负压联合局部给氧治疗大鼠深Ⅱ度烧伤创面进行性坏死的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景烧伤是一种动态的损伤。烧伤创面不是完全固定不变,在多种因素的影响下可使创面加深扩大。烧伤创面加深扩大的本质是瘀滞区的细胞死亡,原因有三:炎症细胞的浸润,血流的改变和氧自由基的损伤。传统上认为烧伤瘀滞区细胞死亡有凋亡和胀亡两种,但未见由自噬引起死亡的报道。负压创面治疗技术(Negativepressure wound therapy, NPWT)已广泛应用于平时和战时的各种急慢性创面治疗中,其作用机理也被逐渐揭示,主要是去除水肿,引流渗出液,改善局部血运。近年报道的局部氧疗方法(Topical oxygen therapy,TOT),虽然其作用机制有待深入研究,但文献报道其对创面的治疗效果是肯定的。本室张自鹏和刘海波先后将两者联合应用促进缺血创面愈合的研究,效果明显,但作用机制尚不完全清楚。本实验拟建立深II度烧伤模型,探讨瘀滞区细胞死亡的原因,进一步探索负压和局部给氧在治疗创面的作用机理,为两者联合应用提供实验依据。实验共分以下五个部分:
     1.按文献报道用铜梳的突出部分别接触大鼠背部脱毛区12s,16s,20s,24s,28s形成烫伤创面,以烫伤区之间的间隙区作为瘀滞区。利用图像分析和HE染色方法,观察测量间隙区创面面积和烧伤创面深度的变化,结合大体和镜下观察进行分析。结果:铜梳烫伤时间20s可形成深II度烧伤创面,且48h内间隙区会发生进行性坏死,符合瘀滞区动物模型的研究要求。
     2.利用免疫组化检测自噬标记物Beclin1和TUNEL法检测瘀滞区组织凋亡细胞,使用蛋白印迹方法检测自噬和凋亡共调节蛋白Bcl-2与Bax的蛋白表达量变化,并探讨两种细胞死亡方式在烧伤创面早期进行性坏死的意义。结果:自噬和凋亡相比,自噬发生较早,2h即出现,12h达到高峰,24h开始下降,主要分布于真皮深层的毛囊;而凋亡出现较晚,12h开始出现,48h才有明显表达,主要分布在表皮层。抗凋亡蛋白Bcl-2的表达量随着时间下降,促凋亡Bax的蛋白表达量随着时间上升。这些结果提示我们对于烧伤创面进行性坏死的早期针对性治疗应将自噬考虑在内。
     3.应用负压联合局部氧疗实验性治疗大鼠背部深II度创面。分为单纯负压组(持续负压75mmHg,4小时),单纯氧疗组(单纯给予40%±5%湿化纯氧,90min),负压氧联合组(负压治疗同时给予40%±5%湿化纯氧,4小时)和对照组(单层油纱布+干燥无菌纱布包扎),均隔日换药,分别于治疗前,治疗后2、4、6、8天取材,观察四种治疗对瘀滞区的影响。结果:负压联合给氧组瘀滞区面积下降最少(P<0.05),创面深度减少最多(P<0.05)。除对照组外,2d-8d的治疗周期内,其余三组面积变化无显著差别,P>0.05,说明各治疗组抑制瘀滞区扩大的作用主要在2d内。
     4.观察四种治疗方法对大鼠深II度创面瘀滞区组织相关氧化应激指标的影响。同实验3进行分组,分别于治疗前,治疗后2、4、6天取瘀滞区组织,利用相关试剂盒,检测该区组织超氧化物歧化物(SOD)和过氧化物酶(CAT)的活性,丙二醛(MDA)的水平。结果:负压氧联合组各时间点的SOD和CAT活性,MDA水平与其余三组相比较,具有统计学差异(P<0.05),该组改善深II度创面的氧化应激反应效果最佳。
     5.同上分组治疗深II度创面,分别于治疗前,治疗后2、4、6天取材瘀滞区组织,利用qRT-PCR的方法检测NOS,XOD,NOX三者mRNA表达量。结果:从治疗开始负压氧联合组的NOS,XOD,NOX mRNA表达量持续下降(P<0.05),显示其对瘀滞区抗氧化保护作用优于其他各组。
     结论:
     铜梳烫伤模型是一个可靠的可重复的用于研究烧伤进行性坏死的模型。沸水加热5分钟后,铜梳接触皮肤时间控制在20s可形成深II度创面,创面深度进行性加深,未直接烫伤的间隙区皮肤会在48h内损伤进行性坏死。自噬、凋亡均与瘀滞区细胞死亡相关,但发生影响的时间和部位有别。自噬发生较早,主要集中于真皮层毛囊,而凋亡出现较晚,多出现在表皮层。负压联合局部给氧治疗深II度创面可明显抑制创面的加深和扩大。由于自噬的发生时间在伤后2h,故治疗时间理论上应不晚于2-3h,且至少维持48h。负压治疗能够清除坏死组织、减轻水肿和改善血运,氧疗刚直接向创面弥散氧,两者联合使SOD, CAT活性提高,MDA含量降低,使ROS相关的NOS, XOD, NOX的mRNA表达量降低,降低氧化应激反应,限制瘀滞区进行性坏死,这可能是负压联合局部给氧疗法的协同作用机制之一。
Background: Bunrs is a dynamic injury. Burn wound is not permanent, under multiplefactors it will be deeper and wider. The nature of this burn wound progression is death ofcell in the zone of stasis, main causes of cell death include inflammatory cell infiltrates,blood flow changes, and oxygen derived free radicals. Traditionally, death of cell wasdivided into two kinds, apoptosis and oncosis, however, the type II programmed celldeath, autophagy, has not been studied in burn wound yet. Negative pressure woundtherapy (NPWT) has been widely used over diversed acute and chronic wound in peaceand war, and its mechanism has been gradually disclosed either, include edema remove,exudation draining and improve local blood flow. The effect of topical oxygen therapy(TOT) for wound is positive, although it mechanism needs further elucidate. NPWT andTOT have been alone used in burn wound, and our research team member Zhang ZP andLiu HP have proved that combined theses two therapies could improve ischemic woundhealing successfully, but their mechanisms are still not well known. This experimentaimed to build a reliable deep partial thickness burn wound, and explored the cause ofcell death in the zone of stasis, and then used negative pressure combined topical oxygentherapy for burn wound to further elucidate their mechanisms and synergistic effect ofwound treatment and provided evidence for clinical use. This experiment had5parts asbelow.
     Methods and Results
     Part I: Based on reference, we customed made a brass comb and heated it in boilingwater for5min, blotted dry, and then quickly placed on the shaved and depilated dorsumof rat, and held for12s,16s,20s,24s,28s without any pressure, and then a burn woundwith3interspaces were made. We used image analysis and hematoxylin and eosinstaining to observe the change of interspace area and burn wound depth, and combinedwith gross and microscope observation to analyse. Results: Brass comb burn with20scould make a deep partial thickness burn wound, and interspaces would have burn woundprogression, which is met the standard of the zone of stasis animal model.
     Part II: Immunohistochemistry was used for analysis the distribution of autophagicmarker Beclin1and apoptotic cell by TUNEL in the zone of stasis. Western blotting wasused for evaluation Bcl-2and Bax, which were dual-regulators of autophagy andapoptosis. Autophagy was mainly strongly expressed in hair follicle epithelium from2hours postburn, and rapidly arrived peak at12hours postburn then gradually and gentlydeclined. Differently, apoptosis was mainly located in stratum epidermis and lightlyexpressed until12hours postburn, and then slowly increased and obvious staining wasobserved at48hours postburn. These results suggest that early treatment for burn woundprogression should take autophagy int consideration.
     Part III: Negative pressure combined topical oxygen for rat dorsal deep partial thicknessburn wound. There are negative pressure group(NP, continuous negative pressure75mmHg,4hrs), topical oxygen group (TO,40%±5%humidifying pure oxygen,90min),negative pressure combined topical oxygen group (NO, continuous negative pressure75mmHg and40%±5%humidifying pure oxygen at the same time,4hrs), and controlgroup (CT, dressing by single layer oil gause). All is change fresh dressing per two days.Biopsies were taken before treatment, and after treatment at2,4,6and8days. NOgroup’s interspace area decreased the least and burn wound depth declined the most(P<0.05). Except CT group, between the treatments from2d to8d, comparison of otherthree groups’interspaces change, the difference was not statistically significant. Thissuggested that different groups’effect of limiting the zone of stasis progression was mainly in2days.
     Part VI: Observation of oxidative stress index of rat deep partial thickness burn woundinterspace after four different treatments. The same groups as Part III, samples wereharvested from interspace before treatment and after treatment at2,4and6days, andrelated kits were used to analyse the activity of superoxide dismutase (SOD) and catalase(CAT) and the level of malondialdehyde (MDA). NO group’s activity of SOD and CATwere promoted and level of MDA was lower at each time point, comparison in groups,the statistically difference is significant (P<0.05). NO group could obviously attenuatethe oxidative stress response of deep partial thickness burn wound progression.
     Part V: The same groups as Part III, samples were harvested from interspace beforetreatment and after treatment for2,4and6days, qRT-PCR was used for semiquantitative NOS, XOD and NOX mRNA expression. NO group’s NOS, XOD and NOXmRNA expression decreased from treatment began(P<0.05), indicated that its protectionof the zone of stasis from oxidative stress was better than other groups.
     Conclusion
     Brass comb burn model is a reliable and repeative animal model for burn woundprogression research. After heated brass comb in boiling water for5minutes, and thenplaced it on skin for20seconds could make a deep partial thickness burn wound. Thiswound would go deeper and wider, and unburn skin of interspace would be progressivenecrosis in48hours. Autophagy and apoptosis play roles in burn wound progression, andtheir relative importance would change along with time. Autophagy occured earlier andmainly in dermis layer hair follicle, and apoptosis occurred later and most in epidermis.Negative pressure combined topical oxygen could obviously limit burn woundprogression, considering autophagy occurs in2hours postburn, and its applied timeshould be controlled in2-3hours postburn and maintained for48hours at least. Negativepressure therapy could clear necrotic tissues, edema remove and improve blood flow,these are beneficial for oxygen diffusion. Two therapy combine together could meetmutual complementarity. NO for deep partial thickness burn wound could promote theactivity of SOD and CAT, and decrease the level of MDA, and decline the mRNA expression of NOS, XOD and NOX. Attenuate oxidative stress and limit burn woundprogression, these might be synergetic mechanism of negative pressure combined topicaloxygen.
引文
[1] Kao CC, Garner WL. Acute Burns. Plast Reconstr Surg2000;101(7):2482-93.
    [2]尹婧,叶冬青.皮肤烧伤的流行病学现况.疾病控制杂志2001;5(3):236-8.
    [3]柴家科;盛志勇;杨红明等.近三年全国烧伤外科流行病学调查.中华医学会烧伤外科学分会2009年学术年会论文汇编2009;
    [4] Yao Y, Liu Y, Zhou J, Qiu J, Zhang L, Yuan D, et al. The epidemiology of civilianinpatients' burns in Chinese military hospitals,2001-2007. Burns2011;37(6):1023-32.
    [5] Atiyeh BS, Gunn SW, Hayek SN. State of the art in burn treatment. World J Surg2005;29(2):131-48.
    [6] Roeder RA, Schulman CI. An overview of war-related thermal injuries. J CraniofacSurg2010;21(4):971-5.
    [7] Foster MA, Moledina J, Jeffery SL. Epidemiology of U.K. military burns. J BurnCare Res2011;32(3):415-20.
    [8] Jackson DM. The diagnosis of the depth of burning. Br J Surg1953;40(164):588-96.
    [9] Jackson DM. Second thoughts on the burn wound. J Trauma1969;9(10):839-62.
    [10] Shakespeare P. Burn wound healing and skin substitutes. Burns2001;27(5):517-22.
    [11] Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev MolCell Biol2008;9(12):1004-10.
    [12] Gravante G, Filingeri V, Delogu D, Santeusanio G, Palmieri MB, Esposito G, et al.Apoptotic cell death in deep partial thickness burns by coexpression analysis ofTUNEL and Fas. Surgery2006;139(6):854-5.
    [13] Iwasaki K, Izawa M, Mihara M. Thermal injury induces both necrosis and apoptosisin rat skin. Br J Dermatol1997;137(4):647-8.
    [14] Matylevitch NP, Schuschereba ST, Mata JR, Gilligan GR, Lawlor DF, Goodwin CW,et al. Apoptosis and accidental cell death in cultured human keratinocytes afterthermal injury. Am J Pathol1998;153(2):567-77.
    [15] Gravante G, Palmieri MB, Esposito G, Delogu D, Santeusanio G, Filingeri V, et al.Apoptotic death in deep partial thickness burns vs. normal skin of burned patients.J Surg Res2007;141(2):141-5.
    [16] Gravante G, Delogu D, Palmieri MB, Santeusanio G, Montone A, Esposito G.Inverse relationship between the apoptotic rate and the time elapsed from thermalinjuries in deep partial thickness burns. Burns2008;34(2):228-33.
    [17] Singer AJ, McClain SA, Taira BR, Guerriero JL, Zong W. Apoptosis and necrosis inthe ischemic zone adjacent to third degree burns. Acad Emerg Med2008;15(6):549-54.
    [18] Lanier ST, McClain SA, Lin F, Singer AJ, Clark RA. Spatiotemporal progression ofcell death in the zone of ischemia surrounding burns. Wound Repair Regen2011;19(5):622-32.
    [19] Giles N, Rea S, Beer T, Wood FM, Fear MW. A peptide inhibitor of c-Jun promoteswound healing in a mouse full-thickness burn model. Wound Repair Regen2008;16(1):58-64.
    [20] Godar DE. Preprogrammed and programmed cell death mechanisms of apoptosis:UV-induced immediate and delayed apoptosis. Photochem Photobiol1996;63(6):825-30.
    [21] Godar DE. Singlet oxygen-triggered immediate preprogrammed apoptosis. MethodsEnzymol2000;319(309-30.
    [22] Sheehan JM, Young AR. The sunburn cell revisited: an update on mechanisticaspects. Photochem Photobiol Sci2002;1(6):365-77.
    [23] Bucky LP, Vedder NB, Hong HZ, Ehrlich HP, Winn RK, Harlan JM, et al. Reductionof burn injury by inhibiting CD18-mediated leukocyte adherence in rabbits. PlastReconstr Surg1994;93(7):1473-80.
    [24] Han YP, Tuan TL, Wu H, Hughes M, Garner WL. TNF-alpha stimulates activationof pro-MMP2in human skin through NF-(kappa)B mediated induction ofMT1-MMP. J Cell Sci2001;114(Pt1):131-9.
    [25] Parihar A, Parihar MS, Milner S, Bhat S. Oxidative stress and anti-oxidativemobilization in burn injury. Burns2008;34(1):6-17.
    [26] Moore FD, Jr., Davis C, Rodrick M, Mannick JA, Fearon DT. Neutrophil activationin thermal injury as assessed by increased expression of complement receptors. NEngl J Med1986;314(15):948-53.
    [27] Hu Z, Sayeed MM. Suppression of mitochondria-dependent neutrophil apoptosiswith thermal injury. Am J Physiol Cell Physiol2004;286(1):C170-8.
    [28] Hu Z, Sayeed MM. Activation of PI3-kinase/PKB contributes to delay in neutrophilapoptosis after thermal injury. Am J Physiol Cell Physiol2005;288(5):C1171-8.
    [29] Ogura H, Hashiguchi N, Tanaka H, Koh T, Noborio M, Nakamori Y, et al.Long-term enhanced expression of heat shock proteins and decelerated apoptosisin polymorphonuclear leukocytes from major burn patients. J Burn Care Rehabil2002;23(2):103-9.
    [30] van de Goot F, Krijnen PA, Begieneman MP, Ulrich MM, Middelkoop E, NiessenHW. Acute inflammation is persistent locally in burn wounds: a pivotal role forcomplement and C-reactive protein. J Burn Care Res2009;30(2):274-80.
    [31] Henze U, Lennartz A, Hafemann B, Goldmann C, Kirkpatrick CJ, Klosterhalfen B.The influence of the C1-inhibitor BERINERT and the protein-free haemodialysateACTIHAEMYL20%on the evolution of the depth of scald burns in a porcinemodel. Burns1997;23(6):473-7.
    [32] Suber F, Carroll MC, Moore FD, Jr. Innate response to self-antigen significantlyexacerbates burn wound depth. Proc Natl Acad Sci U S A2007;104(10):3973-7.
    [33] Mileski WJ, Burkhart D, Hunt JL, Kagan RJ, Saffle JR, Herndon DN, et al. Clinicaleffects of inhibiting leukocyte adhesion with monoclonal antibody to intercellularadhesion molecule-1(enlimomab) in the treatment of partial-thickness burn injury.J Trauma2003;54(5):950-8.
    [34] Ipaktchi K, Mattar A, Niederbichler AD, Hoesel LM, Hemmila MR, Su GL, et al.Topical p38MAPK inhibition reduces dermal inflammation and epithelialapoptosis in burn wounds. Shock2006;26(2):201-9.
    [35] Spies M, Nesic O, Barrow RE, Perez-Polo JR, Herndon DN. Liposomal IGF-1genetransfer modulates pro-and anti-inflammatory cytokine mRNA expression in theburn wound. Gene Ther2001;8(18):1409-15.
    [36] Dasu MR, Herndon DN, Nesic O, Perez-Polo JR. IGF-I gene transfer effects oninflammatory elements present after thermal trauma. Am J Physiol Regul IntegrComp Physiol2003;285(4):R741-6.
    [37] Atiyeh BS, Costagliola M, Hayek SN, Dibo SA. Effect of silver on burn woundinfection control and healing: review of the literature. Burns2007;33(2):139-48.
    [38] Singh V, Devgan L, Bhat S, Milner SM. The pathogenesis of burn woundconversion. Ann Plast Surg2007;59(1):109-15.
    [39] Liu X, Lee PY, Ho CM, Lui VC, Chen Y, Che CM, et al. Silver nanoparticlesmediate differential responses in keratinocytes and fibroblasts during skin woundhealing. ChemMedChem2010;5(3):468-75.
    [40] Baskaran H, Toner M, Yarmush ML, Berthiaume F. Poloxamer-188improvescapillary blood flow and tissue viability in a cutaneous burn wound. J Surg Res2001;101(1):56-61.
    [41] Papp A, Romppanen E, Lahtinen T, Uusaro A, Harma M, Alhava E. Red blood celland tissue water content in experimental thermal injury. Burns2005;31(8):1003-6.
    [42] Baskaran H, Yarmush ML, Berthiaume F. Dynamics of tissue neutrophilsequestration after cutaneous burns in rats. J Surg Res2000;93(1):88-96.
    [43] Infanger M, Schmidt O, Kossmehl P, Grad S, Ertel W, Grimm D. Vascularendothelial growth factor serum level is strongly enhanced after burn injury andcorrelated with local and general tissue edema. Burns2004;30(4):305-11.
    [44] Santos FX, Arroyo C, Garcia I, Blasco R, Obispo JM, Hamann C, et al. Role of mastcells in the pathogenesis of postburn inflammatory response: reactive oxygenspecies as mast cell stimulators. Burns2000;26(2):145-7.
    [45] Rantfors J, Cassuto J. Role of histamine receptors in the regulation of edema andcirculation postburn. Burns2003;29(8):769-77.
    [46] Friedl HP, Till GO, Trentz O, Ward PA. Roles of histamine, complement andxanthine oxidase in thermal injury of skin. Am J Pathol1989;135(1):203-17.
    [47] Jonkam CC, Enkhbaatar P, Nakano Y, Boehm T, Wang J, Nussberger J, et al. Effectsof the bradykinin B2receptor antagonist icatibant on microvascular permeabilityafter thermal injury in sheep. Shock2007;28(6):704-9.
    [48] Nwariaku FE, Sikes PJ, Lightfoot E, Mileski WJ, Baxter C. Effect of a bradykininantagonist on the local inflammatory response following thermal injury. Burns1996;22(4):324-7.
    [49] Barrow RE, Ramirez RJ, Zhang XJ. Ibuprofen modulates tissue perfusion inpartial-thickness burns. Burns2000;26(4):341-6.
    [50] Yonehara N, Yoshimura M. Interaction between nitric oxide and substance P onheat-induced inflammation in rat paw. Neurosci Res2000;36(1):35-43.
    [51] Inoue H, Ando K, Wakisaka N, Matsuzaki K, Aihara M, Kumagai N. Effects ofnitric oxide synthase inhibitors on vascular hyperpermeability with thermal injuryin mice. Nitric Oxide2001;5(4):334-42.
    [52] Shimizu S, Tanaka H, Sakaki S, Yukioka T, Matsuda H, Shimazaki S. Burn depthaffects dermal interstitial fluid pressure, free radical production, and serumhistamine levels in rats. J Trauma2002;52(4):683-7.
    [53] Lund T, Onarheim H, Wiig H, Reed RK. Mechanisms behind increased dermalimbibition pressure in acute burn edema. Am J Physiol1989;256(4Pt2):H940-8.
    [54] Demling RH. The burn edema process: current concepts. J Burn Care Rehabil2005;26(3):207-27.
    [55] Shupp JW, Nasabzadeh TJ, Rosenthal DS, Jordan MH, Fidler P, Jeng JC. A reviewof the local pathophysiologic bases of burn wound progression. J Burn Care Res2010;31(6):849-73.
    [56] Knabl JS, Bauer W, Andel H, Schwendenwein I, Dado PF, Mittlbock M, et al.Progression of burn wound depth by systemical application of a vasoconstrictor: anexperimental study with a new rabbit model. Burns1999;25(8):715-21.
    [57] Tan Q, Lin Z, Ma W, Chen H, Wang L, Ning G, et al. Failure of Ibuprofen to preventprogressive dermal ischemia after burning in guinea pigs. Burns2002;28(5):443-8.
    [58] Uygur F, Evinc R, Urhan M, Celikoz B, Haholu A. Salvaging the zone of stasis bysimvastatin: an experimental study in rats. J Burn Care Res2009;30(5):872-9.
    [59] Isik S, Sahin U, Ilgan S, Guler M, Gunalp B, Selmanpakoglu N. Saving the zone ofstasis in burns with recombinant tissue-type plasminogen activator (r-tPA): anexperimental study in rats. Burns1998;24(3):217-23.
    [60] Mahajan AL, Tenorio X, Pepper MS, Baetens D, Montandon D, Schlaudraff KU, etal. Progressive tissue injury in burns is reduced by rNAPc2. Burns2006;32(8):957-63.
    [61] Battal MN, Hata Y, Matsuka K, Ito O, Matsuda H, Yoshida Y, et al. Reduction ofprogressive burn injury by using a new nonselective endothelin-A andendothelin-B receptor antagonist, TAK-044: an experimental study in rats. PlastReconstr Surg1997;99(6):1610-9.
    [62] Horton JW. Free radicals and lipid peroxidation mediated injury in burn trauma: therole of antioxidant therapy. Toxicology2003;189(1-2):75-88.
    [63] Haycock JW, Ralston DR, Morris B, Freedlander E, MacNeil S. Oxidative damageto protein and alterations to antioxidant levels in human cutaneous thermal injury.Burns1997;23(7-8):533-40.
    [64] Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenationinjury. Am J Physiol Cell Physiol2002;282(2):C227-41.
    [65] Roberg K, Ollinger K. Oxidative stress causes relocation of the lysosomal enzymecathepsin D with ensuing apoptosis in neonatal rat cardiomyocytes. Am J Pathol1998;152(5):1151-6.
    [66] Paulsen SM, Wurster SH, Nanney LB. Expression of inducible nitric oxide synthasein human burn wounds. Wound Repair Regen1998;6(2):142-8.
    [67] Cetinkale O, Demir M, Sayman HB, Ayan F, Onsel C. Effects of allopurinol,ibuprofen and cyclosporin A on local microcirculatory disturbance due to burninjuries. Burns1997;23(1):43-9.
    [68] Melikian V, Laverson S, Zawacki B. Oxygen-derived free radical inhibition in thehealing of experimental zone-of-stasis burns. J Trauma1987;27(2):151-4.
    [69] Fazal N, Al-Ghoul WM, Choudhry MA, Sayeed MM. PAF receptor antagonistmodulates neutrophil responses with thermal injury in vivo. Am J Physiol CellPhysiol2001;281(4):C1310-7.
    [70] Parment K, Zetterberg A, Ernerudh J, Bakteman K, Steinwall I, Sjoberg F.Long-term immunosuppression in burned patients assessed by in vitro neutrophiloxidative burst (Phagoburst). Burns2007;33(7):865-71.
    [71] Taira BR, Singer AJ, McClain SA, Lin F, Rooney J, Zimmerman T, et al.Rosiglitazone, a PPAR-gamma ligand, reduces burn progression in rats. J BurnCare Res2009;30(3):499-504.
    [72] Choi M, Ehrlich HP. U75412E, a lazaroid, prevents progressive burn ischemia in arat burn model. Am J Pathol1993;142(2):519-28.
    [73] Cuzzocrea S, Pisano B, Dugo L, Ianaro A, Maffia P, Patel NS, et al. Rosiglitazone, aligand of the peroxisome proliferator-activated receptor-gamma, reduces acuteinflammation. Eur J Pharmacol2004;483(1):79-93.
    [74] Sener G, Sehirli AO, Gedik N, Dulger GA. Rosiglitazone, a PPAR-gamma ligand,protects against burn-induced oxidative injury of remote organs. Burns2007;33(5):587-93.
    [75] Zor F, Ozturk S, Deveci M, Karacalioglu O, Sengezer M. Saving the zone of stasis:is glutathione effective? Burns2005;31(8):972-6.
    [76] Matsuda T, Tanaka H, Shimazaki S, Matsuda H, Abcarian H, Reyes H, et al.High-dose vitamin C therapy for extensive deep dermal burns. Burns1992;18(2):127-31.
    [77] Tanaka H, Lund T, Wiig H, Reed RK, Yukioka T, Matsuda H, et al. High dosevitamin C counteracts the negative interstitial fluid hydrostatic pressure and earlyedema generation in thermally injured rats. Burns1999;25(7):569-74.
    [78] Naziroglu M, Kokcam I, Yilmaz S. Beneficial effects of intraperitoneallyadministered alpha-tocopheryl acetate on the levels of lipid peroxide and activityof glutathione peroxidase and superoxide dismutase in skin, blood and liver ofthermally injured guinea pigs. Skin Pharmacol Appl Skin Physiol2003;16(1):36-45.
    [79] Maldonado MD, Murillo-Cabezas F, Calvo JR, Lardone PJ, Tan DX, Guerrero JM,et al. Melatonin as pharmacologic support in burn patients: a proposed solution tothermal injury-related lymphocytopenia and oxidative damage. Crit Care Med2007;35(4):1177-85.
    [80] Sener G, Sehirli AO, Satiroglu H, Keyer-Uysal M, B CY. Melatonin improvesoxidative organ damage in a rat model of thermal injury. Burns2002;28(5):419-25.
    [81] Tunali T, Sener G, Yarat A, Emekli N. Melatonin reduces oxidative damage to skinand normalizes blood coagulation in a rat model of thermal injury. Life Sci2005;76(11):1259-65.
    [82] Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell2008;132(1):27-42.
    [83] Raffl AB. The use of negative pressure under skin flaps after radical mastectomy.Ann Surg1952;136(6):1048.
    [84] Iusupov Iu N, Epifanov MV.[Active drainage of a wound]. Vestn Khir Im I I Grek1987;138(4):42-6.
    [85] Chariker ME JK, Tintle TE, et al. Effective management of incisional and cuteneousfistulae with closed suction wound drainage. Contempory Surgery1989;34(59-63.
    [86] Fleischmann W, Strecker W, Bombelli M, Kinzl L.[Vacuum sealing as treatment ofsoft tissue damage in open fractures]. Unfallchirurg1993;96(9):488-92.
    [87] Argenta LC, Morykwas MJ. Vacuum-assisted closure: a new method for woundcontrol and treatment: clinical experience. Ann Plast Surg1997;38(6):563-76;discussion77.
    [88] Morykwas MJ, Argenta LC, Shelton-Brown EI, McGuirt W. Vacuum-assistedclosure: a new method for wound control and treatment: animal studies and basicfoundation. Ann Plast Surg1997;38(6):553-62.
    [89] Moues CM, Heule F, Hovius SE. A review of topical negative pressure therapy inwound healing: sufficient evidence? Am J Surg2011;201(4):544-56.
    [90] Winter GD. Formation of the scab and the rate of epithelization of superficialwounds in the skin of the young domestic pig. Nature1962;193(293-4.
    [91] Kamolz LP, Andel H, Haslik W, Winter W, Meissl G, Frey M. Use ofsubatmospheric pressure therapy to prevent burn wound progression in human:first experiences. Burns2004;30(3):253-8.
    [92] Wackenfors A, Sjogren J, Gustafsson R, Algotsson L, Ingemansson R, Malmsjo M.Effects of vacuum-assisted closure therapy on inguinal wound edge microvascularblood flow. Wound Repair Regen2004;12(6):600-6.
    [93] Fabian TS, Kaufman HJ, Lett ED, Thomas JB, Rawl DK, Lewis PL, et al. Theevaluation of subatmospheric pressure and hyperbaric oxygen in ischemicfull-thickness wound healing. Am Surg2000;66(12):1136-43.
    [94] Chen SZ, Li J, Li XY, Xu LS. Effects of vacuum-assisted closure on woundmicrocirculation: an experimental study. Asian J Surg2005;28(3):211-7.
    [95] Takei T, Rivas-Gotz C, Delling CA, Koo JT, Mills I, McCarthy TL, et al. Effect ofstrain on human keratinocytes in vitro. J Cell Physiol1997;173(1):64-72.
    [96] Saxena V, Hwang CW, Huang S, Eichbaum Q, Ingber D, Orgill DP. Vacuum-assistedclosure: microdeformations of wounds and cell proliferation. Plast Reconstr Surg2004;114(5):1086-96; discussion97-8.
    [97] Scherer SS, Pietramaggiori G, Mathews JC, Prsa MJ, Huang S, Orgill DP. Themechanism of action of the vacuum-assisted closure device. Plast Reconstr Surg2008;122(3):786-97.
    [98]李金清. VAC促进猪皮肤软组织爆炸伤感染创面愈合的实验研究.第四军医大学博士学位论文2005;
    [99] Li J, Topaz M, Tan H, Li Y, Li W, Xun W, et al. Treatment of infected soft tissueblast injury in Swine by regulated negative pressure wound therapy. Ann Surg2013;257(2):335-44.
    [100] Ladwig GP, Robson MC, Liu R, Kuhn MA, Muir DF, Schultz GS. Ratios ofactivated matrix metalloproteinase-9to tissue inhibitor of matrixmetalloproteinase-1in wound fluids are inversely correlated with healing ofpressure ulcers. Wound Repair Regen2002;10(1):26-37.
    [101] Greene AK, Puder M, Roy R, Arsenault D, Kwei S, Moses MA, et al.Microdeformational wound therapy: effects on angiogenesis and matrixmetalloproteinases in chronic wounds of3debilitated patients. Ann Plast Surg2006;56(4):418-22.
    [102] Moues CM, van Toorenenbergen AW, Heule F, Hop WC, Hovius SE. The role oftopical negative pressure in wound repair: expression of biochemical markers inwound fluid during wound healing. Wound Repair Regen2008;16(4):488-94.
    [103]石冰.封闭负压引流技术对人慢性创面中基质金属蛋白酶以及其调控因素的影响.第四军医大学博士学位论文2003;
    [104] Weed T, Ratliff C, Drake DB. Quantifying bacterial bioburden during negativepressure wound therapy: does the wound VAC enhance bacterial clearance? AnnPlast Surg2004;52(3):276-9; discussion9-80.
    [105] Moues CM, Vos MC, van den Bemd GJ, Stijnen T, Hovius SE. Bacterial load inrelation to vacuum-assisted closure wound therapy: a prospective randomized trial.Wound Repair Regen2004;12(1):11-7.
    [106] Braakenburg A, Obdeijn MC, Feitz R, van Rooij IA, van Griethuysen AJ,Klinkenbijl JH. The clinical efficacy and cost effectiveness of the vacuum-assistedclosure technique in the management of acute and chronic wounds: a randomizedcontrolled trial. Plast Reconstr Surg2006;118(2):390-7; discussion8-400.
    [107] Sjogren J, Gustafsson R, Nilsson J, Malmsjo M, Ingemansson R. Clinical outcomeafter poststernotomy mediastinitis: vacuum-assisted closure versus conventionaltreatment. Ann Thorac Surg2005;79(6):2049-55.
    [108] Mehbod AA, Ogilvie JW, Pinto MR, Schwender JD, Transfeldt EE, Wood KB, et al.Postoperative deep wound infections in adults after spinal fusion: managementwith vacuum-assisted wound closure. J Spinal Disord Tech2005;18(1):14-7.
    [109] Armstrong DG, Lavery LA. Negative pressure wound therapy after partial diabeticfoot amputation: a multicentre, randomised controlled trial. Lancet2005;366(9498):1704-10.
    [110] Blume PA, Walters J, Payne W, Ayala J, Lantis J. Comparison of negative pressurewound therapy using vacuum-assisted closure with advanced moist wound therapyin the treatment of diabetic foot ulcers: a multicenter randomized controlled trial.Diabetes Care2008;31(4):631-6.
    [111] Eginton MT, Brown KR, Seabrook GR, Towne JB, Cambria RA. A prospectiverandomized evaluation of negative-pressure wound dressings for diabetic footwounds. Ann Vasc Surg2003;17(6):645-9.
    [112] Vuerstaek JD, Vainas T, Wuite J, Nelemans P, Neumann MH, Veraart JC.State-of-the-art treatment of chronic leg ulcers: A randomized controlled trialcomparing vacuum-assisted closure (V.A.C.) with modern wound dressings. J VascSurg2006;44(5):1029-37; discussion38.
    [113] Wanner MB, Schwarzl F, Strub B, Zaech GA, Pierer G. Vacuum-assisted woundclosure for cheaper and more comfortable healing of pressure sores: a prospectivestudy. Scand J Plast Reconstr Surg Hand Surg2003;37(1):28-33.
    [114] Morykwas MJ, David LR, Schneider AM, Whang C, Jennings DA, Canty C, et al.Use of subatmospheric pressure to prevent progression of partial-thickness burnsin a swine model. J Burn Care Rehabil1999;20(1Pt1):15-21.
    [115] Schintler M, Marschitz I, Trop M. The use of topical negative pressure in apaediatric patient with extensive burns. Burns2005;31(8):1050-3.
    [116] Sahin I, Eski M, Acikel C, Kapaj R, Alhan D, Isik S. The role of negative pressurewound therapy in the treatment of fourth-degree burns. Trends and new horizons.Ann Burns Fire Disasters2012;25(2):92-7.
    [117] Bishop A. Role of oxygen in wound healing. J Wound Care2008;17(9):399-402.
    [118] Gordillo GM, Sen CK. Revisiting the essential role of oxygen in wound healing.Am J Surg2003;186(3):259-63.
    [119] Knighton DR, Halliday B, Hunt TK. Oxygen as an antibiotic. A comparison of theeffects of inspired oxygen concentration and antibiotic administration on in vivobacterial clearance. Arch Surg1986;121(2):191-5.
    [120] Juranek I, Bezek S. Controversy of free radical hypothesis: reactive oxygenspecies--cause or consequence of tissue injury? Gen Physiol Biophys2005;24(3):263-78.
    [121] Falanga V, Qian SW, Danielpour D, Katz MH, Roberts AB, Sporn MB. Hypoxiaupregulates the synthesis of TGF-beta1by human dermal fibroblasts. J InvestDermatol1991;97(4):634-7.
    [122] Siddiqui A, Galiano RD, Connors D, Gruskin E, Wu L, Mustoe TA. Differentialeffects of oxygen on human dermal fibroblasts: acute versus chronic hypoxia.Wound Repair Regen1996;4(2):211-8.
    [123] Patel V, Chivukula IV, Roy S, Khanna S, He G, Ojha N, et al. Oxygen: from thebenefits of inducing VEGF expression to managing the risk of hyperbaric stress.Antioxid Redox Signal2005;7(9-10):1377-87.
    [124] Knighton DR, Silver IA, Hunt TK. Regulation of wound-healingangiogenesis-effect of oxygen gradients and inspired oxygen concentration.Surgery1981;90(2):262-70.
    [125] Hopf HW, Gibson JJ, Angeles AP, Constant JS, Feng JJ, Rollins MD, et al.Hyperoxia and angiogenesis. Wound Repair Regen2005;13(6):558-64.
    [126] Niinikoski J. Effect of oxygen supply on wound healing and formation ofexperimental granulation tissue. Acta Physiol Scand Suppl1969;334(1-72.
    [127] Hunt TK, Pai MP. The effect of varying ambient oxygen tensions on woundmetabolism and collagen synthesis. Surg Gynecol Obstet1972;135(4):561-7.
    [128] Mehm WJ, Pimsler, M., Becker, R.L., Lissner, C.R. Effect of oxygen on in vitrofibroblast cell proliferation and collagen biosynthesis. J Hyp Med1988;3(4):227-34.
    [129] Heng MC. Topical hyperbaric therapy for problem skin wounds. J Dermatol SurgOncol1993;19(8):784-93.
    [130] Thom SR. Hyperbaric oxygen: its mechanisms and efficacy. Plast Reconstr Surg2011;127Suppl1(131S-41S.
    [131] Friedman HI, Fitzmaurice M, Lefaivre JF, Vecchiolla T, Clarke D. Anevidence-based appraisal of the use of hyperbaric oxygen on flaps and grafts. PlastReconstr Surg2006;117(7Suppl):175S-90S; discussion91S-92S.
    [132] Bilic I, Petri NM, Bezic J, Alfirevic D, Modun D, Capkun V, et al. Effects ofhyperbaric oxygen therapy on experimental burn wound healing in rats: arandomized controlled study. Undersea Hyperb Med2005;32(1):1-9.
    [133] Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals andantioxidants in normal physiological functions and human disease. Int J BiochemCell Biol2007;39(1):44-84.
    [134] Kaufman T, Alexander JW, Nathan P, Brackett KA, MacMillan BG. Themicroclimate chamber: the effect of continuous topical administration of96%oxygen and75%relative humidity on the healing rate of experimental deep burns.J Trauma1983;23(9):806-15.
    [135] Kalliainen LK, Gordillo GM, Schlanger R, Sen CK. Topical oxygen as an adjunctto wound healing: a clinical case series. Pathophysiology2003;9(2):81-7.
    [136] Said HK, Hijjawi J, Roy N, Mogford J, Mustoe T. Transdermal sustained-deliveryoxygen improves epithelial healing in a rabbit ear wound model. Arch Surg2005;140(10):998-1004.
    [137] Fries RB, Wallace WA, Roy S, Kuppusamy P, Bergdall V, Gordillo GM, et al.Dermal excisional wound healing in pigs following treatment with topicallyapplied pure oxygen. Mutat Res2005;579(1-2):172-81.
    [138] Gordillo GM, Roy S, Khanna S, Schlanger R, Khandelwal S, Phillips G, et al.Topical oxygen therapy induces vascular endothelial growth factor expression andimproves closure of clinically presented chronic wounds. Clin Exp PharmacolPhysiol2008;35(8):957-64.
    [139] Cronje FJ. Oxygen therapy and wound healing--topical oxygen is not hyperbaricoxygen therapy. S Afr Med J2005;95(11):840.
    [140] Stucker M, Struk A, Altmeyer P, Herde M, Baumgartl H, Lubbers DW. Thecutaneous uptake of atmospheric oxygen contributes significantly to the oxygensupply of human dermis and epidermis. J Physiol2002;538(Pt3):985-94.
    [141] Stucker M, Struk PA, Hoffmann K, Schulze L, Rochling A, Lubbers DW. Thetransepidermal oxygen flux from the environment is in balance with the capillaryoxygen supply. J Invest Dermatol2000;114(3):533-40.
    [142] Moris Topaz OB, Moni Litmanovitch, Gershon Keren. Application of regulatedoxygen-enriched negative pressure-assisted wound therapy in combating anaerobicinfections. Eur J Plast Surg2010;
    [143]张自鹏,陈绍宗,李学拥,李金清,吕小星,雷战军,王晓琳.封闭负压引流联合局部给氧治疗兔耳缺血性创面的实验研究.现代生物医学进展2011;10):1851-4.
    [144] Topaz M. Improved wound management by regulated negative pressure-assistedwound therapy and regulated, oxygen-enriched negative pressure-assisted woundtherapy through basic science research and clinical assessment. Indian J Plast Surg2012;45(2):291-301.
    [145]黎鳌.烧伤治疗学.1995;
    [146]刘毅,陈璧,于晟.烧(烫)伤动物模型的建立.西北国防医学杂志1999;20(2):126-8.
    [147] Regas FC, Ehrlich HP. Elucidating the vascular response to burns with a new ratmodel. J Trauma1992;32(5):557-63.
    [148] Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, et al.Induction of autophagy and inhibition of tumorigenesis by beclin1. Nature1999;402(6762):672-6.
    [149] Levine B, Sinha S, Kroemer G. Bcl-2family members: dual regulators of apoptosisand autophagy. Autophagy2008;4(5):600-6.
    [150] Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2antiapoptotic proteins inhibit Beclin1-dependent autophagy. Cell2005;122(6):927-39.
    [151] Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell2011;147(4):728-41.
    [152] Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword.Science2004;306(5698):990-5.
    [153] Xiao R, Teng M, Zhang Q, Shi XH, Huang YS. Myocardial autophagy after severeburn in rats. PLoS One2012;7(6):e39488.
    [154] Shi JH, Hu DH, Zhang ZF, Bai XZ, Wang HT, Zhu XX, et al. Reduced expressionof microtubule-associated protein1light chain3in hypertrophic scars. ArchDermatol Res2012;304(3):209-15.
    [155] Wang M, Miller RA. Fibroblasts from long-lived mutant mice exhibit increasedautophagy and lower TOR activity after nutrient deprivation or oxidative stress.Aging Cell2012;11(4):668-74.
    [156] Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing:crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol2007;8(9):741-52.
    [157] Debnath J, Baehrecke EH, Kroemer G. Does autophagy contribute to cell death?Autophagy2005;1(2):66-74.
    [158]许龙顺.创面封闭负压引流技术促进创面愈合的实验与临床研究.第四军医大学博士学位论文2001;
    [159]吕小星. V.A.C对创周水肿及创面微环境影响的实验研究.第四军医大学硕士学位论文2003;
    [160]李靖.封闭负压引流技术对创面微循环影响的实验研究.第四军医大学硕士学位论文2003;
    [161]陈炯,周建军,苏国良,施剑武,苏士杰.早期负压封闭引流治疗深II度烧伤创面的临床疗效评价.中华烧伤杂志2010;26(3):170-4.
    [162]刘海波,陈绍宗,李学拥,李金清,雷战军,蔡乐,徐晓丽. VAC技术治疗兔耳缺血性创面的实验研究现代生物医学进展2012;12(11):
    [163]蔡乐,陈绍宗.局部氧疗(TOT)治疗创面.中华现代临床医学杂志2010;8(12):750-4.
    [164]聂开瑜,李鹏程,曾雪琴,孙广峰,金文虎,魏在荣,王波,祁建平,王玉明,王达利. Clinical observation of basic fibroblast growth factor combined withtopical oxygen therapy in enhancing burn wound healing.中国修复重建外科杂志2010;24(6):643-6.
    [165]方方,林尊文,付小花,刘德伍.局部氧疗促进烧伤残余难愈创面修复的临床有效性研究.中国实用护理杂志2009;25(10):1-3.
    [166] Frisman E, Racz O, Chmelarova A. Red cell antioxidant enzymes and prognosticindexes in patients with burns. Burns2013;39(3):458-64.
    [167] Klaunig JE, Wang Z, Pu X, Zhou S. Oxidative stress and oxidative damage inchemical carcinogenesis. Toxicol Appl Pharmacol2011;254(2):86-99.
    [168] Stark G. Functional consequences of oxidative membrane damage. J Membr Biol2005;205(1):1-16.
    [169] Negre-Salvayre A, Affany A, Hariton C, Salvayre R. Additional antilipoperoxidantactivities of alpha-tocopherol and ascorbic acid on membrane-like systems arepotentiated by rutin. Pharmacology1991;42(5):262-72.
    [170] Xia Y, Roman LJ, Masters BS, Zweier JL. Inducible nitric-oxide synthasegenerates superoxide from the reductase domain. J Biol Chem1998;273(35):22635-9.
    [171] Muijsers RB, Folkerts G, Henricks PA, Sadeghi-Hashjin G, Nijkamp FP.Peroxynitrite: a two-faced metabolite of nitric oxide. Life Sci1997;60(21):1833-45.
    [172] Horton JW, White DJ, Maass DL, Hybki DP, Haudek S, Giroir B. Antioxidantvitamin therapy alters burn trauma-mediated cardiac NF-kappaB activation andcardiomyocyte cytokine secretion. J Trauma2001;50(3):397-406; discussion7-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700