用户名: 密码: 验证码:
飞秒激光与铁电晶体相互作用及波导耦合特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞秒激光与透明介质的相互作用是近年来研究的热点领域。将飞秒激光聚焦到透明材料的表面,当照射激光能量高于材料损伤阈值时,会造成材料表面的物理损伤。另一方面,通过显微物镜将飞秒激光聚焦到介质材料内部,当激光能量低于材料破坏阈值时,通过飞秒激光与介质之间的非线性作用,致使介质被作用的区域发生折射率变化,利用飞秒激光的这种特性可以加工出光波导,这已成为制作光波导的一种新方法。
     首先本文研究了飞秒激光与铁电晶体铌酸锂、钽酸锂的表面烧蚀。由于铌酸锂、钽酸锂是两种重要的非线性光学晶体材料,研究飞秒激光与铁电晶体之间的相互作用,不但可以帮助人们加深理解飞秒激光与此类晶体相互作用的物理规律,而且还对飞秒激光在铁电晶体中的微加工应用具有重要的参考价值。我们利用烧蚀面积与激光能量的对数关系,确定这两种晶体在单脉冲及多脉冲作用下的烧蚀阈值。研究发现,由于累积效应,当作用铌酸锂晶体上的飞秒脉冲个数大于80的时候,多个脉冲的破坏阈值Ft h(∞)趋近一常数。我们还研究了飞秒激光作用下,钽酸锂晶体中导带电子光致电离速率和电场强度之间的关系,通过导带电子数密度的演化和数值计算,得到了钽酸锂的碰撞系数约为1.01。
     飞秒激光能简单快速制作二维波导阵列的优点,使得在研究二维波导阵列中的离散衍射,离散孤子等线性和非线性现象时更为方便地提供实验样品。论文接着在理论上研究了二维波导阵列中的衍射情况,在不同的衍射情况下,数值模拟出二维波导阵列中的耦合输出特性。实验上采用飞秒写入的办法,在石英玻璃介质中制作出一个2 2的波导阵列,并观测到其耦合输出情况。由于波导阵列之间的耦合系数在实际应用中具有重要的意义,论文中提出了一种测量耦合系数的方法:利用耦合波理论,根据相关波导输出功率之比,计算出波导的耦合系数,最后得到了波导阵列水平方向、垂直方向的耦合系数分别为
     飞秒激光在铁电晶体材料中诱导的各种波导结构在光通信系统中具有重要的应用价值。本论文最后利用飞秒激光在z方向切割的铌酸锂中制备了一个1×4的波导阵列。在波导耦合实验中观测到了铌酸锂波导阵列的偏振相关耦合特性,结果表明波导阵列对TM模式的限制要比对TE模式限制更强。同时,对两种偏振输入光所对应的波导耦合系数也进行了测量计算。
The interaction between femtoseocnd laser and transparent materials has been studied intensively in recent years. When the femtosecond laser was focused onto the surface of the transparent materials, if the laser fluence applied to the sample exceeds the material’s fluence threshold, ablation occurs. On the other hand, by focusing ultrashort laser pulses inside optical transparent materials through a microscope objective, if the laser fluence applied to the sample is less than the material’s fluence threshold, a localized and permanent increase of the refractive index can be achieved based on nonlinear absorption around the focal volume of femtosecond laser pulses, and it becomes a new way to fabricate optical waveguide through femtosecond laser writing.
     In this dissertation firstly we study the surface ablation of lithium niobate, lithium tantalate by femtosecond laser. The study not only can help us understand better the physical rules about the interaction between femtosecond laser and ferroelectric crystals, but also it has importantreference on the microfabrication in such materials by femtosecond laser.The ablation thresholds of these two materials were calculated using thelogarithm relation of the ablation area and the laser fluence underirradiation by single and multiple femtoseocnd laser pulses. It was foundthat the threshold fluence for an infinite number of pulses convergeto a common value ofth F (∞)0.52±0.06 J/cm2 for . We also study therelationship of the photoionization rate and electric field, and achieve theavalanche coefficientN > 80βto be 1.01 by calculating the evolution ofthe conduction-band electron density in lithium tantalate.
     The two-dimensional waveguide array can be produced easily andfastly using femtosecond laser, thus it can conveniently provide us thesamples to study the discrete diffraction, discrete solitons or other linearand nonlinear properties. So next we have studied the discrete diffractionbehavior of two-dimensional waveguide arrays in theory. Thefundamental peculiarities of discrete diffraction in the two-dimensionalwaveguide arrays were studied. In experiment, we fabricatea waveguide array by femtosecond laser pulses in fused silica, anddemonstrate the coupling of such array. Moreover, the coupling constantbetween waveguides is essential for practical applications of waveguides,so we develop a method to measure the coupling constant: the couplingconstants of the waveguide array can be obtained by measuring the ratio of output power of each waveguide by the coupled-mode theory. The coupling constants for the horizontal and vertical directions are ch = 0.853cm?1, cv = 0.877cm?1 respectively.
     Many different waveguide structures induced by femtosecond laser in ferroelectric material are essential for practical applications of waveguides in optical communication. In this dissertation lastly we demonstrate a 1×4 waveguide array produced by a femtosecond laser in z-cut lithium niobate. The polarization dependence of light coupling in such waveguide structure is investigated experimentally, and it is found that the TM mode will be more confined than that of TE mode in such waveguide array. At the same time, the coupling constants of the waveguide array are obtained for extraordinary rays and ordinary rays.
引文
1. T. H. Maiman,“Stimulated Optical Radiation in Ruby,”Nature, 187, 493 (1960).
    2. T. H. Maiman,“Stimulated Optical Emission in Fluorescent Solids: I. Theoretical Considerations,”Phys. Rev. 123, 1145 (1961).
    3. T. H. Maiman, R. H. Hoskins, I. J. D'Haenens, C. K. Asawa, and V. Evtuhov,“Stimulated Optical Emission in Fluorescent Solids: II. Spectroscopy and Stimulated Emission in Ruby,”Phys. Rev. 123, 1151 (1961).
    4.陈英礼,激光导论,电子工业出版社,北京,1986.
    5.孙海轶,飞秒激光诱导多层介质膜损伤及其超快动力学,[学位论文],中国科学院上海光学精密机械研究所,2006.
    6.倪晓昌,飞秒激光微精细加工理论与试验研究,[学位论文],天津大学,2003.
    7. E.P. lppen, C.V. Shank, A. Dienes,“Passive mode locking of the cw dye laser,”Appl. Phys. Lett. 21(8), 348-350 (1972).
    8. R. L. Fork, B. I. Greene, and C. V. Shank,“Generation of Optical Pulses Shorter Than 0.1 Picoseconds by Colliding Pulse Modelocking,”Appl. Phys. Lett. 38, 647 (1982).
    9. J.A. Valdmanis, R.L.Fork,“Design Considerations for a Femtosecond Pulse Laser balancing self-phase modulation group velocity dispersion, saturable absorption and saturable gain,”IEEE Journal of Quantum Electronics 22, 112 (1986).
    10. D.E.Spenee, P.N.Kean, and W.Sibbett,“60-fs pulse generation from a self-mode-loeked Ti : sapphire laser,”Opt Lett. 16, 42 (1991).
    11. H. A. Haus, J. G. Fujimoto and E. P. Ippen,“Structure for additive pulse mode locking,”J.Opt. Soc. Am. B. 8, 2068 (1991).
    12. B.Procter,“Generation of 13-fs pulses from a mode -locked Ti: Al2O3 laser with reduced third order dispersion,”Appl.Phys.Lett. 62, 470 (1993).
    13. A.Kasper, 10-fs pulses generation from a unidirectional Kerr-lens mode-locked Ti: sapphire ring laser, Opt.Lett. 21, 743 (1996).
    14. L. Xu, C. Spielmann, F. Krausz, and R. Szipocs,“Ultrabroadband ring oscillator for sub-10 fs pulse generation,”Opt. Lett. 21, 1259 (1996).
    15. S. Holmgren, V. Pasiskevicius, and F. Laurell,“Generation of 2.8 ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP,”Opt. Express, 56, 219 (2005).
    16. D. Strickland and G. Mourou,“Compression of amplified chirped optical pulses,”Opt. Comm. 56, 219-221 (1985).
    17. A. Sullivan, H. Hamster, H. C. Kapteyn, et al.,“Multierawatt, 100-fs laser,”Opt. Lett. 16, 1406-1408 (1991).
    18. C. P. J. Barty, et al,“Generation of 18-fs multiterawatt pulses by regenerative pulse shaping and chirped pulse amplification,”Opt. Lett. 21(9), 668-670 (1996).
    19. K. Yamakawa,“100TW sub-20-fs Ti:sapphire laser system operating at a 10Hz repetition rate,”Opt. Lett. 23(18):1468-1470 (1998).
    20. M. Aoyama, K. Yamakawa, Y. Akahane, et al.,“0.85 PW, 33-fs Ti: sapphire laser,”Opt. Lett. 28(17), 1594-1596 (2003).
    21.李晓溪,飞秒激光作用下透明材料烧蚀机理及其超快动力学研究,[学位论文],中国科学院上海光学精密机械研究所,2005.
    22.蓝信钜,激光技术,科学技术出版社,2005.
    23. E.P.Ippen, C.V.Shank,“Dynamic spectroscopy and subpicosecond pulse compression,”Appl.Phys.Lett. 27, 488 (1975).
    24. D.J.Kane, R.Trebino,“Characterization of arbitrary femtosecond pulses using frequency-resolved optical grating,”IEEE J.Quantum Electronics, 29, 571 (1993).
    25. C. Iaconis and A. Walmsley,“Spectral phase interferometryfor direct electric-field reconstructionof ultrashort optical pulses,”Opt. Lett. 23, 792 (1998).
    26. D.J.Kane, A.J.Taylor, R.Trebino, K.W.Delong,“Single-short measurement of the intensity and phase of a femtosecond UV l aser pulse with frequency-resolved optical gating,”Opt.Lett. 19, 1061 (1994).
    27. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis and I. A. Walmsley,“Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction,”Opt.Lett. 24, 1314 (1999).
    28. M, Zavelani-Rossi, D.Polli, G,Cerullo, S,De Silvestri, L,Gallmann, G, Steinmeyer, and U.Keller,“Few-optical-cycle laser pulses by OPA: broadband chirped mirror compression and SPIDER characterization,”Appl. Phys. B. 74 S245 (2002).
    29. M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, Jr., D. F. King,“Theory of Electron-Avalanche Breakdown in. Solids,”Phys.Rev.B. 24(6), 3519 (1981).
    30. W. L. Smith, J. H. Bechtel, and N. Bloembergen,“Picosecond laser-induced breakdown at 5321 and 3547 : observation of frequency-dependent behavior,”Phys. Rev. B. 15, 4039 (1977). A&
    31. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou,“Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,”Appl. Phys.Lett. 64, 3071 (1994).
    32.张兴权,周建忠,王广龙,飞秒激光在材料微加工中的应用,电加工与模具,1,4-6 (2005).
    33.杨建军,飞秒激光超精细“冷”加工技术及其应用(Ⅰ),激光与光电子学进展,41(3),42 (2004).
    34.徐世珍,飞秒激光诱导若干介质材料微结构及其物理机制,[学位论文],中国科学院上海光学精密机械研究所,2006.
    35.何飞,程亚,飞秒激光微加工:激光精密加工领域的新前沿,中国激光34(5),595-622 (2007).
    36. E. Gamaly, S. Juodkazis, K. Nishimura et al.,“Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,”Phys. Rev. B. 73(21), 214101 (2006).
    37. Y. Shimotsuma, K. Hirao, P. Kazansky et al.,“Three-dimensional micro- and nano-fabrication in transparent materials by femtosecond laser,”Jpn. J. Appl. Phys. Part 1, 44 (7A), 4735-4748 (2005).
    38. M. Lenzner, J. Kruger, S. Sartania et al.,“Femtosecond optical breakdown in dielect rics,”Phys. Rev. Let t. 80(18), 4076-4079 (1998).
    39. A. Joglekar, H. Liu, E. Meyhofer et al.,“Optics at critical intensity: Applications to nanomorphing,”Proc. Nat. Acad. Sci. 101(16), 5856-5861 (2004).
    40. B. Stuart, M. Feit, S. Herman et al.,“Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,”Phys. Rev. B. 53(4), 1749-1761 (1996).
    41. J.Bonse, S.Baudach, J.Krüger et al.,“Femtosecond laser ablation of silicon-modification thresholds and morphology,”Appl.Phys.A. 74(1), 19-25 (2002 ).
    42. P. Tsai, B. Friedman, A. Ifarraguerri et al.,“All-optical histology usingneurotechnique ultrashort laser pulses,”Neuron, 39(1), 27-41 (2003).
    43. E. Glezer, E. Mazur,“Ultrafast-laser driven micro-explosions in transparent materials,”Appl.Phys.Lett. 71(7), 882-884 (1997).
    44. S. Juodkazis, H. Misawa, T. Hashimoto et al.,“Laser-induced micro-explosion confined in a bulk of silica: Formation of nanovoids,”Appl. Phys. Lett. 88(20), 201909 (2006).
    45. S.Sundaram, C.Schaffer, E.Mazur,“Microexplosions in tellurite glasses,”Appl. Phys. A. 76(3), 379-384 (2003).
    46. T.Jia, Z.Xu, X.Li et al.,“Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers,”Appl. Phys. Lett. 82(24), 4382-4384 (2003).
    47. G. Zhou, M. Gu,“Anisotropic properties of ultrafast laser-driven microexplosions in lithium niobate crystal,”Appl.Phys. Lett. 87(24), 2411072 (2005).
    48. G. Zhou, M. Gu,“Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,”Opt. Lett. 31(18), 2783-2785 (2006).
    49. K. Yamasaki, S. Juodkazis, S. M. Watanabe et al.“Recording by microexplosion and two-photon reading of there-dimensional optical memory in polymethylmethacrylate films,”Appl. Phys. Lett. 76(8), 1000-1002 (2000).
    50. F. Gan, Laser Materials, Singapore, World Scientific, 314, 1995.
    51. J. Dickinson, S. Orlando, S. Avanesyan et al.,“Color center formation in soda lime glass and NaCl single crystals with femtosecond laser pulses,”Appl. Phys. A. 2004, 79(426) :859~864
    52. D. Du, X. Liu, G. Kom et al.,“Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,”Appl. Phys. Lett. 64(23), 3071-3703 (1994).
    53. O. Efimov, K. Gabel, S. Garnov et al.,“Color-center generation in silicate glasses exposed to infrared femtosecond pulses,”J. Opt. Soc. Am. B. 15(1), 193-199 (1998).
    54. K. Davis, K. Miura, N. Sugimoto et al.,“Writing waveguides in glass with a femtosecond laser,”Opt. Lett. 21(21), 1729-1731 (1996).
    55. D. Homoelle, S. Wielandy, A. Gaeta et al.,“Infrared photosensitivity in silicaglasses exposed to femtosecond laser pulses,”Opt, Lett. 24(18), 1311-1313 (1999).
    56. C. Schaffer, A. Brodeur, J. Garcia et al.,“Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,”Opt. Lett. 26(2), 93-95 (2001).
    57. K. Miura, J. Qiu, H. Inouye et al.,“Photowritten optical waveguides in various glasses with ultrashort pulse laser,”Appl. Phys. Lett. 71(23), 3329-3331 (1997).
    58. D. Homoelle, S. Wielandy, A. Gaeta et al.,“Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,”Opt. Lett. 24(18), 1311-1313 (1999).
    59. A. Streltsov, F. Borrelli,“Study of femtosecond-laser-written waveguides in glasses,”J. Opt. Soc. Am. B. 19(10), 2496-2504 (2002).
    60.周秦岭,刘丽英,徐雷等,飞秒激光辐照K9玻璃引起的暗化和折射率变化,中国激光,32(1),119-122 (2005).
    61. F. Ganikhanov, K. Burr, D. Hilton et al.,“Femtosecond optical-pulse-induced absorption and refractive-index changes in GaAs in the midinfrared,”Phys. Rev. B. 60(12), 8890-8896 (1999).
    62. M. Kamata. M. Obara.“Control of t he refractive index change in fused silica glasses induced by a loosely focused femtosecond laser,”Appl. Phys. A. 78(1), 85-88 (2004).
    63. H. Guo, H. Jiang, Y. Fang et al.,“The pulse duration dependence of femtosecond laser induced refractive index modulation in fused silica,”J. Opt. A: Pure Appl. Opt. 6(8), 787-790 (2004).
    64. K. Yamada, W. Watanabe, T. Toma et al.,“In situ observation of photoinduced ref ractive-index changes in filaments formed in glasses by femtosecond laser pulses,”Opt. Lett. 26(1), 19-21 (2001).
    65. L. Dinga, R. Blackwellb, J. Künzlerb et al.,“Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,”Opt. Express, 14(24), 11901-11909 (2006).
    66. V. Bhardwaj, E. Simova, P. Corkum et al.,“Femtosecond laser-induced refractive index modification in multicomponent glasses,”J. Appl. Phys. 97(8), 083102 (2005).
    67. H. M. van Driel, J. E. Sipe, J. F. Young,“Laser-induced periodic surface structure on solids: a universal phenomenon,”Phys. Rev. Lett. 49(26), 1955-1958 (1982).
    68. J. E. Sipe, J. F. Young, J. S. Preston et al.,“Laser-induced periodic surface structure,”Phys. Rev. B. 27(2), 1141-1154 (1983).
    69. S. E. Clark, D. C. Emmony,“Ultraviolet-laser-induced periodic surface structures,”Phys. Rev. B. 40(4), 2031-2041 (1989).
    70. A. Vorobyev, C. Guo,“Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,”Appl. Phys. A. 86(3), 321-324 (2007).
    71. F. Costache, M. Henyk, J. Reif,“Surface patterning on insulators upon femtosecond laser ablation,”Appl. Surf. Sci. 208, 486-491 (2003).
    72. G. Seifert, M. Kaempfe, F. Syrowatka et al.,“Self-organized structure formation on the bottom of femtosecond laser ablation craters in glass,”Appl. Phys. A. 81(4), 799-803 (2005).
    73. O. Varlamova, F. Costache, J. Reif et al.,“Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,”Appl. Surf. Sci. 252, 4702-4706 (2006).
    74. E. Toratani, M. Kamata, M. Obara,“Self-fabrication of void array in fused silica by femtosecond laser processing,”Appl. Phys. Lett. 87(17), 171103 (2005).
    75. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki,“Photosensitivity. in optical fiber waveguides: Application to reflection filter fabrication,”Appl. Phys. Lett. 32(10), 647-649 (1978).
    76. U.Osterberg and W.Margulis,“Dye laser pumped by Nb:YAG laser pulses frequency docbled in a glass optical fiber,”Opt.Lett. 11(8), 516-518 (1986).
    77.梁静,吴志华,杨秀峰,吕福云,用飞秒激光制作高精度微光学器件的研究进展,激光与红外, 37(6),493-497 (2007).
    78. G Cerullo, R Osellame, S Taccheo, et al.,“Femtosecond micromachining of symmetric waveguides at 1. 5μm by astigmatic beam focusing,”Opt. Lett. 27(21), 1938-1940 (2002).
    79. Matthias Will, Stefan Nolte, BorisN Chichkov, et al.,“Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,”Applied Optics,41(21), 4360-4364 (2002).
    80. W Liu, O Kosareva, I S Goubutsov, et al.,“Random deflection of the white light beam during self-focusing and filamentation of a femtosecond laser pulse in water,”Appl. Phys. B. 75, 595 (2002).
    81. Wataru Watanabe, Taishi Asano, Kazuhiro Yamada, et al.,“Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,”Opt. Lett. 28(24), 2491-2493 (2003).
    82. Wataru Watanabe, Yumiko Note, Kazuyoshi Itoh,“Fabrication of mutilmode interference waveguides in glass by use of a femtosecond laser,”Opt. Lett. 30(21), 2888-2890 (2005).
    83. Alexander Szameit, Diminik Blǒmer, Jonas Burghoff, et al.,“Discrete nonlinear localization in femtosecond laser written waveguides in fused silica,”Optics Express, 13(26), 10552 -10557 (2005).
    84. Guangyu Li, Kim A Winick, Ali A Said, et al.,“Waveguide electro-optic modulator in fused silica fabricated by femtosecond laser direct writing and thermal poling,”Optics Letters, 31(6), 739-741 (2006).
    85. Seiji Sowa, Wataru Watanabe, Takayuki Tamaki, et al.,“Symmetric waveguides in poly fabricated by femtosecond laser pulses,”Optics Express, 14(1), 291-297 (2006).
    86. Yuki Kondo, Kentaro Nouchi, Tsuneo Mitsuyu, et al.,“Fabrication of long period fiber gratings by focused irradiation of infrared femtosecond laser pulses,”Opt. Lett. 24(10), 646 - 648 (1999).
    87. Stephen J Mihailov, Christopher W Smelser, Ping Lu, et al.,“Fiber Bragg gratings made with a phase mask and 800nm femtosecond radiation,”Opt. Lett. 28(12), 995- 997 (2003).
    88. CW Smelser, D Grobnic, S J Mihailov,“Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,”Opt. Lett. 29(15), 1458 -1460 (2004).
    89. Alexey I Kalachev, David N Nikogosyan, Fellow, et al.,“Long period fiber grating fabrication by high intensity femtosecond pulses at 211nm,”Journal of lightwave technology, 23(8), 2568 (2005).
    90. Y Lai, A Martinez, I Khrushchev, et al.,“Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,”Opt. Lett. 31(11), 1672 -1674 (2006).
    91. Ouan-zhong Zhao, Jian-Rong Qiu, Xiong-Wei Jiang, et al.,“Fabrication of internal diffraction gratings in calcium fluoride crystal by a focused femtosecond laser,”Optics Express, 12(5), 742– 746 (2004).
    92.孙晓慧,周常河,余鲲,飞秒激光加工最新进展,激光与光电子学进展, 41(9),35-47 (2004).
    93. E N Glezer, M Milosavljevic, L Huang, et al.,“Three dimensional optical storage inside transparent materials,”Opt. Lett. 21(24), 2023 (1996).
    94. K Yamasaki, S Juodkazis, M Watanabe, et al.,“Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,”Applied physics letters, 76(8), 1000 (2000).
    95. R S Taylor, C Hnatovsky, E Simova, et al.,“Femtosecond laser fabrication of nanostructure in silica glass,”Opt. Lett. 28(12), 1043 -1045 (2003).
    96. Akihiro Takita, Hirotsugu Yamamoto, Yoshio Hayasaki, et al.,“Three-dimensional optical memory using a human fingernail,”Optics Express, 13(12), 4560-4567 (2005).
    97. S. Noda, K. Tomoda, N. Yamamoto et al.,“Full there dimensional photonic bandgap crystals at near-Infrared wavelengths,”Science, 289(5479), 604-606 (2000).
    98. M. Loncar, D. Nedeljkovic, T. Doll et al.,“Waveguiding in planar photonic crystals,”Appl. Phys. Lett. 77(13), 937-1939 (2000).
    99. J. Joannopoulos, P. Villeneuve, S. Fan,“Photonic crystals: putting a new twist on light,”Nature, 386(6621), 143-149 (1997).
    100. K. Srinivasan, P. Barclay, O. Painter et al.,“Experimental demonstration of a high quality factor photonic crystal microcavity,”Appl. Phys. Lett. 83(10), 1915-1917 (2003).
    101. W. Lee, S. Pruzinsky, P. Braun,“Multi-photon polymerization of waveguide structures within there dimensional photonic crystals,”Adv. Mater. 14(4), 271-274 (2002).
    102. Y. Ye, S. Badilescu, V. Truong,“Large-scale ordered macroporous SiO2 thinfilms by a template directed method,”Appl. Phys. Lett. 81(4), 616-618 (2002).
    103. M. Campbell, D. Sharp, M. Harrison et al.,“Fabrication of photonic crystal s for the visible spectrum by holographic lithography,”Nature, 404(6773), 53-56 (2000).
    104. C. Ullal, M. Maldovan, E. Thomas et al.,“Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,”Appl. Phys. Lett. 84(26), 5434-5436 (2004).
    105. N. Takeshima, Y. Narita, T. Nagata et al.,“Fabrication of photonic crystals in ZnS-doped glass,”Opt. Lett. 30(5), 537-539 (2005).
    106. H. Sun, Y. Xu, S. Juodkazis et al.,“Arbitrary-lattice photonic crystals created by multiphoton microfabrication,”Opt. Lett., 26(6), 325-327 (2001).
    107. G. Zhou, M. Ventura, M. Straub et al.,“In-plane and out-of-plane band-gap properties of a two-dimensional triangular polymer-based void channel photonic crystal,”Appl. Phys. Lett. 84(22), 4415-4417 (2004).
    108. G. Zhou, M. Ventura, M. Vanner et al.,“Use of ultrafast-laser-driven microexplosion for fabricating three-dimensional void-based diamond-lattice photonic crystals in a solid polymer material,”Opt. Lett. 29(19), 2240-2242 (2004).
    109. G. Zhou, M. Ventura, M. Gu et al.,“Photonic bandgap properties of void-based body centered-cubic photonic crystals in polymer,”Opt. Express, 13(12), 4390-4396 (2005).
    110. G. Zhou, M, Ventura, M. Vanner et al.,“Fabrication and characterization of face-centered-cubic void dots photonic crystals in a solid polymer material,”Appl. Phys. Lett. 86(1), 011108 (2005).
    111. Y. Cheng, K. Sugioka, K. Midorikawa et al.,“Three dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,”Opt. Lett. 28(13), 1144-1146 (2003).
    112. Y. Cheng, H. Tsai, K. Sugioka et al.,“Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining,”Appl. Phys. A. 85(1), 11-14 (2006).
    113. H. Sun, S. Matsuo, H. Misawa,“Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,”Appl. Phys. Lett.74(6), 786-788 (1999).
    114. B. Cumpston, S. Ananthave, S. Barlow DL et al.,“Two- photon polymerization initiators for three-dimensional optical data storage and microfabrication,”Nature, 398(6722), 51-54 (1999).
    115. W. Zhou, S. Kuebler, K. Braun et al.,“An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,”Science, 296(5570), 1106-1109 (2002).
    116. Satoshi Kawata, Hong-Bo Sun, Tomokazu Tanaka, Kenji Takada,“Finer features for functional microdevices: Micromachines can be created with higher resolution using two-photon absorption,”Nature, 412, 697-698 (2001).
    117. A. Kabashin, M. Meunier, C. Kingston et al.,“Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins,”J. Phys. Chem. B. 107(19), 4527-4531 (2003).
    118.孟宪赓,赵崇军,邱建荣,飞秒激光在金属纳米材料制备和材料微结构加工中的应用,激光与光电子学进展,41(4), 48-52 (2004).
    119. R. Philip, G. Kumar, N. Sandhyarani et al.,“Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,”Phys. Rev. B. 62(19), 13160-13166 (2000).
    120. H. Liao, R. Xiao, H. Wang et al.,“Large third-order optical nonlinearity in Au: TiO2 composite films measured on a femtosecond time scale,”Appl. Phys. Lett. 72(15), 1817-1819 (1998).
    121. S. Eliezer, N. Eliaz, E. Grossman et al.,“Nanoparticles and nanotubes induced by femtosecond lasers,”Laser Part .Beams, 23(1), 15-19 (2005).
    122. S. Amoruso, G. Ausanio, R. Bruzzese et al.,“Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,”Phys. Rev. B. 71(3), 033406 (2005).
    123. A. Kabashin, M. Meunier,“Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water,”J. Appl. Phys. 94(12), 7941-7943 (2003).
    124. S. Kwiet, D. Starr, A. Grujic et al.,“Femtosecond laser induced desorption ofwater from silver nanoparticles,”Appl. Phys. B. 80(1), 115-123 (2005).
    125. J. Sylvestre, A. Kabashin, E. Sacher et al.,“Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,”Appl. Phys. A. 80(4), 753-758 (2005).
    126. J. Qiu, X. Jiang, C. Zhu et al.,“Optical properties of structurally modified glasses doped with gold ions,”Opt. Lett. 29(4), 370-372 (2004).
    127. S. Qu, J. Qiu, C. Zhao et al.,“Metal nanoparticle precipitation in periodic arrays in Au2O2-doped glass by two interfered femtosecond laser pulses,”Appl. Phys. Lett. 84(12), 2046-2048 (2004).
    128. D. Geohegan, A. Puretzky, G. Duscher et al.,“Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation,”Appl. Phys. Lett. 72(23), 2987-2989 (1998).
    129. A. Kabashin, J. Sylvestre, S. Patskov,sky et al.,“Correlation between photoluminescence properties and morphology of laser-ablated Si/SiOx nanostructured films,”J. Appl. Phys. 91(5), 3248-3254 (2002).
    130. S. Link, C. Burda, B. Nikoobakht et a1.,“Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,”Phys Chem. B. 104(26), 6152-6163 (2000).
    131. A. Fojtik, A. Henglein.“Laser ablation of film and suspended particles in a solvent-formation of cluster and colloid solutions,”Phys. Chem. 97(2), 252-254 (1993).
    132. A. Kabashin, M. Meunier, C. Kingston et al.,“Fabrication and characterization of gold nanoparticles by femtosecond laserablation in an aqueous solution of cyclodextrins,”J. Phys. Chem. B. 107(19), 4527-4531 (2003).
    133. Li Gui, Baoxi Xu, Tow Chong Chong,“Microstructure in lithium niobate by use of focused femtosecond laser pulses,”IEEE Photonics Technol. Lett. 16, 1337 (2004).
    134. R.R.Thomson, S.Campbell, I.J.Blewett, A.K.Kar, and D.T.Reid,“Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,”Appl. Phys. Lett. 88, 111109 (2006).
    135. H. Nejadmalayeri and P. R. Herman,“Ultrafast laser waveguide writing: lithiumniobate and the role of circular polarization and picosecond pulse width,”Opt. Lett. 31, 2987 (2006).
    136. D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt,“Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,”J.Appl.Phys. 97, 074316 (2005).
    1. Y. R. Shen, the principles of nonlinear optics, California: a Wiley-interscience publication, 1984.
    2.钱士雄,王恭明,非线性光学,上海,复旦大学出版社, 2001.
    3.石顺祥,陈国夫,赵卫,刘继芳,非线性光学,西安,西安电子科技大学出版社, 2003.
    4. J. H. Marburger, Self-Focusing: Theory. Prog. Quantum Electron, 4(1), 35-109 (1975).
    5. L. V. Keldysh,“Ionization in the field of a strong electromagnetic wave,”Sov. Phys. JETP, 20(5), 1307-1314 (1965).
    6. N.Bloembergen,“Laer-Induced electric breakdown in solids,”IEEE.J.Quantum Electron, 10(3), 375-386 1974.
    7. B.C.Stuart, M.D.Feit,S.Herman, A.M.Rubenchik, B.W.Shore, and M.D.Perry,“Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,”Phys.Rev.B. 53(4), 1749-1761 (1996).
    8. D. Du, X. Liu, and G. Mourou,“Reduction of multi-photon ionization in dielectrics due to collisions,”Appl.Phys.B. 63(6), 617-621 (1996).
    9. A.C.Tien, S.Backus, H.Kapteyn, M.Murnane, and G.Mourou,“Short-pulse laser damage in transparent materials as a function of pulse duration,”Phys.Rev.Lett. 82(19), 3883-3886 (1999).
    10. K. K. Thomber,“Applications of scaling to problems in high-field electronic transport,”J.Appl.Phys. 52(1), 279-290 (1981).
    11. C.B.Schaffer, Interaction of femtosecond laser pulse with transparent materials, [Dissertation], Cambridge, Harvard University, 2001.
    12. E.Yablonovitch, and N.Bloembergen,“Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media,”Phys.Rev.Lett. 29(14), 907-910 (1972).
    13.陈英礼,激光导论,北京,电子工业出版社,1986.
    14. J.B.Ashcom, The role of focusing in the interaction of femtosecond laser pulses with transparent materials, [Dissertation], Cambridge, Harvard University, 2003.
    1. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W.Shore, and M. D. Perry,“Optical ablation by high-power shortpulse lasers,”J.Opt.Soc.Am.B. 13, 459 (1996).
    2. B.C.Stuart, M.D. Feit, S.Herman, A.M.Rubenchik, B.W.Shore, and M.D.Perry,“Nanosecond-to-femtosecond laserinduced breakdown in dielectrics,”Phys. Rev. B. 53, 1749 (1996).
    3. J.Ihlemann, B.Wolff, and P.Simon,“Nanosecond and femtosecond excimer laser ablation of fused silica,”Appl. Phys. A. 54, 363 (1992).
    4. S.Kuper and M.Stuke,“Ablation of polytetrafluoroethylene (Teflon) with femtosecond UV excimer laser pulses,”Appl. Phys. Lett. 54, 4 (1989).
    5. Xiaoxi Li, Tianqin Jia, Donghai Feng, and Zhizhan Xu,“Ablation induced by femtosecond laser in sapphire,”Appl. Surf. Sci. 225, 339 (2004).
    6. X.C. Wang, G.C. Lim, H.Y. Zheng, F.L. Ng, W. Liu, and S.J. Chua,“Femtosecond pulse laser ablation of sapphire in ambient air,”Appl. Surf. Sci. 228, 221 (2004).
    7. P.T. Mannion, J.Magee, E.Coyne, G.M. O’Connor, and T.J. Glynn,“The effect of damage accumulation behavior on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,”Appl. Surf. Sci. 223, 275 (2004).
    8. I. Zergioti and M. Stuke,“Short pulse UV laser ablation of solid and liquid gallium,”Appl. Phys. A. 67, 391 (1998).
    9. A. Yariv, P. Yeh, Optical waves in crystals: Propagation and Control of Laser Radiation, New York, John Wiley &.Sons, Inc., 1984.
    10. Guangyong Zhou and Min Gu,“Anisotropic properties of ultrafast laser-driven micriexplosions in lithium niobate crystal,”Appl. Phys. Lett. 87, 241107 (2005).
    11. R.R.Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid,“Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,”Appl. Phys. Lett. 88, 111109 (2006).
    12. Burghoff J, Hartung H, Nolte S, and A. Tunnermann,“Structural properties of femtosecond laser-induced modifications in LiNbO3,”Appl.phys.A. 86, 165 (2007).
    13. Devesh C. Deshpande, Ajay P. Malshe, Eric A. Stach, Velimir Radmilovic, Dennis Alexander, David Doerr, and Drew Hirt,“Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,”J. Appl. Phys. 97, 074316(2005).
    14. B.W.Ward, E.R.Statz, K.A.Nelson,“Fabrication of polaritonic structures in LiNbO3 and LiTaO3 using femtosecond laser maching,”Appl. Phys. A. 86, 49–54 (2007)
    15. Y.S.Zhang, X.F.Chen, H.Y.Chen, Y.X.Xia,“Surface ablation of lithium tantalate by femtosecond laser,”Applied Surface Science, 253, 8874 (2007).
    16. B.C.Stuart, M.D.Feit, A.M.Rubenchik, B.W.Shore, and M.D.Perry,“Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,”Phys. Rev. Lett. 74(12), 2248-2251 (1996).
    17.王永玉,许龙江,戚诒让,用光偏转方法对金属激光烧蚀阈值的研究,青岛海洋大学学报,28(1),89-92 (1998).
    18. A.P.Schwarzenbach, H.P.Weber, J.E.Balmer,“Laser damage test on Balzers thin film coatings,”Appl.Opt. 23(21), 3764-3766 (1984).
    19. A.Ben-Yakar, R.L.Byer,“femtosecond laser ablation properties of borosilicate glass,”J. Appl. Phys. 96(9), 5316-5323 (2004).
    20.季忠刚,邓蕴沛,冷雨欣,李儒新,徐至展,飞秒激光多脉冲烧蚀进展,激光与光电子进展,40(9),15-20 (2003).
    21. W.Kautek, J.Krüger,“Laser ablation of dielectrics with pulse duration between 20 fs and 3 ps,”Appl.Phys.Lett. 69(21), 3146-3148 (1996).
    22. D.Ashkenasi, M.Lorenz, R.Stioan et al.“Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,”Appl.Surf.Sci. 150,101-106 (1999).
    23. A. Q. Wu, I. H. Chowdhury, and X. F. Xu,“Femtosecond laser absorption in fused silica: Numerical and experimental investigation,”Phys. Rev. B. 72, 085128 (2005).
    24. A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou,“Short-Pulse Laser Damage in Transparent Materials as a Function of Pulse Duration,”Phys. Rev. Lett. 82, 3883 (1999).
    25. S. Chao and C.-C. Hung,“Large photoinduced ferroelectric coercive field increase and photodefined domain pattern in lithium-tantalate crystal,”Appl. Phys.Lett. 69 3803 (1996).
    26. W.Xie, X.F.Chen, Y.P.Chen, and Y.X.Xia,“Theoretical study of quasi-phase-matching fourth harmonic generation in periodically poled lithium tantalite,”Chin.Opt.Lett. 2, 664 (2004).
    1. R. Morandotti, H. S. Eisenberg, Y. Silberberg, M. Sorel, and J. S. Aitchison,“Self-Focusing and Defocusing in Waveguide Arrays,”Phys. Rev. Lett. 86, 3296 (2001).
    2. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison,“Diffraction Management”Phys. Rev. Lett. 85, 1863 (2000).
    3. D. N. Christodoulides and R. I. Joseph,“Discrete self-focusing in nonlinear arrays of coupled waveguides,”Opt. Lett. 13, 794 (1988).
    4. T. Pertsch, T. Zentgraf, U. Peschel, A. Br?uer, and F. Lederer,“Anomalous Refraction and Diffraction in Discrete Optical Systems,”Physical Review Letters,88, 093901 (2002).
    5. Mark J. Ablowitz and Ziad H. Musslimani,“Discrete Diffraction Managed Spatial Solitons,”Physical Review Letters, 87, 254102 (2001).
    6. H. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd, and J. Aitchison,“Discrete spatial optical solitons in waveguide arrays,”Phys. Rev. Lett. 81, 3383–3386 (1998).
    7. N. Efremidis, S. Sears, D. Christodoulides, J. Fleischer, and M. Segev,“Discrete Solitons in photorefractive optically induced nonlinear photonic lattices,”Phys. Rev. E. 66, 04660211 (2002).
    8. J.W.Fleischer, M.Segev, N.K.Efremidis, and D.N.Christodoulides,“Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,”Nature, 422, 147 (2003).
    9. Neshev, D., Ostrovskaya, E., Kivshar, and Y., Krolikowski, W.,“Spatial solitons in optically induced gratings,”Optics Letters, 28, 710 (2003).
    10. H. Martin, E.D. Eugenieva, Z. Chen and D.N. Christodoulides,“Discrete solitons and soliton-induced dislocations in partially-coherent photonic lattices,”Phys. Rev. Lett. 92, 123902 (2004).
    11. Z. Chen, H. Martin, E.D. Eugenieva, J. Xu, and A. Bezryadina,“Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains,”Phys. Rev. Lett. 92, 143902 (2004).
    12. T. Pertsch, U. Peschel, S. Nolte, A. Tuennermann, F. Lederer, J. Kobelke, K. Schuster, and H. Bartelt,“Nonlinearity and disorder in two-dimensional fiber arrays,”Phys. Rev. Lett. 39, 468 (2004).
    13. K. Davies, K. Miura, N. Sugimoto, and K. Hirao,“Writing waveguides in glass with a fs-laser,”Opt. Lett. 21, 1729 (1996).
    14. A. Szameit, D. Blomer, J. Burghoff, T. Pertsch, S. Nolte, and A. Tunnermann,“Hexagonal waveguide arrays written with fs-laser pulses,”Appl. Phys. B: Lasers Opt. 82, 507 (2006).
    15. T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S. Nolte, and A. Tuennermann,“Discrete diffraction in two-dimensional arrays of coupled waveguides in silica,”Opt. Lett. 29, 468 (2004).
    16. A. Szameit, D. Bl?mer, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann and F. Lederer,“Discrete nonlinear localization in femtosecond laser written waveguides in fused silica,”Opt. Express, 13, 10552 (2005).
    17. Alexander Szameit, Jonas Burghoff, Thomas Pertsch, Stefan Nolte, Andreas Tünnermann, and Falk Lederer,“Two-dimensional solitons in cubic fs laser written waveguide arrays in fused silica,”Opt. Express, 14, 6055 (2006).
    18. J. Hudock, N. K. Efremidis, and D. N. Christodoulides,“Anisotropic diffraction and elliptic discrete solitons in two-dimensional waveguide arrays,”Opt. Lett. 29, 268 (2004).
    19. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann,“Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,”Appl. Phys. A. 77, 109 (2003).
    20. Y. Li,W.Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang,“Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses,”Appl. Phys. Lett. 80, 1508 (2002).
    21. Yuki Kondo, Kentaro Nouchi, and Tsuneo Mitsuyu,“Fabrication of long-period fiber grating by focused irradiation of infrared femtosecond laser pulses,”Opt. Lett. 24, 646 (1999).
    22. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, andK. Shihoyama,“Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a. femtosecond laser,”Opt. Lett. 28, 55 (2003).
    23. M. Ams, G. Marshall, D. Spence, and M. Withford,“Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,”Opt. Express, 13, 5676 (2005).
    24. R. Osellame, S. Taccheo, M. Maríangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo,“Femtosecond writing of active optical waveguides with astigmatically shaped beams,”J. Opt. Soc. Am. B. 20, 1559 (2003).
    25. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri,“Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,”Opt. Lett. 27, 1938 (2002).
    26. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry,“Optical ablation by high-power short-pulse lasers,”J. Opt. Soc. Am. B, 13, 459 (1996).
    27. M. Lenzner, J. Krueger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz,“Femtosecond Optical Breakdown in Dielectrics,”Phys. Rev. Lett. 80, 4076 (1998).
    28. D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong,“Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,”Appl. Phys. A. 84, 257 (2006).
    29. W.Watanabe, T.Asano, K.Yamada, K.Itoh, and J.Nishii,“Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,”Opt. Lett. 28, 2491 (2003).
    1. K. Davies, K. Miura, N. Sugimoto, and K. Hirao,“Writing waveguides in glass with a fs-laser,”Opt. Lett. 21, 1729 (1996).
    2.A. Szameit, D. Blomer, J. Burghoff, T. Pertsch, S. Nolte, and A. Tunnermann,“Hexagonal waveguide arrays written with fs-laser pulses,”Appl. Phys. B: Lasers Opt. 82, 507 (2006).
    3.T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S. Nolte, and A. Tuennermann,“Discrete diffraction in two-dimensional arrays of coupled waveguidesin silica,”Opt. Lett. 29, 468 (2004).
    4. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith,“Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,”Opt. Lett. 24, 1311 (1999).
    5. I. B. Sohn, M. S. Lee, J.S. Woo, S.M. Lee, and J.Y. Chung,“Fabrication of photonic devices directly written within glass using a femtosecond laser,”Opt. Express. 13, 4224 (2005)
    6. W.Watanabe, T.Asano, K.Yamada, K.Itoh, and J.Nishii,“Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,”Opt. Lett. 28, 2491 (2003).
    7. Yuki Kondo, Kentaro Nouchi, Tsuneo Mitsuyu, Masaru Watanabe, Peter G. Kazansky, and Kazuyuki Hirao,“Fabrication of long-period fiber grating by focused irradiation of infrared femtosecond laser pulses,”Opt. Lett. 24, 646 (1999).
    8. C. W. Smelser, D. Grobnic, and S. J. Mihailov, "Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask," Opt. Lett. 29, 1730 (2004).
    9.Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion,“Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,”Opt. Lett. 31, 1672 (2006).
    10.S. Nolte, M. Will, J. Burghoff, and A. Tuennermann,“Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,”Appl. Phys. A. 77, 109 (2003).
    11. A. Yariv, P. Yeh. Optical waves in crystals. Propagation and Control of Laser Radiation, New York, John Wiley &.Sons, Inc., 1984.
    12. Li Gui, Baoxi Xu, Tow Chong Chong,“Microstructure in lithium niobate by use of focused femtosecond laser pulses,”IEEE Photonics Technol. Lett. 16, 1337 (2004).
    13. R.R.Thomson, S.Campbell, I.J.Blewett, A.K.Kar, and D.T.Reid,“Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,”Appl. Phys. Lett. 88, 111109 (2006).
    14. H. Nejadmalayeri and P. R. Herman,“Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width,”Opt. Lett.31, 2987 (2006).
    15. J.Burghoff, H.Hartung, S. Nolte, and A.Tunnermann,“Structural properties of femtosecond laser-induced modifications in LiNbO3,”Appl. Phys. A. 86, 165 (2007).
    16. J.Burghoff, C.Grebing, S.Nolte, and A.Tünnermann,“Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,”Applied Surface Science, 253, 7899 (2007).
    17. J.Burghoff, S.Nolte, and A.Tünnermann,“Origins of waveguiding in femtosecond laser-structured LiNbO3,”Appl. Phys. A. 89, 127 (2007).
    18.龚小竞,飞秒激光加工微光学器件若干关键问题研究,[学位论文],中国科学技术大学博士学位论文,2007.
    19.钱士雄,王恭明,非线性光学-原理与进展,上海,复旦大学出版社,2002.
    20.沈元壤,非线性光学原理,北京,北京科学出版社,1987.
    21.费浩生,非线性光学,北京,北京高等教育出版社,1990.
    22.石顺祥,陈国大,赵卫,刘继芳,非线性光学,西安,西安电子科技人学出版社,2003.
    23.李淳飞,非线性光学,哈尔滨,哈尔滨工业大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700