电厂冷凝器清洗机器人的神经网络控制理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷凝器是火力发电厂、化工、机械等行业的大型换热设备,它在汽轮机装置的热力循环中起冷源的作用,其工作性能好坏将直接影响整个汽轮机组的经济性和安全性。由于热交换时伴随化学反应以及冷却水不洁净等因素,因而导致了冷凝管内壁积聚了许多的污垢,这些污垢如果不及时清洗,会降低汽轮机发电机的效率、增加发电成本、甚至会导致冷凝管堵塞以及腐蚀穿孔而引发事故。针对该问题,本项目组研究了一种电厂冷凝器自动化清洗机器人来对冷凝器进行长期自主在线清洗,合理、高效地实现冷凝器污垢的在线清洗,保障大型火力发电厂安全生产、解决人工清洗效率低、工作强度大、环境恶劣、实现节能降耗等问题,减少机组停机造成的经济损失,提高汽轮机组的运行效率。为此,本文重点开展了电厂冷凝器自动化清洗机器人的神经网路智能控制理论方法研究。全文共七章,各章内容安排如下:
     第一章,阐明了本论文的研究背景及意义,介绍了电厂冷凝器清洗机器人的结构、工作原理和研究现状,然后阐述了冷凝器清洗机器人、移动机器人以及神经网络控制的研究现状。并阐述了鲁棒自适应控制、模糊控制、智能控制、滑模控制等方法,最后给出了全文内容的结构安排。
     第二章,结合一类实际的神经网络系统介绍了模糊控制的一些理论知识。通过运用LMI,研究了一类不连续时滞模糊神经网络模型的鲁棒模糊控制问题。得到了不连续模糊神经网络在其平衡点全局渐近稳定的充分条件准则。比较已有的文献,去掉了一些对神经激励函数的假设条件,如Lipschitz条件、单调性、有界性以及在不连续点左极限大于右极限等条件,论文的结果更具有一般性和普遍性。通过两个数值实验来证明所设计的模糊控制器的可控性和可行性。
     第三章,提出了电厂冷凝器清洗机器人的神经网络鲁棒自适应控制策略。对电厂冷凝器清洗机器人进行了动力学建模。通过联合神经网络鲁棒自适应控制方法和滑模方法,设计了一个电厂冷凝器清洗机器人的神经网络鲁棒自适应滑模控制器。通过应用李雅普诺夫稳定性理论,将所设计的控制器能够保证系统的稳定性以及跟踪性能的一致有界性。因电厂冷凝器清洗机器人系统中含有不确定项和扰动,论文使用了RBF神经网络对其进行补偿。通过仿真分析和实验研究,验证了所得结果的有效性和优越性,结果表明,该控制方法具有良好的动、静态性能和抗干扰性能,是一种行之有效的控制方法。
     第四章,研究了电厂冷凝器清洗机器人的神经网络模糊控制问题。通过联合模糊小脑神经网络和智能鲁棒自适应控制方法,设计了一个神经网络模糊控制器来控制电厂冷凝器清洗机器人系统。通过应用Lyapunov稳定性理论,将所设计的控制器来保证系统的稳定性。在电厂冷凝器清洗机器人系统控制器的设计过程中,本章使用模糊小脑神经网络来补偿系统中含有不确定项和外部扰动。通过仿真实验,验证了提出方法的可控性和有效性。
     第五章,研究了一类三关节电厂冷凝器清洗机器人系统的滑模控制问题。通过对移动平台进行了运动学建模,给出了三关节机械臂的运动学模型,以及对三关节电厂冷凝器清洗机器人系统进行统一建模。采用模糊小波神经网络来逼近系统中的参数不确定和干扰项。通过李雅普诺夫稳定性理论,设计了一个电厂冷凝器清洗机器人系统的鲁棒自适应滑模控制器,保证了系统的全局渐近稳定性以及跟踪误差的最终一致有界性。通过仿真实验来验证了所得到的控制器的有效性和可控性。
     第六章,研究了电厂冷凝器清洗机器人系统的智能神经网络控制问题。通过应用RBF神经网络的逼近非线性函数的能力来补偿冷凝器清洗机器人系统中的局部非线性性和不确定性。基于Lyapunov稳定性理论,设计了一个神经网络控制器来保证系统的鲁棒性和稳定性。通过仿真研究和实验分析,验证了所得智能神经网络控制策略的鲁棒性和理想的跟踪性能。
     第七章,介绍了电厂冷凝器清洗机器人系统模型以及模糊高斯基函数神经网络的基本结构和逼近性能。通过应用模糊高斯基函数神经网络的逼近能力来补偿电厂冷凝器清洗机器人系统中的不确定扰动项。设计了一个电厂冷凝器清洗机器人系统的自适应模糊控制器。基于Lyapunov稳定性理论,得到了电厂冷凝器清洗机器人系统的稳定性定理。通过仿真实验分析,验证了所得神经网络自适应模糊控制策略的鲁棒性和理想的跟踪性能。
Condenser is a large heat transfer equipment in the thermal powerplant、chemical、machinery and other industries. It is the cold source of the ther-modynamic cycle of the large steam turbine. Good or bad performance of its work willdirectly affect the economics and safety of the entire steam turbine. For the chemicalreactions and unclear cooling water during heat exchange when the condenser is running,the fouling, which is not favorable for heat transfer, is accumulated in the inner wall ofcondenser tube. These fouling have produced such harm: reduces the efficiency of thesteam turbine, increases the cost of electricity and even leads to accidents because of theblockage and corrosion perforation of condenser tube. To solve the problem, this paperdesigns an intelligent condenser-cleaning mobile robot for large condenser in order tothe purpose of improving the heat transfer performance of condenser and increasing theefficiency of thermal cycle of turbo-generator unit. Thus, this dissertation focuses on themethods of neural network intelligent robust control for the condenser-cleaning mobilerobot. Main results and contributions of this dissertation can be list as the following sevenchapters.
     In the first chapter, a review on the theoretical research and practical significance ofthe dissertation is presented, the history and basic principles of the condenser-cleaningrobot, the mobile robot, the neural network control are described. The paper introduces themethods of the robust adaptive control, the fuzzy control, the intelligent control and thesliding-mode control. Finally, the structure arrangement of the dissertation is given.
     In the second chapter, the paper presents the speculative knowledge about the fuzzycontrol for a class of the delayed neural networks system. Based on the linear matrix in-equality(LMI), a robust fuzzy control to guarantee the global robust asymptotical stabilityof fuzzy neural networks with discontinuous activation functions is designed. Comparedwith the existing literature, this paper remove the assumptions on the neuron activationssuch as Lipschitz conditions, bounded, monotonic increasing property or the right limitvalue is bigger than the left one at the discontinuous point. Thus, the results of this pa-per are more general and widest. Finally, two numerical examples are given to show theeffectiveness and feasibility of the proposed fuzzy controller.
     In the third chapter, the paper presents the radial basis functions neural network-basedadaptive robust control(RBFNNARC) for condenser-cleaning mobile robot. First, a dy- namic modeling is obtained based on the practical condenser-cleaning mobile manipulatorsystem. Second, the RBF neural network is used to identify the unstructured system dy-namics directly due to its very good compensation nonlinear function ability. Using learn-ing ability of neural network, RBFNNARC can coordinately control the mobile platformand the mounted manipulator with different dynamics efficiently. The implementation ofthe control algorithm is dependent on the sliding mode control (SMC). Finally, based onthe Lyapunov stability theory, the stability of the whole control system, the boundednessof the neural network weight estimation errors, and the uniformly ultimately boundednessof the tracking error are all strictly guaranteed. Moreover, simulation and experiment aregiven to demonstrate that the proposed RBFNNARC approach can guarantee the wholesystem’s converges to the desired manifold with prescribed performance.
     In the fourth chapter, the paper studies the neural network fuzzy control for thecondenser-cleaning mobile robot. A neural network fuzzy controller for the condenser-cleaning mobile robot is designed using the fuzzy wavelet neural network and the robustadaptive control method. The fuzzy wavelet neural network is used to identify the uncer-tainties and disturbances of the robot system due to its very good compensation nonlinearfunction ability. Based on the Lyapunov stability theory, the stability of the condenser-cleaning mobile robot system is guaranteed. Finally, simulation is give to demonstrate theeffectiveness and feasibility of the proposed controller.
     In the fifth chapter, the paper researches the sliding mode control problem of a classof3-DOF condenser-cleaning mobile robot system with uncertainties and disturbances.First, the kinematic modeling of the mobile platform and the three joint manipulators aregiven. Then, the paper presents the dynamic modeling of the three joint mobile robotsystem. Second, the fuzzy wavelet neural network is used to identify the unstructuredsystem dynamics directly due to its very good compensation nonlinear function ability.Based on the Lyapunov stability theory, the paper designs a robust adaptive sliding modecontroller to guarantee the global robust asymptotical stability and the uniformly ultimatelyboundedness of the tracking error of the mobile robot system. Finally, simulation is giveto demonstrate the effectiveness and feasibility of the proposed controller.
     In the sixth chapter, the paper studies the intelligent neural networks control problemfor condenser-cleaning mobile robot. The RBF neural network is used to identify the localuncertainties and disturbances of the condenser-cleaning mobile robot system due to itsvery good compensation nonlinear function ability. A neural network controller for thecondenser-cleaning mobile robot is designed using the Lyapunov stability theory. Finally,simulation and experiment are give to demonstrate the robustness and the perfect tracking performance of the proposed controller.
     In the seventh chapter, a dynamic modeling is obtained based on the practicalcondenser-cleaning manipulator system. The fundamental structure and approximabil-ity of the fuzzy Gaussian function neural network are introduced. The fuzzy Gaussianfunction neural network is used to identify the unstructured system dynamics directly ofthe condenser-cleaning manipulator system due to its very good compensation nonlinearfunction ability. The paper designs an adaptive fuzzy controller for the condenser-cleaningmobile robot. Based on the Lyapunov stability theory, the stability theorem of the wholecontrol system is guaranteed. Moreover, simulation experiment is given to demonstrate therobustness and the perfect tracking performance of the proposed adaptive fuzzy controller.
引文
[1] Wu M, He Y, She J,et al. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica,2004,40(8):1435–1439
    [2] Narendra K S, Parthasarathy K. Identification and control of dynamical systemsusing neural networks. IEEE Transactions on Neural Networks,1990,1(1):4–27
    [3] Spooner J T, Passino K M. Decentralized adaptive control of nonlinear systemsusing radial basis neural networks. IEEE Transactions on Automatic Control,1999,44(11):2050–2057
    [4] Leu Y J, Lee T T, Wang W. Observer-based adaptive fuzzy-neural control for un-known nonlinear dynamical systems. IEEE Transactions on Systems, Man, andCybernetics, Part B: Cybernetics,1999,29(5):583–591
    [5] Polycarpou M M, Weaver S E. Stable adaptive neural control of nonlinear systems.Proc. of American Control Conference,1995,1:847–851
    [6] Lou X, Cui B. Delay-dependent stochastic stability of delayed Hopfiled neuralnetworks with Markovian jump parameters. Journal of Applied Mathematics,2007,328:316–326
    [7] Huang H, Ho D W C,Qu Y. Robust stability of stochastic delayed additive neuralnetworks with Markov switching. Journal of Applied Mathematics,2007,328:316–326
    [8] Liao T, Yan J, Cheng C, et al. Globally exponential stability condition of a class ofneural networks with time-varying delays. Physics Letters A,2005,339:333–342
    [9] Liao T, Wang F. Global stability for cellular neural networks with time delay. IEEETrans. Neural Networks,2000,11(6):1481–1484
    [10] Xu S, Lam J, Ho D W C, et al. Improved global robust asymptotic stability cri-teria for delayed cellular neural networks. IEEE Transactions Systems,Man,andCybemedcs-Pml B:Cybernetics,2005,35(6):1317–1321
    [11]樊绍胜.冷凝器污垢清洗的智能测量与控制方法研究:[湖南大学博士学位论文].长沙:湖南大学,2006,12-45
    [12]彭金柱.大型冷凝器清洗机器人的智能鲁棒控制方法研究:[湖南大学博士学位论文].长沙:湖南大学,2008,20-50
    [13]张莹.大型冷凝器清洗机器人视觉控制方法研究:[湖南大学博士学位论文].长沙:湖南大学,2009,10-21
    [14]宁伟.大型冷凝器智能清洗机器人控制系统的设计与研究:[湖南大学硕士学位论文].长沙:湖南大学,2009,4-30
    [15]马兆青,袁增任.基于栅格方法的移动机器人实时导航和避障.机器人,1996,18(6):344–348
    [16]于建刚,董再励.遥控作业移动机器人环境方法研究.机器人,1997,19(4):244–249
    [17]沈林成,常文森.移动机器人数字地形模型.机器人,1996,18(3):148–157
    [18]齐国光,陶西平,曹谷崖.移动机器人运动模型辨识研究.机器人,1996,18(2):102–107
    [19] McCulloch W S, Pitts W H. A logical calculus of ideas immanent in nervousactivity. Bulletin of Mathematical Biophysics,1943,5:115–133
    [20] Hebb D O. The origanization of behavior. John Wiley Sons. New York,1949
    [21] Minsky M, Papert S. Perceptron: An introduction to computation geometry. MitPress, Cambridge, Massachusetts,1969
    [22] Hopfield J J. Neural network and physical systems with emergent collective com-putational abilities. Proc. Natl. Acad. Sci. USA,1982,79:1552–2558
    [23] Cohen M, Grossberg S. Absolute stability and global pattern formation and paral-lel storage by competitive neural networks. IEEE Transactions Systems,Man,andCybemedcs-Pml B:Cybernetics,1983,13(1):815–826
    [24] Rumelhart D E, McCIelland et al. Parallel distributed processing. Mit Press, Cam-bridge,1986
    [25] Chen T, Chen H. Approximations of continuous functionals by neural networkswith application to dynamic systems. IEEE Transactions on Neural Networks,1993,4(6):910–918
    [26] Chen T, Chen H. Approximation capability to functions of several variables, non-linear functionals, and operators by radial basis function neural networks. IEEETransactions on Neural Networks,1995,6(4):904–910
    [27] Cao J D. Global stability analysis in delayed cellular neural networks. PhysicalReview E,1999,59(5):5940–5944
    [28] Cao J D, Zhou D M. Stability analysis of delayed cellular neural networks. NeuralNetworks,1998,11(9):1601–1605
    [29] Cao J D. Periodic solutions and exponential stability in delayed cellular neuralnetworks. Physical Review E,1999,60(3):3244–3248
    [30]廖晓昕.细胞神经网络的数学理论(I).中国科学A辑,1994,24(9):902–910
    [31]廖晓昕.细胞神经网络的数学理论(II).中国科学A辑,1994,24(10):1037–1046
    [32] Lewis F L, Liu K,Yesildirek. Nerual net robot controller with guaranteed trackingperformance. IEEE Transactions on Neural Networks,1995,6(3):703–710
    [33] Fierro R, Lewis F L. Control of a nonholonomic mobile robot using neural networks.IEEE Transactions on Neural Networks,1998,9(4):589–600
    [34] Ahmed Tarraf, Martin Meyers. Nerual network-based voice quality measurementtechnique. Proceeding of the Fourth IEEE Symposium on Computer and Commu-nications,1998
    [35] Narendra K S, Mukhopadhyay S. Adaptive control using neural networks and ap-proximate models. IEEE Transactions on Neural Networks,1997,8(3):475–485
    [36] Chen F C, Khalil H K. Adaptive control of a class of nonlinear discrete-timesystems using neural networks. IEEE Transactions on Automatic Control,1995,40(5):791–801
    [37] Fukushima K. Neocognitron: A self-organizing neural network model for a mecha-nism of pattern recognition unaffected by shift in position. Biological Cybernetics,1980,36(4):193–202
    [38] Kadirkamanathan V, Niranjan M. A function estimation approach to sequentiallearning with neural networks. Neural Computation,1993,5(6):954–975
    [39] Forti M, Nistri P. Global convergence of neural networks with discontinuous neuronactivations. IEEE Transactions on circuits system I,2003,50:1421–1435
    [40] Lu W. Dynamical behaviors of Cohen-Grossberg neural networks with discontinu-ous activation functions. Neural Networks,2005,18:231–242
    [41] Lu W, Chen T. Dynamical behaviors of delayed neural network systems with dis-continuous activation functions. Neural Computation,2006,18(3):683–708
    [42] Papini D, Taddei V. Global exponential stability of the periodic solution of adelayed neural network with discontinuous activations. Physics Letters A,2005,343(1):117–128
    [43] Wang J, Huang L, Guo Z. Dynamical behavior of delayed Hopfield neural net-works with discontinuous activations. Applied Mathematical Modelling,2009,33(1):1793–1802
    [44] Zuo Y, et al. Robust stability criterion for delayed neural networks with discontinu-ous activation functions. Neural Process Letters,2009,29(1):29–44
    [45] Wang J, Huang L, Guo Z. Dynamical behavior of delayed Hopfield neural net-works with discontinuous activations. Applied Mathematical Modelling,2009,33(4):1793–1802
    [46] Lu W, Chen T. Dynamical behaviors of Cohen-Grossberg neural networks withdiscontinuous activation functions. Neural Networks,2005,18(1):231–242
    [47] Wu X R, Wang Y N, Huang L H, Zuo Y. Robust exponential stability criterion foruncertain neural networks with discontinuous activation functions and time-varyingdelays. Neurocomputing,2010,73(7):1265–1271
    [48] Wu X R, Wang Y N, Huang L H, Zuo Y. Robust stability analysis of delayedTakagi-Sugeno fuzzy Hopfield neural networks with discontinuous activation func-tions. Cognitive Neurodynamics,2010,4(4):347–354
    [49]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用.北京:清华大学出版社,2003,5-80
    [50] Lyapunov A M. Probleme général de la stabilitédu mouvement. Annals of Mathe-matics Studies. Princeton University Press, Princeton,1947
    [51] Boyd S, Ghaoui L, Feron E. Linear matrix inequalities in system and control theory.Philadelphia: SIAM,1994
    [52]陈复扬,姜斌.自适应控制与应用.北京:国防工业出版社,2009,11-21
    [53]徐湘元.自适应控制理论与应用.北京:电子工业出版社,2007,63-79
    [54] Emelyanov S V. Control of first order delay systems by means of anastatic con-troller and nonlinear correction. Automation and Remote Control,1959,20(8):983–991
    [55] Utkin V I. Variable structure systems with sliding modes. IEEE Transactions onAutomatic Control,1977,22(2):212–222
    [56] Itkis U. Control Systems of Variable Structure. New York, Wiley,1976
    [57]吴立刚.几类复杂动态系统的鲁棒控制、滤波及模型降阶问题研究:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2006,30-45
    [58]郑艳.滑模控制理论及其应用若干问题研究:[东北大学博士学位论文].沈阳:东北大学,2006,50-65
    [59] Fu K S. A heuristic approach to reinforcement learning control systems (Heuris-tic approach to reinforcement learning control systems, describing operation andsimulation on IBM). IEEE Trans. on automatic control,1965,10:390–398
    [60] Zadeh L A. Fuzzy set. Information and control,1965,8(5):338–358
    [61] Zadeh L A. Outline of a new approach to the analysis of complex systems anddecision processes. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,1973,3(1):28–44
    [62] Mamdani E H. Applications of fuzzy algodthms for control of simple dynamicplant. Procedings of IEEE,1974,121(12):1585–1588
    [63] Holmblad L P,Osterganrd J J. Control of cement kiln by fuzzy logic. FuzzyInformation and Decision Processes, New York:North-Holland,1982
    [64] Yagishita O,Itoh0,Sugeno M. Application of fuzzy reasoning to the water pu-rification process in industrial applications of fuzzy control. Amsterdam:North-Holland,1985:19–40
    [65] Yasunobu S,Hasegawa T. Evaluation of an automatic container crane operationsystem based on predictive fuzzy control. Control Theory Advanced Technology,1986,12(3):419–432
    [66] Yamakawa T. Higll speed fuzzy controller hardware system. Proceeding of FuzzySystem Symposium,1986:122–130
    [67] Yasunobu S,Sekino S,Hasegawa T. Automatic container crane operation systembased on predictive fuzzy control. In Proceeding of IFSA Congrss,Tokyo, Japan,1987:835–838
    [68] Bemard J A. Use of rule-based system for process control. IEEE Control SystemsMagazine,1988,8(5):3–13
    [69]李洪兴,苗志宏,王加银.四级倒立摆的变论域自适应模糊控制.中国科学(E辑),2002,32(1):65-75
    [70] Yang Z Y, Yam S C, Li L K, Wang Y W. Robust control for uncertain nonlinearsystems with state-dependent control direction. International Journal of Robust andNonlinear Control,2011,21(1):106–118
    [71] Karimi H, Yazdani A, Iravani R. Robust control of an autonomous four-wireelectronically-coupled distributed generation unit. IEEE Transactions on Power De-livery,2011,26(1):455–466
    [72] Zhang J, Tao T, Mei X, Jiang G, Zhang D. Non-linear robust control of a voltage-controlled magnetic levitation system with a feedback linearization approach. Pro-ceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems andControl Engineering,2011,225(1):85–98
    [73] Adhyaru Dipak M, Kar I N, Gopal M. Bounded robust control of nonlinear systemsusing neural network–based HJB solution. Neural Computing Applications,2011,20(1):91–103
    [74] He N B, et al. Robust control for a class of nonlinear systems based on backstepping.Applied Mechanics and Materials,2011,100(50):110–114
    [75] Lin T C,Wang C H,Lin H L. Observer-based indirect adaptive fuzzy-neuraltracking control for nonlinear SISO systems using VSS and H approaches. FuzzySets and Systems,2004,140(2):21l–232
    [76] Wang W Y,Lan Y G,Lee T T. Output-feedback control of nonlinear sys-tems using direct adaptive fuzzy-neoral controller. Fuzzy Sets and Systems,2003,140(3):341–358
    [77]伍锡如.一类非线性系统的定性分析:[湖南大学硕士毕业论文].长沙:湖南大学,2008,1-45
    [78]钟守铭,刘碧森,王晓梅,范小明.神经网络稳定性理论.北京:科学出版社,2008,54-66
    [79]丁学明.模糊控制理论研究及其在移动式倒立摆中的应用:[中国科学技术大学博士学位论文].安徽:中国科学技术大学,2005,5-15
    [80] Lian K Y, Su C H, Huang C S. Performance enhancement for T-S fuzzy controlusing neural networks. IEEE Transactions on Fuzzy Systems,2006,14(5):619–627
    [81] Fu C J, Wang Z S. Global exponential stability of T-S fuzzy neural networks withtime-varying delays. Intelligent Computing,2006,4113:385–390
    [82] Ahn C K. Delay-dependent state estimation for T-S fuzzy delayed Hopfield neuralnetworks. Nonlinear Dynamics,2010,61(3):483–489
    [83] Liu X D, Zhang Q L. New approaches to H∞controller designs based on fuzzyobservers for T-S fuzzy systems via LMI. Automatica,2003,39(9):1571–1582
    [84] Tseng C S, Chen B S, Uang H J. Fuzzy tracking control design for nonlinear dy-namic systems via T-S fuzzy model. IEEE Transactions on Fuzzy Systems,2001,9(3):381–392
    [85] Guan X P, Chen C L. Delay-dependent guaranteed cost control for T-S fuzzy sys-tems with time delays. IEEE Transactions on Fuzzy Systems,2004,12(2):236–249
    [86] Tian E G, Chen P. Delay-dependent stability analysis and synthesis of uncertain T-Sfuzzy systems with time-varying delay. Fuzzy Sets and Systems,2006,157(4):544–559
    [87] Fang C H, Liu Y S, Kau S W, Hong L, Lee C H. A new LMI-based approach torelaxed quadratic stabilization of T-S fuzzy control systems. IEEE Transactions onFuzzy Systems,2006,14(3):386–397
    [88] Lin C, Wang Q G, Lee T H. Delay-dependent LMI conditions for stability and sta-bilization of T-S fuzzy systems with bounded time-delay. Fuzzy Sets and Systems,2006,157(9):1229–1247
    [89] Hsiao F H, Chen C W, Liang Y W, Xu S D, Chiang W L. T-S fuzzy controllers fornonlinear interconnected systems with multiple time delays. IEEE Transactions onCircuits and Systems I: Regular Papers,2005,52(9):1883–1893
    [90] Tong S C, Wang W. Decentralized robust control for uncertain TS fuzzy large-scalesystems with time-delay. International Journal of Innovative Computing, Informa-tion and Control,2007,3(3):657―672
    [91] Lin C T, Lee C S. Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems. IEEE Transactions on Fuzzy Systems,2002,2(1):46–63
    [92] Lin C T, Lee C S. Neural-network-based fuzzy logic control and decision system.IEEE Transactions on Computers,2002,40(12):1320–1336
    [93] Hu H, Woo P Y. Neural-network-based fuzzy logic control and decision system.IEEE Transactions on Industrial Electronics,2006,53(3):929–940
    [94] Lin F J, Shen P H. Robust fuzzy neural network sliding-mode control for two-axis motion control system. IEEE Transactions on Industrial Electronics,2006,53(4):1209–1225
    [95] Lin F J, Lin C H, Huang P K. Recurrent fuzzy neural network controller designusing sliding-mode control for linear synchronous motor drive. IEE ProceedingsControl Theory and Applications,2004,151(4):407–416
    [96] Lin F J, Wai R J. Robust recurrent fuzzy neural network control for linear syn-chronous motor drive system. Neurocomputing,2004,50:365–390
    [97] Hsiao F H, Xu S D, Lin C Y, Tsai Z R. Robustness design of fuzzy control for non-linear multiple time-delay large-scale systems via neural-network-based approach.IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2006,38(1):244–251
    [98] Lin F J, Shen P H, Yang S L, Chou P H. Recurrent radial basis function network-based fuzzy neural network control for permanent-magnet linear synchronous motorservo drive. IEEE Transactions on Magnetics,2006,42(11):3694–3705
    [99] Wai R J, Chang L J. Stabilizing and tracking control of nonlinear dual-axis inverted-pendulum system using fuzzy neural network. IEEE Transactions on Fuzzy Sys-tems,2006,14(1):145–168
    [100] Lin C H. Adaptive recurrent fuzzy neural network control for synchronous re-luctance motor servo drive. IEE Proceedings Electric Power Applications,2004,151(6):711–724
    [101] Wu S Q, Er M J. Dynamic fuzzy neural networks-a novel approach to functionapproximation. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cy-bernetics,2002,30(2):358–364
    [102] Spooner J T, Passino K M. Stable adaptive control using fuzzy systems and neuralnetworks. IEEE Transactions on Fuzzy Systems,2002,4(3):339–359
    [103] Lou X Y, Cui B T. Robust asymptotic stability of uncertain fuzzy BAM neuralnetworks with time-varying delays. Fuzzy Sets and Systems,2007,158(24):2746–2756
    [104] Hou Y Y, Liao T L, Yan J J. Stability analysis of Takagi–Sugeno fuzzy cellularneural networks with time-varying delays. IEEE Transactions on Systems, Man,and Cybernetics, Part B: Cybernetics,2007,37(3):720–726
    [105] Wang C Y, Chien C J, Teng C C. Takagi-Sugeno recurrent fuzzy neural networksfor identification and control of dynamic systems. The10th IEEE InternationalConference on Fuzzy Systems,2001:537–540
    [106] Syed Ali M, Balasubramaniam P. Robust stability for uncertain stochasticfuzzy BAM neural networks with time-varying delays. Physics Letters A,2008,372(31):5159–5166
    [107] Liu X, Cao J. On periodic solutions of neural networks via differential inclusions.Neural Networks,2009,22(4):329–334
    [108] Singh V. Robust stability of cellular neural networks with delay: linear matrixinequality approach. IEE Proceedings-Control Theory and Applications,2004,151(1):125–129
    [109] Gu K, Kharitonov V L, Chen J. Stability of time delay systems. Boston: Birkhuser,2003
    [110] Zuo Y, Wang Y, Huang L, et al. Robust stability criterion for delayed neuralnetworks with discontinuous activation functions. Neural Process Letters,2008,29(1):29–44
    [111] Wang Y, Zuo Y, Huang L, et al. Global robust stability of delayed neural networkswith discontinuous activation functions. IET Control Theory Applications,2008,7:543–553
    [112] Huang L, Wang J, Zhou X. Existence and global asymptotic stability of periodicsolutions for Hopfield neural networks with discontinuous activations. NonlinearAnalysis: Real World Applications,2009,10(3):1651–1661
    [113] Lu W, Chen T. Dynamical behaviors of delayed neural network systems with dis-continuous activation functions. Neural Computation,2006,18(1):683–708
    [114] Meng Y.,Huang L.,Guo Z.,Hu Q. Stability analysis of Cohen-Grossberg neural net-works with discontinuous neuron activations. Applied Mathematical Modelling,2010,34(2):358–365
    [115] Lu W.,Chen T. Dynamical behaviors of Cohen-Grossberg neural networks withdiscontinuous activation functions. Neural Networks,2005,18(1):231–242
    [116] Li L, Huang L. Dynamical behaviors of a class of recurrent neural networks withdiscontinuous neuron activations. Applied Mathematical Modelling,2009,33(12):4326–4336
    [117] Kim Y, Lewis E. Neural network output feedback control of robot manipulators.IEEE Transactions on Robotics and Automation,1999,15(2):301–309
    [118] Chang Y, Chen B. A nonlinear adaptive tracking control design in robotic sys-tems via neural networks. IEEE Transactions on Robotics and Automation,1997,5(1):13–29
    [119] Watanabe K, Sato K, Izumi K, Kunitake Y. Analysis and control for an omnidi-rectional mobile manipulator. Journal of Intelligent and Robotic Systems,2000,27(1):3–20
    [120] Toda M. An control-based approach to robust control of mechanical systemswith oscillatory bases. IEEE Transactions on Robotics and Automation,2004,20(1):283–296
    [121] Oya M, Su C, Katoh R. Robust adaptive motion/force tracking control of uncertainnonholonomic mechanical systems. IEEE Transactions on Robotics and Automa-tion,2003,19(1):175–181
    [122] Liu Y, Li Y. Sliding mode adaptive neural-network control for nonholonomicmobile modular manipulators. Journal of Intelligent and Robotic Systems,2006,44(3):203–224
    [123] Li Z, Ge S S, Adams M, Wijesoma W S. Robust adaptive control of uncertainforce/motion constrained nonholonomic mobile manipulators. Automatica,2008,44(1):776–784
    [124] Dong W, Kuhnert K. Robust adaptive control of nonholonomic mobile robot withparameter and nonparameter uncertainties. IEEE Transactions On Robotics,2005,21(2):261–266
    [125] Xu D, Zhao D B, et al. Trajectory tracking control of omnidirectional wheeled mo-bile manipulators: robust neural network-based sliding mode approach. IEEE Trans-actions on Systems, Man, and Cybernetics, Part B: Cybernetics,2009,39(3):788–799
    [126] Li Z, Chen W, Luo J. Adaptive compliant force-motion control of coordinated non-holonomic mobile manipulators interacting with unknown non-rigid environments.Neurocomputing,2008,71(10):1330–1344
    [127] Efe M. Fractinal fuzzy adaptive sliding-mode control of a2-DOF direct-drive robotarm. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2008,38(6):1561–1570
    [128] Lin S, Goldenberg A. Robust damping control of mobile manipulators. IEEE Trans-actions on Systems, Man, and Cybernetics, Part B: Cybernetics,2002,32(1):126–132
    [129] Tsai C, Cheng M, Lin S. Dynamic modeling and tracking control of a nonholonomicwheeled mobile manipulator with dual arms. Journal of Intelligent and RoboticSystems,2006,47(2):317–340
    [130] Li Z J, Sam Ge S Z, Adams M, Wijesoma W S. Adaptive robust output-feedbackmotion/force control of electrically driven nonholonomic mobile manipulators.IEEE Transactions on Control Systems Technology,2008,16(6):1308–1315
    [131] Yamamoto Y, Yun X. Coordinating locomotion and manipulation of a mobile ma-nipulator. IEEE Trans Automatic Control,1994,39(6):1326–1332
    [132] Li Z, Ge S S, Ming A. Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators. IEEE Transactions on Systems,Man, and Cybernetics, Part B: Cybernetics,2007,37(3):607–616
    [133] Vannoy J, Jing X. Real-time adaptive motion planning of mobile manipulators indynamic environments with unforeseen changes. IEEE Transactions on Robotics,2009,24(5):1199–1212
    [134] Salehi M, Vossoughi G. High-precision impedance control method for flexible basemoving manipulators. Advanced Robotics,2009,23(1):65–87
    [135]申铁龙.机器人鲁棒控制基础.北京:清华大学出版社,2000,30-61
    [136] Ge S S, Lewis F L. Autonomous mobile robots: Sensing, control, decision-making,and applications. Boca Raton, FL: CRC Press, Taylor Francis Group,2006
    [137] Wang H, Xie Y. Passivity based adaptive Jacobian tracking for free-floating spacemanipulators without using spacecraft acceleration. Automatica,2009,45(6):1510–1517
    [138] Seo D, Akella M. Non-certainty equivalent adaptive control for robot manipulatorsystems. Systems Control Letters,2009,58(4):304–308
    [139] Peng W, Lin Z, Su J. Computed torque control-based composite nonlinear feed-back controller for robot manipulators with bounded torques. IET Control TheoryApplications,2009,6(3):701–711
    [140] Zeinali M, Notash L. Adaptive sliding mode control with uncertainty estimator forrobot manipulators. Mechanism Machine Theory,2010,45(1):80–90
    [141] Lin S, Goldenberg A. Neural-network control of mobile manipulators. IEEE TransNeural Networks,2001,12(5):1121–1133
    [142] Chen C, Lin C. Nonlinear system control using adaptive neural fuzzy networksbased on a modified differential evolution. IEEE Transactions on Systems, Man,and Cybernetics, Part B: Cybernetics,2009,39(4):459–473
    [143] Zuo Y, Wang Y, Liu X, et al. Neural network robust tracking control strategy forrobot manipulators. Applied Mathematical Modelling,2010,34(7):1823–1838
    [144] Mnif F,Gastli A, Jallouli M. Adaptive ANN-based control for constrained robotmanipulators. International Journal of Intelligent Systems Technologies and Appli-cations,2007,2(1):77–99
    [145] Zouari E, Medhaffar H, Derbel N. Indirect sliding mode neural-network controlfor holonomic constrained robot manipulators. International Journal of IntelligentSystems Technologies and Applications,2010,9(2):150–168
    [146] Lewis F L, Abdallah C T, Dawson D M. Control of robot manipulators. New York:MacMillan,1993
    [147] Sarkar N, Yun X, Kumar V. Control of mechanical systems with rolling constraints:Application to dynamic control of mobile robots. International Journal of RoboticsResearch,1994,13(1):55–69
    [148] Fierro R, Lewis F L. Control of a nonholonomic mobile robot using neural networks.IEEE Transactions on neural networks,1998,9(4):589–600
    [149] Haykin S. Neural networks a comprehensive foundation. Prentice-Hall Interna-tional, Toronto,1999
    [150]刘金琨.智能控制.北京:电子工业出版社,2010,10-32
    [151] Peng J Z, Wang Y N, Yu H S. Neural network-based robust tracking control fornonholonomic mobile robot. Advances in Neural Networks-ISNN2007, LectureNotes in Computer Science,2007,4491:804–812
    [152] Lin T C,Wang C H,Lin H L. Observer-based indirect adaptive fuzzy-neuraltracking control for nonlinear SISO systems using VSS and H approaches. FuzzySets and Systems,2004,143(2):211–232
    [153] Wang W Y,Lan Y G,Lee T T. Output-feedback control of nonlinear sys-tems using direct adaptive fuzzy-neoral controller. Fuzzy Sets and Systems,2003,140(3):341–358
    [154] Wang C H,Liu H L, Lin T C. Direct adaptive fuzzy-neurnl control with state ob-server and supervisory controller for unknown nonlinear dynamical systems. IEEETransactions on Fuzzy Systems,2002,10(1):39–49
    [155] Leu Y G,Lee T T, Wang W Y. Observer-based adaptive fuzzy-neural control forunknown nonliner
    [156] Yi S, Chung M. A robust fuzzy logic controller for robot manipulators with un-certainties. IEEE Transactions on Systems, Man, and Cybernetics,1977,27(4):706–713
    [157] Albus J S. A new approach to manipulator control: the cerebellar mode articulationcontroller (CMAC). J. Dynamics System, Measurement and Control,1975,3:220–227
    [158] Commuri S, Lewis F. CMAC neural networks for control of nonlinear dynamicalsystems, structure, stability, and passivity. Automatica,1997,33(4):635–641
    [159] Leu Y, Lee T. Observer-based adaptive fuzzy-neural control for unknown nonlineardynamical systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,1999,29(5):583–591
    [160]蒋文萍.移动机械手整体控制系统的设计与分析:[天津大学博士学位论文].天津:天津大学,2009,20-42
    [161]梅红.移动机械手的逆运动学及滑模变结构轨迹跟踪控制研究:[山东大学博士学位论文].济南:山东大学,2009,40-55
    [162]赵冬斌,易建强.全方位移动机器人导论.北京:科学出版社,2010,60-71
    [163]康静,葛为民,宋振清.履带式移动机器人统一动力学建模及控制.设计与研究,2010,6:25–28
    [164] Zuo Y, Wang Y, et al. Intelligent robust tracking control for multi-arm mobile ma-nipulators using a fuzzy cerebellar model articulation controller neural network.Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechan-ical Engineering Science,2011,225:1131–1146
    [165] Oscar M R, Jesus C, et al. Fuzzy system to control the movement of a Wheeledmobile robot. Soft Computing for Intell. Control and Mob. Robot,2011,318:445–463
    [166] Hong J, Park K. A new mobile robot navigation using a turning point searchingalgorithm with the consideration of obstacle avoidance. The International Journalof Advanced Manufacturing Technology,2011,52(5):763–775
    [167]王耀南.机器人智能控制工程.北京:科学出版社,2004,10-200
    [168]吴玉香.滑模控制理论及在移动机械臂中的应用:[华南理工大学博士学位论文].广州:华南理工大学,2006,5-60
    [169]王耀南.智能控制系统.长沙:湖南大学出版社,2006,10-98
    [170]李少远,王景成.智能控制.北京:机械工业出版社,2009,15-34
    [171] Zhou Y, Shi W X, et al. Adaptive fuzzy path following control for mobile robotswith model uncertainty. Information and Automation,2011,86:63–70
    [172] Li C Q, Gao X S, et al. A coaxial couple wheeled robot with T-S fuzzy equilibriumcontrol. Industrial Robot,2011,38(3):292–300
    [173] Zhang Q,Benveniste A. Wavelets network. IEEE Transactions on Neural Net-works,1992,6(3):889–898
    [174] Procyk T J, Mamdani E H. A linguistic self-organizing process controller. Auto-matica,1979,15(1):15–30
    [175] Huang H C, Tsai C C, Lin S C. Adaptive polar-space motion control for embeddedomnidirectional mobile robots with parameter variations and uncertainties. Journalof Intelligent and Robotic Systems,2011,62:81–102
    [176] Li Z. Adaptive fuzzy output feedback motion/force control for wheeled invertedpendulums. IET Control Theory Applications,2011,10(5):1176–1188
    [177] Liu Y, Zhao S W, Lu J P. A new fuzzy impulsive control of chaotic systems basedon T-S fuzzy model. IEEE Transactions on Fuzzy Systems,2011,19(2):393–398
    [178] Amer A F, Sallam E A, Elawady W M. Adaptive fuzzy sliding mode control us-ing supervisory fuzzy control for3DOF planar robot manipulators. Applied SoftComputing,2011,11:4943–4953
    [179] Blazic S. A novel trajectory-tracking control law for wheeled mobile robots.Robotics and Autonomous Systems,2011,59:1001–1007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700