HSP22对缺氧/复氧损伤人脐静脉内皮细胞保护及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     研究热休克蛋白22(Heat shock protein 22, HSP22)对缺氧/复氧(hypoxia/ reoxygenation H/R)损伤人脐静脉内皮细胞(HUVECs)的保护作用,并探讨其机制。
     方法:
     实验分为正常对照组、脂质体(Lipo)组、空质粒转染对照组(空白质粒组)和目的基因转染组(RNAi组)4组,Lipo组在HUVECs中仅加入Lipo,空白质粒组在HUVECs中加入Lipo和空质粒(pGcsi-U6/Neo/GFp/shRNA), RNAi组在HUVECs中加入Lipo和目的基因(pGcsi-U6/Neo/GFp/shRNA/HSP22)。经G418筛选各组细胞后,分别于第2d,10d,20d,30d在荧光显微镜下观察转染情况。各组HUVECs缺氧24h/复氧Oh后,Western blot印迹检测HSP22蛋白表达情况。再将正常对照组、空白质粒组和RNAi组先予缺氧24h处理后分别复氧Oh、3h、6h、12h,采用MTT检测细胞生长抑制情况,RT-PCR和Western blot印迹检测Bcl-2和Caspase-3基因和蛋白表达情况,RT-PCR检测NF-κB和IK-Bα基因表达情况。
     结果:
     1.正常对照组、Lipo组、空白质粒组和RNAi组HUVECs缺氧24h/复氧Oh后,HSP22蛋白表达(0.38±0.05、0.43±0.03、0.45±0.06、0.20±0.02),RNAi组显著低于正常对照组、Lipo组和空白质粒组(P<0.05);而正常对照组、Lipo组和空白质粒组之间HSP22蛋白表达无显著差异(P>0.05)。
     2.相同复氧时间点(0,3,6和12h)RNAi组细胞生长抑制率高于空白质粒组和正常对照组细胞抑制率(58.5±2.1% vs.41.6±5.4%,62.7±5.4% vs.45.6±3.7 %,65.4±8.4% vs.48.5±5.2%和68.6±6.7%vs.52.9±3.4%,P<0.051。
     3.相同复氧时间点(0,3,6和12h)RNAi组Bcl-2基因和蛋白表达均低于空白质粒组和正常对照组(1.85±0.06 vs.2.65±0.15,1.66±0.04 vs.2.35±0.08,1.09±0.05 vs.2.05±0.08,0.69±0.04 vs.1.75±0.09, P<0.05)和(0.54±0.04 vs.1.05±0.05, 0.32±0.05 vs.0.75±0.03,0.29±0.02 vs.0.55±0.03,0.13±0.04 vs.0.45±0.07,P<0.05)。
     4.相同复氧时间点(0h,3,6和12h)RNAi组Caspase-3基因和蛋白表达均高于空白质粒组和正常对照组(2.75±0.04 vs.1.75±0.07,2.96±0.04 vs.1.95±0.06, 3.59±0.05 vs.2.45±0.05,3.59±0.05 vs.2.77±0.09, P<0.05)和(3.59±0.05 vs.1.75±0.04, 6.18±0.24 vs.2.05±0.11,8.82±0.07 vs.2.65±0.12,9.36±0.11 vs.3.05±0.12,P<0.05)。
     5.相同复氧时间点(0h,3,6和12h)RNAi组NF-κB基因表达均高于空白质粒组和正常对照组。(2.54±0.03 vs.2.05±0.02,3.26±0.05vs.2.55±0.04,3.85±0.03 vs.3.12±0.05,4.34±0.06 vs.3.87±0.04, P<0.05);相同复氧时间点(0h,3,6和12h)RNAi组Iκ-Bα基因表达均低于空白质粒组和正常对照组(2.95±0.02 vs.3.65±0.04, 2.68±3.17 vs.3.05±0.04,1.75±0.03 vs.2.16±0.02,1.62±0.05 vs.1.89±0.04, P<0.05)。
     结论:
     1.H/R损伤诱导下HUVECs可出现HSP22的表达,构建RNAi质粒并转染至HUVECs可显著降低HSP22的表达。
     2.HSP22在H/R所致HUVECs损伤中发挥保护作用,其机制与上调Bcl-2和下调Capase-3抗凋亡;上调IK-Bα和下调NF-κB抗炎症有关。
Objective:
     Probe to the role and underlying mechanism of Heat shock protein 22 (HSP22) in injury of HUVECs induced by hypoxia/reoxygenation (H/R).
     Methods:
     A RNAi plasmid of HSP22 gene (pGcsi-U6/Neo/GFp/shRNA/HSP22) was constructed and transfected into HUVECs to download the expression of HSP22 which could be up-regulated by stress such as heat and H/R. According to the different intervention method, HUVECs were divided into 4 groups, i.e. Control group, Lipo group, Blank control group (i.e.pGcsi-U6/Neo/GFp/shRNA transfection group) and RNAi group(i.e. pGcsi-U6/Neo/GFp/shRNA/HSP22 transfection group). And these cells were subjected to hypoxia for 24h followed by reoxygenation for 0,3, 6,12h. After intervention of H/R, the rate of HUVECs growth inhibition was assayed by MTT and the expression of IK-Ba, NF-κB, Bcl-2 and Caspase-3 were measured by RT-PCR and Western blot.
     Results:
     1.The expression of HSP22 protein in RNAi group was obviously lower than others(0.20±0.02 vs.0.33±0.03 vs.0.45±0.06 vs.0.48±0.05 respectively in reoxyenation for Oh,3,6,12h, P<0.05), and there was no obviously difference among the Control, Lipo and Blank control group (P>0.05)
     2. The rate of HUVECs growth inhibition in RNAi group were obviously higher than Blank control group at the same time point of reoxygenation (58.5±2.1% vs.41.6±5.4%,62.7±5.4% vs.45.6±3.7%,65.4±8.4% vs.48.5±5.2% and 68.6±6.7% vs.52.9±3.4% respectively in reoxyenation for Oh,3,6,12h, P<0.05)
     3.The expression of bcl-2 mRNA and protein in RNAi group were obviously lower than Blank control group at the same time point of reoxygenation(1.85±0.06 vs.2.65±0.15,1.66±0.04 vs.2.35±0.08,1.09±0.05 vs.2.05±0.08,0.69±0.04 vs.1.75±0.09 respectively in reoxyenation for Oh,3,6,12h, P<0.05) and (0.54±0.04 vs.1.05±0.05,0.32±0.05 vs.0.75±0.03,0.29±0.02 vs.0.55±0.03,0.13±0.04 vs.0.45±0.07 respectively in reoxyenation for Oh,3,6,12h, P<0.05).
     4. The expression of Caspase-3 mRNA and protein in RNAi group is obviously higher than the Blank control group at the same time point of reoxygenation. (mRNA expression:2.75±0.04 vs.l.75±0.07,2.96±0.04 vs.1.95±0.06, 3.59±0.05 vs.2.45±0.05,3.59±0.05 vs.2.77±0.09 respectively in reoxyenation for Oh, 3,6,12h, P<0.05)and (protein expression:3.59±0.05 vs.1.75±0.04,6.18±0.24 vs.2.05±0.11,8.82±0.07 vs.2.65±0.12,9.36±0.11 vs.3.05±0.12 respectively in reoxyenation for Oh,3,6,12h, P<0.05).
     5. The expression of NF-κB mRNA in Blank control group were obviously higher than the RNAi group at the same time point of reoxygenation.(2.54±0.03 vs.2.05±0.02,3.26±0.05vs.2.55±0.04,3.85±0.03 vs.3.12±0.05,4.34±0.06 vs.3.87±0.04, P<0.05). And the expression of Iκ-BαmRNA in Blank control group were obviously lower than the RNAi group at the same time point of reoxygenation (2.95±0.02 vs.3.65±0.04,2.68±3.17 vs.3.05±0.04,1.75±0.03 vs.2.16±0.02,1.62±0.05 vs.1.89±0.04 respectively in reoxyenation for Oh,3,6,12h, P<0.05).
     Conclusion:
     1. The expression of HSP22 could be induced by H/R intervention in HUVECs and inhibited by transfection of RNAi plasmid of HSP22 gene. The transfection of Lipo and control plasmid did not influent the express of HSP22 in HUVECs.
     2. HSP22 might play a protective role in the injury of HUVECs induced by H/R.
     3. The protective mechanism of HSP22 might involve in the up-regulateing of bcl-2 and down-regulateing of Caspase-3 which contribute to protecting HUVECs away from apoptosis induced by H/R.
     4. The protective mechanism of HSP22 also might involve in inhibition of inflammation which presented as up-regulateing of IK-Ba and down-regulateing of NF-κB.
引文
[1]Seit-Nebi AS, Marston SB. Some properties of human small heat shock protein HSP22 (H11 or HspB8)[J]. Biochem Biophys Res Commun,2004,19,315(4):796-801.
    [2]Wang L, Zajac A, Depre C, et al. Increased expression of H11 kinase stimulates glycogen synthesis in the heart [J].Mol Cell Biochem,2004,265(1-2):71-8.
    [3]Kim MV, Seit-Nebi AS, Marston SB, et al. Some properties of human small heat shock protein HSP22 (H11 or HspB8) [J]. Biochem Biophys Res Commun,2004,315(4):796-801.
    [4]Colinet H, Lee SF, Hoffmann A.Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster[J]. FEBS J,2010;277(1): 174-85.
    [5]Carra S, Sivilotti M, Chavez Zobel AT, et al. HspB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells[J].Hum Mol Genet,2005 Jun 15; 14(12):1659-69.
    [6]Yew EH, Cheung NS, Choy MS, et al. Proteasome inhibition by lactacystin in primary neuronal cells induces both potentially neuroprotective and pro-apoptotic transcriptional responses:a microarray analysis[J].J Neurochem.2005;94(4):943-56.
    [7]Kelly KJ, Baird NR, Greene AL.Induction of stress response proteins and experimental renal ischemia/reperfusion. Kidney Int.2001;59(5):1798-802.
    [8]Roelofs MF, Boelens WC, Joosten LA, et al. Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis[J].J Immunol,2006;176(11):7021-7.
    [9]Cejka D, Losert D, Wacheck V, et al. Short interfering RNA (siRNA):tool ortherapeutic? Clin Sci (Lond),2006,110:47-58.
    [10]沈方臻,朱静娟,林明刚,等稳定转染Bcl-2 shRNA对胃癌细胞SGC-7901化疗敏感性的影响[J].中华肿瘤防治杂志,2010,17(23):1908-1911
    [11]Hendrick J P, Hartl F U. Molecular chaperone function of heat shock proteins [R].Annu Rev Biochem,1993,62:349-384
    [12]Georgopoulos C, Welch WJ. Role of the major heat shock proteins as molecular chaperones [R].Annu Rev Cell Biol,1993,9:601-634
    [13]Boston R S, Viitanen P V, Vierling E. Molecular chaperones and protein folding in plant[J].Plant Mol Biol,1996,32 (1-2):191-222
    [14]Kirbach BB, Golenhofen N. Differential expression and induction of small heat shock proteins in rat brain and cultured hippocampal neurons[J].J Neurosci Res,2011.89(2):162-75.
    [15]Kang SH, Lee JH, Choi KH,et al. Roles of ERK and NF-kappaB in Interleukin-8 Expression in Response to Heat Shock Protein 22 in Vascular Smooth Muscle Cells[J].Korean J Physiol Pharmacol,2008,12(4):171-6.
    [16]Shemetov AA, Seit-Nebi AS, Gusev NB.Structure, properties, and functions of the human small heat-shock protein HSP22 (HspB8, H11, E2IG1):a critical review[J].J Neurosci Res. 2008,86(2):264-9.
    [17]Nadia Hedhli,Li Wang, Qian Wang, et al. Proteasome activation during cardiac hypertrophy by the chaperone H11 Kinase/HSP22[J].Cardiovasc Res,2008,77 (3):497-505.
    [18]Tsujimoto Y,Croce Cm. Analysis of the structure, transcripts, and protein products of Bcl-2, the gene involved inhuman follicular lymphoma[J]. Proc Natl Acad Sci USA,1986,83 (14):5214.
    [19]Soto Cerrato V, Liagostera E, Montaner B, et al. Mitochondria mediated apop tosis operating irrespective of multidrug resistance in breast canter cells by the anticancer agent p rodigiosin[J]. BiochemicalPharmacol,2004,68 (7):1345-1352.
    [20]Kaznelson DW, Bruun S, Monrad A, et al. Simultaneous human papillioma virus type 16E7 and cdk inhibitor p21 exp ression induces apoptosis and cathep sin B activation[J]. Virology, 2004,320(2):301-312
    [21]Giamarellos2Bourboulis EJ, Koussoulas V, Panagou C, et al. Experimental sep sis using Pseudomonas aeruginosa:the significance of multi-drug resistance[J]. Int J Antimicrob Agents,2004,24 (4):357-361.
    [22]Lo MY, Kim HT. Chondrocyte apoptosis induced by hydrogen peroxide requires caspase activation but notmitochondrial pore transition[J].J Orthop Res,2004,22 (5):1120-1125.
    [23]Krajewski S, Bodrug S, Gascoyne R, et al. Immunohistochemical ananlysis of Mcl-1 and Bcl-2 proteins in normal and neoplastic lymphnodes[J].Am J Pathol,1994,145(3):515.
    [24]Kei Yamamoto, Ryuichi Morishita, Shin-ichiro Hayashi, et al. Contribution of Bcl-2, but Not Bcl-xL and Bax, to Antiapoptotic Actions of Hepatocyte Growth Factor in Hypoxia-Conditioned Human Endothelial Cells [J]. Hypertension,2001;37(4):1341.
    [25]Cui-Li Zhang, Fei Song, Jing Zhang, et al. Hypoxia-induced Bcl-2 expression in endothelial cells via p38 MAPK pathway[J]. Biochemical and Biophysical Research Communications, 2010,16(3); 976-980.
    [26]Li J, Yuan J. Caspases in apoptosis and beyond[J]. Oncogene,2008,27(48):6194-206.
    [27]Rupinder S K, Gurpreet A K, Manjeet S. Cell suicide and caspases[J].Vascul Pharmacol, 2007,46(6):383-93.
    [28]Yong-Xing Zhang, MD, Hong Fan, PhD, et al. Prevention of lung ischemia-reperfusion injury by short hairpin RNA-mediated Caspase-3 gene silencing[J].Thorac Cardiovasc Surg, 2010;139(6):758-764
    [29]S.Ishikawa,J.Nakabayashi, N. Nakabayashi, et al. Neuroprotective Effect of Small Interfering RNA Targeted Against Caspase 3 on Rat Retinal Ganglion Cells Induced by Ischemia Reperfudion Injury in Rat[J]. Invest Ophthalmol Vis Sci,2007;48(2):564
    [30]Yew EH, Cheunq NS, Choy MS, et al. Proteasome inhibition by lactacystin in primary neuronal cells induces both potentially neuroprotective and pro-apoptotic transcriptional responses:a microarray analysis[J].Neurochem,2005,94(4):943-56.
    [31]李泉,张剑和黎纬明,等MAPK和Caspase-3在异基因CD8+T淋巴细胞诱导血管内皮细胞凋亡中的作用[J].中国病理生理杂志,2009,25(9):1671-1675.
    [32]Lju XJ, Zhang LQ, Liu XL, el al. Role for the Bcl-2 family proteins and BH3 domain in apoptosi[J]. Prog Biochem Biophys(生物化学与生物物理进展),2006,33:221-222.
    [33]Bhakar AL, Trannis LL, ZeincUer C, et al. Constilutjve Nuclear Factor-KB Activity Is Required for Central Neuron Survival[J].The Journal of Neuroscience,2002,22(9): 8466-8475.
    [34]Chen L, Lizano P, Zhao X, et al.Pre-emptive Conditioning of the Swine Heart by H11 Kinase/HSP22 Provides Cardiac Protection Through Inducible Nitric Oxide Synthase [J].Am J Physiol Heart Circ Physiol,2011,300(3):Epub ahead of print.
    [35]裴崇强 金鸣NF-κB抑制剂治疗肺部炎症的研究进展[R].现代生物医学进展,2009,1673(20):3972-74.
    [1]Radu Iliescu, Solana R. Fernandez, et al. Role of renal microcirculation in experimental renovascular diseaseNephrol. [J]. Dial. Transplant.2010,25(2):1079-1087.
    [2]Kuno K, Kanada N, Nakashlma E, et al. Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protion with thrombospondintype motifs as an inlfammation associated gene [J]. Biol them,1997,272(1):556-562.
    [3]Suneel S. Apte,A Disintegrin-like and Metalloprotease (Reprolysin-type) with Thrombospondin Type 1 Motif (ADAMTS) Superfamily:Functions and Mechanisms [J]. Biol. Chem,2009,284(2):31493-31497.
    [4]StankunasK, HanqCT, TsunZY, et al. Endocardial Brgl represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. [J].Dev Cell. 200814(2):298-311.
    [5]Li Wang, Jingang Zheng, Xue Bai, et al. ADAMTS-7 Mediates Vascular Smooth Muscle Cell Migration and Neointima Formation in Balloon-Injured Rat Arteries.Circ. Res. Mar 2009,104(4):688-698.
    [6]York Hunt Ng, Hua Zhu, Catherine J. Pallen, et al. Differential effects of interleukin-1βand transforming growth factor-1βon the expression of the inflammation-associated protein, ADAMTS-1, in human decidual stromal cells in vitro.Human Reproduction 2006,21(8):1990-1999.
    [7]Gerson Weiss, Laura T. Goldsmith et al. Inflammation in Reproductive Disorders Reproductive [J] Sciences,2009,16(9):216-229.
    [8]Claudio Mastronardi, Fiona Whelan,OzlemA Yildiz, et al. Caspase-1 deficiency reduces inflammation-induced brain transcription.[R].Samuel M. McCann, February 2007,18(8):16-29.
    [9]David P. Basile, Katherine Fredrich,Bhadrani Chelladurai et al. Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. [J]Am J Physiol Renal Physiol 2008,294(7):F928-F936.
    [10]Leonard EC, Friedrich JL, Basile DP et al.VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury. [J]Am J Physiol Renal Physiol 2008,295(6):F 1648-57.
    [11]Monika Krampert, Sandra Kuenzle, Shelley N.-M et al.ADAMTSl Proteinase Is Up-regulated in Wounded Skin and Regulates Migration of Fibroblasts and Endothelial Cells。[J]J. Biol. Chem.,2005,280(8):23844-23852.
    [12]Frederique M.D. Tholozan,Christopher Gribbon, Zheng Li, et al. FGF-2 Release from the Lens Capsule by MMP-2 Maintains Lens Epithelial Cell Viability. [J] Mol. Biol. Cell,2007,18(5):4222-4231.
    [13]Thomas N. Wight.The ADAMTS Proteases, Extracellular Matrix, and Vascular Disease: Waking the Sleeping Giant(s) [R]Arterioscler Thromb Vasc Biol,2005,25(3):12-14.
    [14]Suneel S. Apte. A Disintegrin-like and Metalloprotease (Reprolysin-type) with Thrombospondin Type 1 Motif (ADAMTS) Superfamily:Functions and Mechanisms. [R] J. Biol.Chem.,2009,284(3):31493-31497.
    [15]Ido Ben-Ami, Sarit Freimann, Leah Armon, et al.Novel function of ovarian growth factors:combined studies by DNA microarray, biochemical and physiological approaches. [J] Mol. Hum. Reprod., Jul 2006; 12(4):413-419.
    [16]Sara Bretschger Seidelmann. Chaoling Kuo, Nick Pleskac et al. Athsq1 Is an Atherosclerosis Modifier Locus With Dramatic Effects on Lesion Area and Prominent Accumulation of Versican. [J] Arterioscler Thromb Vasc Biol, Dec 2008; 28(3):2180-2186.
    [17]Hendra Setiadi, Rodger P. McEver Clustering endothelial E-selectin in clathrin-coated pits and lipid rafts enhances leukocyte adhesion under flow. [J] Blood, Feb 2008; 111(4):1989-1998.
    [18]Sanjay Patel,David S,Celermajer et al.Atherosclerosis-Underlying inflammatory mechanisms and clinical implications. [J] IntJ Biochem cell Biol.2008;40(4):576-80.
    [19]Jaeyeon Kim, Marcey Sato, Quanxi Li et al. Peroxisome Proliferator-Activated Receptor TIs a Target of Progesterone Regulation in the Preovulatory Follicles and Controls Ovulation in Mice. [J] Mol. Cell. Biol., Mar 2008; 28(3):1770-1782.
    [20]Shih-Chi Su, E. Adriana Mendoza, Hyeong-il Kwak et al.Molecular profile of endothelial invasion of three-dimensional collagen matrices:insights into angiogenic sprout induction in wound healing. [J] Am J Physiol Cell Physiol, Nov 2008; 295(2): C1215-C1229.
    [21]Ann-Cathrine Jonsson-Rylander, Tina Nilsson et al. Role of ADAMTS-1 in Atherosclerosis:Remodeling of Carotid Artery, Immunohistochemistry, and Proteolysis of Versican. [J] Arterioscler Thromb Vasc Biol, Jan 2005; 25(2):180-185.
    [22]Kate E. Keller, John M. Bradley, et al. Differential Effects of ADAMTS-1,-4, and-5 in the Trabecular Meshwork. [J] Invest. Ophthalmol. Vis,2009; 50:5769-5777.
    [23]Victor W.M. van Hinsbergh and Pieter Koolwijk. et al. Endothelial sprouting and angiogenesis:matrix metalloproteinases in the lead.[R] Cardiovasc Res, May 2008; 78(5):203-212.
    [24]Karl T. Weber, William B. Weglicki, and Robert U. Simpson. Macro- and micronutrient dyshomeostasis in the adverse structural remodelling of myocardium.[R] Cardiovasc Res, Feb 2009;81(4):500-508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700