model parameters and BP network model), etc., Data management, modeling and knowledge management platform was built using VC++. Integrated management of text, data and images information, as well as files adding, deleting, modifying, locating, loading and saving were achieved.
     Based on results of sinter pot tests, combined with production experience, sinter quality and productivity indicators of sinter were predicted using improved three-layer BP neural network model, with chemical composition, mineral composition, basicity, particle content as input parameters and sintering speed (productivity), tumbler strength and solid fuel consumption as outputs. The model accuracy was over85%. Modeling platform was provided, input parameters, output parameters, learning parameters could be modified based on forecast results, and good adaptability was achieved.
     Calculation model of suitable moisture and fuel proportions was built based on results of physical and chemical properties of raw materials, granulation properties, metallogenic properties and sintering properties, using linear regression analysis method. The model accuracy was over93%.
     Procedures of obtaining optimal ore proportioning scheme are as follow:under the given conditions of raw materials (physical and chemical properties, supply conditions) and required indicators of sinter yield and quality, ore proportioning scheme groups which meet the requirements of sinter chemical compositions are obtained by linear programming method; predict indicators of sinter yield and quality and proper technological parameters of each scheme using prediction model of sinter yield and quality and optimization model of technological parameters, evaluate the economical efficiency with economic model of ore proportion; within the ore proportioning scheme group which can meet the requirements of chemical compositions, sinter yield and quality indicators are selected as constraint function and economical efficiency as evaluation function, ore proportioning scheme is obtained with satisfying sinter yield and quality, as well as good economical efficiency using genetic algorithm, and corresponding technological parameters and indicators of sinter yield and quality are provided; the scheme can be modified based on expertise using expert system of ore proportioning modification, until the users are satisfied.
引文
[1]苏小梅.加快结构调整促进我国钢铁工业健康发展[J].中国经贸导刊,2010,12(23):22-23
    [2]肖华高,董英,李向东.配用印度多尼矿粉的烧结试验研究[J].烧结球团,2001,26(2):13-16
    [3]诸荣孙,孙泰珍.配用印度果阿粉矿烧结的探讨[J].烧结球团,1999,24(1):21-24
    [4]赵静芝.烧结配加澳矿生产试验提高烧结机利用系数[J].包钢科技,2002,28(3):1-3
    [5]焦玉书.1994年世界铁矿市场的回顾与展望[J].中国矿业,1995,4(2):1-12
    [6]刘素丽.矿石供应紧张对涟钢铁前生产的影响[J].烧结球团,2004,29(4):42-46
    [7]司晓悦.我国铁矿石进口的战略与对策[J].东北大学学报(社会科学版),2003,5(5):355-357
    [8]姚培慧.中国铁矿志[M].北京:冶金工业出版社,1994
    [9]焦玉书.国外铁矿发展的新态势[J].矿业工程,2003,(1):22-28
    [10]刘树臣,王淑玲,崔荣国,等.当前矿产资源形势及未来走势[J].国土资源情报,2009,7
    [11]陈甲斌.当前重要矿产资源形势及战略机遇[J].中国金属通报,2009,(23):36-37
    [12]刘动.近年我国进口铁矿石的现状与分析[J].金属矿山,2009,(1):12-15
    [13]程国彪,高丙寅,张春,等.大比例使用进口粉矿的烧结试验及生产[J].烧结球团,2004,29(1):8-12
    [14]王志花.一种澳大利亚矿基本物理化学性能和烧结性能的研究[A].见:第七届全国炼铁精料会议论文集[C],2001:24
    [15]曹丽华,谢志勇,李新华,等.宣钢配加印度粉和巴西粉烧结的试验研究[J].2002,27(5):8-11
    [16]苑希现,赵强,李步霄,等.刑钢烧结提高进口矿配比的生产实践[J].烧结球团,2002,27(5):27-29
    [17]成富全.印度富矿粉首钢烧结生产中的应用[J].烧结球团,2001,26(6):48-52
    [18]张卫华,曾辉.烧结混合料中配加澳粉的工业试验[J].山东冶金,1998,20(1):43-45
    [19]洪定国.湘钢配加印度矿烧结的试验研究[J].烧结球团,1999,24(4):31-33
    [20]蔡湄夏,范建军,边建钢,等.太钢外购矿粉的烧结性能试验[J].烧结球团,2002,27(3):7-9.
    [21]贺淑珍,蔡湄夏,贺建军.印度果阿矿粉的烧结性能初探[J].钢铁研究,2001,1998(1):1-4
    [22]蔡湄夏,贺淑珍,侯慧军,等.太钢使用印度果阿粉矿的烧结试验及生产[J].烧结球团,2000,25(6):22-26.
    [23]尹德,贺淑珍,范建军,等.高品位印度矿粉烧结性能试验研究[J].烧结球团,2004,29(3):16-19
    [24]唐贤容.烧结理论与工艺[M].长沙:中南工业大学出版社,1992:219-227
    [25]郭兴敏,杜鹤桂.铁酸钙生成过程中影响因素的研究[J].北京科技大学学报,1998,19(5):18-24
    [26]郭兴敏.烧结过程铁酸钙生成及其矿物学[M].北京:冶金工业出版社,1993
    [27]佐藤骏.关于烧结原料制粒及透气性模型化研究[J].铁と钢,1982,15:2174-2181
    [28]李思导.细磨铁精矿烧结混合料制粒的研究[J].烧结球团,1998,23(6):7-12
    [29]吴胜利,刘宇,杜建新,等.铁矿石的烧结基础特性之新概念[J].北京科技大学学报,24(3):254-257
    [30]梁德兰,孔令坛.烧结固结机理的微型烧结试验方法研究[J1.矿冶工程,1996,16(增刊):74
    [31]李骞,黄驻成,江涛,等.白云石和蛇纹石对烧结矿质量及显微结构的影响[J].钢铁,2006,41(12):10-14
    [32]吴胜利.铁矿石的烧结基础特性之新概念[J].北京科技大学学报,2002,24(6):254-257
    [33]吴胜利.铁矿粉与CaO同化能力的试验研究[J].北京科技大学学报,200224(6):258-261
    [34]Wu Shengli, E. Kasai, Y. Omori. Effect of the Constitution of Granules on Coalescing Phenomenon and Srengthen after Sintering [A]. In:Proceeding of the 6th international Iron and Steel Congress.Nagoya [C],1990:15
    [35]E. Kasai, Wu Shengli, Y. Omori. Influence of Property of Iron Ores on the Coalescing of Granules during Sinter [J]. Tetsu-to-Hagane,1991,77(1):56
    [36]Wu Shengli. Study on Ore-proportioning Design and Reduction of Nitrogen Oxides in Iron Ore Sintering Process [D]:SENDAI:Japan Tohoku University, 1991
    [37]Y. Hida, J. Okazaki, K. Ito, S. Hirakawa. Effect of Mineralogical Properties of Iron Ore on Its Assimilation with Lime [J]. Tetsu-to-Hagane.1992,78(7):1013
    [38]J. R. Ockendon.数学模型及其在钢铁工业中的应用[J].宝钢技术,2004,(2):62-64
    [39]阅平凡.人工神经网络一模型分析与应用[M].合肥:安教教育出版社,1991
    [40]袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,1996
    [41]杨自厚.神经网络技术及其在钢铁工业中的应用第1讲人工神经网络的基本概念[J].冶金自动化—技术讲座,1996,4:48-51
    [42]艾立群.人工神经网络在钢铁工业中的应用[J].钢铁研究学报,1997,9(4):60-63
    [43]孙乐,金伟.烧结料加水混合过程的改进神经网络建模[J].大连轻工业学院学报,2003,22(4):288-292
    [44]刘克文,周取定.基于烧结机尾断面图像的质量预报系统研究[J].矿冶工程,1994,(增刊2):56-61
    [45]杨尚宝,杨天钧,董一诚.铁水含硅量预报神经网络模型[J].北京科技大学学报,1995,17(6):524
    [46]孔金满.钢铁工业应用人工智能技术的新发展[J].鞍钢技术,1996,9:6-12
    [47]朱新华,冯聚和.人工神经网络在转炉炼钢控制中的开发[J].河北理工学院学报,2003,25(4):73-77
    [48]松田浩一.模糊推理及神经网络在烧结过程中的应用[A].见:第六届国际造块会议论文选[C],北京:中国金属学会,1994:427-440
    [49]须仲新.新日铁在宝钢介绍计算机的应用[J].烧结球团,1989,14(5):72-73
    [50]A. G. Waters. A Mathematical Model for the Prediction of Granule Size Distribution for Multicomponent Sinter Feed [J]. Transactions of ISIJ,29(4), 1989:274-283
    [51]R. Venkataramana, S. Gupta, P. Kapur. A combined model for granule size distribution and cold bed permeability in the wet stage of iron ore sintering process [J]. International Journal of Mineral Processing,1999,57(1):43-58
    [52]A.G. Water, J. Litster, S. Nicol. A mathematical model for the prediction of granule size distribution for multicomponent sinter feed [J]. ISIJ International, 1989,29(4):274-283
    [53]J. Litster, A. Waters, S. Nicol. A model for predicting the size distribution of product from a granulating drum. Transactions of the Iron and Steel Institute of Japan,1986,26(12):1036-1044
    [54]F. Patisson. Study of Moister Transfer during the Strand Sintering Process [J]. Metal Trans.,1990,2(21B):37-47
    [55]邹志毅.烧结过程水分迁移模型:[硕士学位论文][D].长沙:中南工业大学,1992
    [56]徐瑞图,吴胜利主编.中国铁矿石烧结研究——周取定教授论文集[M].北京:冶金工业出版社,1997
    [57]T. Hideo, K. Kimio. Theoretical Investigation of Sintering Process [J]. Transactions ISIJ,1984,24(3):178-186
    [58]K. Hamada, Y. Matoba. Systeme de Controle de la Composition chimique de l'agglomere Revue de Metaculrqie [J]. CIT,1987, (5):409-419
    [59]刘克文,周取定.烧结矿质量预报模型的研究[J].烧结球团,1990,15(1):1-6
    [60]N. Tamure, M. Konishi. Mathematical Approach for the Optimization of Sintering Process Operation[A], In:IFAC Automation in Mining,Mineral and Metal Processing[C], Tokyo, Japan,1986:203-208
    [61]S. Shun, K. Takazo, I. Minoru, et al. Melting model for iron ore sintering[J]. Transactions of the Iron and Steel Institute of Japan,1986,26(4):282-292
    [62]佐滕骏Mineral Forming and its Composition Model for Iron Ore Sinter [J].铁と铜,1987,73(8):956-963
    [63]佐滕骏Controlling Factors for the Strength of Sinter and its Model [J].铁と铜,1987,73(8):964-971
    [64]P.T.西顿,F.B.特雷斯.根据矿石性能预测烧结厂生产率的数学模型的编制(译文)[M].,1987
    [65]P. P. Kanjilal, E. Rose. Application of Adaptive Prediction and Control Methods for Improved Operation of the Sintering Process [J]. Ironmaking and Steelmaking,1986,13(6):289-293
    [66]Kim, Y. Ho, Kwon, et al. An application of min-max generalized predictive control to sintering process[J]. Control Engineering Practice,1998, 6(8):999-1007
    [67]U. L. Asriel, S. N. Kumpati. Control of nonlinear dynmical systems using neural networks:Part Ⅱ-observability, identification and control[J], IEEE Trans. On NN,1996,7(1):30.
    [68]张军红,沈峰满,谢安国.G-BP算法在烧结矿FeO指标预测中的应用[J].东北大学学报,2002,23(11):1073-1075
    [69]张军红,谢安国,沈峰满.烧结矿质量预测中神经网络的结构优化[J].钢铁,2003,38(4):6-8
    [70]邵贤强,张铁军,瞿寿德,等.神经网络应用于烧结矿质量在线推断[J].北京科技大学学报,1995,17(6):567-571
    [71]张舒,高为民.人工神经网络在烧结矿指标预测中的应用[J].烧结球团,2001,26(4):6-10
    [72]曹立刚.烧结矿性能指标预测模型[J].包钢科技,1998,4:77-79
    [73]曾垂喜.铁矿石烧结性能预报模型的研究:[硕士学位论文][D].长沙:中南大学,2005
    [74]刘代飞.烧结过程工艺参数优化模型的研究:[硕士学位论文][D].长沙:中南大学,2004
    [75]M. J. Cumming, W. J. Rarkin. Modelling and Simulation of Iron Ore Sintering[A], In:4th International Symposium on Agglomeration[C], Toronto, Canada,1985:763-776
    [76]T. Kawaguchi, M. Yoshinaga. Development and Application of an Integrated Simulation Model for Iron Ore Sintering[J]. Ironmaking Proceedings, 1987,46:99-106
    [77]H. Unaki. New Centrol System of Sinter Plants at Chiba works In:IFAC Automation in mining[J]. Mineral and Metal Processing. Tokyo, Japan,1986: 209-216
    [78]K. Matsude. Modelling for control knowledge in sintering process using neural network and fuzzy inference[J]. Ironmaking and Steelmaking,1992,78(7): 496-499
    [79]M. Sugisaka. Application of neurocomputer for controlling the temperature of cooler of sinter plant [J]. Proceedings of the International Conference on Systems Science,1998,3(9):15-18
    [80]I. Shigaki. Machine-learning approach for sintering process using a neural network[J]. Planning and Control,1999,10(8):727-734
    [81]M. Cumming, J. Thurlby. Developments in modeling and simulation of iron ore sintering[J]. Ironmaking and Steelmaking,1990,17(4):245-254
    [82]李桃,范晓慧,姜涛,等.基于热状态参数的烧结终点自适应预报[J].烧结球团,2000,25(3):1-3
    [83]李桃.烧结过程智能实时操作指导系统的研究:[博士学位论文][D].长沙:中南大学,2001
    [84]郭文军,王福利,李明忠.基于神经网络的烧结矿化学成分超前预报[J].烧结球团,1997,22(5):7-10
    [85]李桃,冯其明,范晓慧,等.基于自组织神经网络的烧结终点白适应预报系统的开发[J].计算机工程与应用,2001,(6):127-129
    [86]谢安国,陆钟武.神经网络BP模型在烧结工序能耗分析中的应用[J].冶金能源,1998,17(5):8-10
    [87]程武山,刘长青.基于神经网络烧结终点(BTP)预测系统[J].计算机应用与软件,2003,3:39-40
    [88]姜鸿洲,张学东.烧结矿FeO含量智能检测仪的开发[J].冶金自动化,1999,23(6):13-16
    [89]李明河,王群京,孙雁飞.基于神经网络的烧结终点预报的研究[J].合肥工业大学学报,2004,27(6):631-634
    [90]武轶,吴胜利,杜建新.马钢常用铁矿石的烧结基础特性研究[J].钢铁冶金,2008,36(4):5-8
    [91]曹立刚.包钢用铁矿粉的烧结基础特性研究[J].烧结球团,2005,25(5):5-7
    [92]范晓慧,陈许玲,李骞,等.含钛铁精矿高铁低硅烧结技术[J].中南大学学报,2006,37(3):481-486
    [93]刘彦征CVRD矿在青钢的应用[J].山东冶金,2002,26(24):26-27
    [94]熊冬保,周少瑜.优化锰铁高炉配矿结构[J].中国科学院上海冶金研究所,2000
    [95]林鸿.宝钢低成本烧结配矿新技术的基础研究:[硕士学位论文][D].北京:北京科技大学,2000
    [96]冯建生,王秀芝.一个基于神经网络的配矿专家系统[J].冶金自动化,1999,23(4):7-10
    [97]申勇,丁敬强,高现刚,等.安钢烧结应对铁矿原料变化的对策及生产实践[J].冶金标准化与质量,2005,(1):59-62
    [98]何群,甘勤,李洪芳,等.攀钢烧结合理配矿试验[J].钢铁钒钛,1999,20(3):30-36
    [99]刘丽红,许秋惠,方丽平.烧结配矿的试验研究[J].河北冶金,2005(150):9-11
    [100]刘振林,杨福隆,杨金福.配加巴西粗粉和精粉的烧结试验[J].烧结球团,1997,22(3):24-26
    [101]严奕波,张宗旺,黄智华,等.南(昌)钢烧结优化配矿的研究[J].烧结球团,2006,31(4):14-17
    [102]李云涛,范晓慧,刘代飞.基于综合神经网络的优化配矿系统模拟模型及应用[J].烧结球团,2003,28(6):7-11
    [103]范晓慧,王海东,黄天正,等.烧结过程控制专家系统(Ⅰ)—系统总体控制方案和系统总体结构[J].中南工业大学学报,1997,28(4):325-328
    [104]李桃,范晓慧,姜涛.烧结过程异常状况诊断专家系统SPADES(Ⅰ)——系统总体规划[J].中南工业大学学报,2001,32(4):355-359
    [105]申炳昕,范晓慧,孙文东.基于神经网络的烧结矿化学成分自适应预报系统的开发[J].烧结球团,2002,27(5):1-3
    [106]周明顺,刘万山,杜鹤桂,等.鞍钢烧结优化配矿研究[J].钢铁,2004,39(6):10-13
    [107]李云涛.烧结优化配矿系统的研究:[硕士学位论文][D].长沙:中南大学,2004
    [108]章亚青..专家系统在宝钢配矿中的应用[A].见:中国计量协会冶金分会2007年年会论文汇编[C],2007:618-620
    [109]田卫红,吴敏.烧结配料优化控制专家系统[J].烧结球团,2006,31(1):23-27
    [110]李军.烧结配矿专家系统的研究:[硕士学位论文][D].长沙:中南大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700