卧式车铣复合加工中心有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的主要研究内容是HTM61350卧式车铣中心的有限元分析,以及部分重要零部件的热特性分析。通过ANSYS有限元分析找出整机的薄弱部位并提出相应的改进措施,从而为设计者改进机床的设计质量提供一定的理论依据。
     在研究过程中,先是参考已有的文献资料对机床做合理的简化,省去不重要的零部件,然后利用Pro/E完成HTM61350车铣中心的整机有限元三维实体建模。将建好的模型导入ANSYS Workbench依次完成了车铣中心整机的静动刚度分析和模态分析,以及机床主轴箱的热特性分析。
     通过对机床进行有限元分析,本文找出了车铣中心车削部分和铣削部分的主要变形部件分别是C轴轴承和十字导轨。通过理论计算得出了相应的主要变形部件在机床总变形中的占有百分比。机床主轴箱的热特性有限元分析结果表明在机床工作条件下主轴箱整体变形比较均匀,能保证机床的整体加工精度不因为主轴箱变形而发生较大的变化。
     通过详细的理论分析和ANSYS有限元计算,本文得出的主要成果如下:
     (1)完成了HTM61350卧式车铣中心合理简化后的整机三维实体建模;
     (2)利用ANSYS有限元分析软件完成了车铣中心整机的静动刚度和模态分析,根据有限元分析结果提出相应的设计改进措施:
     (3)对机床主轴箱进行了热特性分析,并提出了针对其热变形的热补偿方法;
     (4)从整体上确定了车铣中心在加工过程中的薄弱环节,为设计者改进机床的设计提供了一定的理论依据。
Numerical control technology is an advanced manufacturing technology and is the kernel technology of CNC equipment. Nowadays, the advanced NC technology is widely adopted by the manufacturing of all countries in the world in order to improve the manufacturing capability, the adaptive ability and the competition power facing complicated and volatile market. NC technology and NC equipments have been regarded as national strategic materials in the developed countries. The developed countries not only take significant measures to develop their NC technology and NC industries but also adopt the blockade and restriction policies in "advanced" NC equipment and key technology against our country. Therefore, with the high-speed development and popularization of computer technology, in the time of modern manufacturing system developing toward the intelligence, integration and network integration, developing vigorously independent CNC technology has important practical value and strategic significance for breaking through the technical blockade and studying new generation of numerical control in depth.
     The paper aims at HTM61350 horizontal turning and milling center to do the analysis and study, and establishes the three-dimensional structure of the turning and milling center by using Pro - E. Using ANSYS Workbench carries out static stiffness analysis and modal analysis aiming at the turning operation and milling operation of the machining center .This paper determines relative deformation of each main part of the turning and milling center through the finite element analysis, and figures out the percentage of the deformation of the each main parts in the total deformation of the machining center.
     The paper studies the overall deformation of the machine in the four different working loads. The result of the finite element analysis indicates that the C-axis bearing is the main deformation part and its deformation is 57% of total deformation of the machine. Another, the paper studies the deformation of the each part of the machine in the case of the same working load when the machine execute turning and milling in the X, Y Z-direction and The paper draws a conclusion that the main deformation part is the cross guideway and its deformation is 18% of total deformation of the machine. At the same time, the paper carries out the modal analysis aiming at the turning and milling of HTM61350 horizontal turning and milling center. For the turning of the machine, the paper studies the structural deformation of the machine in the case that the spindle speed is the same and the natural frequency is 41.225HZ, 69.625HZ, 55.114HZ and 57.859HZ respectively; For the milling of the machine, the paper studies the structural deformation of the machine in the case that the spindle speed is 4000r/min and the natural frequency is 23.181 HZ,40.142 HZ,41.766 HZ,54.392 HZ,56.033 HZ,61.713 HZ,63.044 HZ,65.297HZ, 74.917HZ, 79.105HZ respectively.
     In the case that the spindle speeds is certain, the research results show that the deformation of the machine becomes obvious, as the natural frequencies increase gradually. When the natural frequency the machine is the lower (less than or equal to 23.181 HZ), the deformation occurs mainly in the workpiece, headstock and tailstock, and little deformation in the milling columns; When natural frequency speed is between 40.142HZ and 23.181HZ, the deformation occurs mainly in the milling columns; As the natural frequency increases, the main deformation reoccurs in the work-piece, headstock and tailstock; When the natural frequency is more than 61.713HZ, the main deformation the machine occurs mainly in the milling columns, and as the natural frequency increases, the deformation of the columns rapidly worsens; When h the natural frequency is more than 79.105HZ, the machine will completely lose working ability.
     This paper carries out static stiffness analysis and modal analysis for overall machine and thermal analysis for headstock aiming at HTM61350 hydraulic turning and milling center, and determines main deformation parts and relative deformation information in the case of the machine running, the above information provide can reliable theory for improving the machine and can also act as reference data for designing new machine.
引文
[1]奋斗六十年,我国机床工业进入世界前列.金属加工[J].北京:机械工业出版社,2009(18):12-16.
    [2]国产数控机床质量现状解析.质量与可靠性[J].北京:中国航天质量协会,2009(3):5-9.
    [3]我国数控技术与产业的现状、发展趋势及对策.锻压装备与制造技术[J].北京:中国机床工具工业协会,2005(2):22-26.
    [4]李修平.基于ANSYS的高速加工中心有限元分析[D].武汉:华中科技大学机械学院,2005.
    [5]辽宁数控机床制造产业发展研究.农业科技与装备[J].辽宁:辽宁省农机协会,2009(6):140-142.
    [6]数控机床可靠性国内外现状与技术发展策略.中国制造业信息化[J].江苏:江苏省机械研究设计院,2008(4):35-38.
    [7]2008机床工具行业经济运行特点分析.企业视窗[J].北京:企业视窗杂志社,2008(3):93-94.
    [8]徐尚贤.机械设计中的有限元法[M].北京:高等教育出版社,1990.6
    [9]数控机床整机有限元分析.机床与液压[J].广州:广州机械科学研究院,2008(4):17-20.
    [10]大型机床动态特性的整机有限元分析.福州大学学报[J].福建:福州大学,2003(2):69-73.
    [11]机床整机的动态特性分析.机械设计[J].北京:机械工程学会,2000(10):24-28.
    [12]机床整机特性的有限元分析方法.机床与液压[J].广州:广州机械科学研究院,2005(3):20-23.
    [13]李恒熙.基于ANSYS的CK6136数控车床的有限元分析及优化设计[D].南京:东南大学机械学院,2006.
    [14]CKS6125数控机床床身的有限元分析与研究.机床与液压[J].广州:广州机械科学研究院,2009(7):171-175.
    [15]高速机床有限元分析及其动态性能试验.组合机床与自动化加工技术[J].北京:中国机械工程学会与大连组合机床研究所,2004(12):15-18.
    [16]陈生华.数控高速铣齿机床结构有限元分析及优化研究[D].南京:南京工业大学机械学院,2005.
    [17]机床整机动态特性的预测解析建模方法.上海交通大学学报[J].上海:上海交通大学,2001(12):1834-1838.
    [18]刘道钱.数控铣床关键零部件模块化建模与有限元分析[D].武汉:武汉理工大学,2008.
    [19 张兴朝.基于有限元分析的模块化数控机床结构动态设计研究[D].天津:天津大学,2001.
    [20]陈庆堂.甚于ANSYS的XK713数控铣床有限元分析及优化设计[D].南京:东南大学, 2005.
    [21]大型高效数控铣床有限元模态分析.机床与液压[J].广州:广州机械科学研究院,2005(6):21-24.
    [22]BKX-Ⅰ型变轴数控机床的有限元模态分析.机械设计与研究[J].上海:上海机械工程学会,2005(8):85-88.
    [23]ANSYS在数控机床模态分析中的应用.中国制造业信息化[J].南京:江苏省机械研究设计院,2006(9):40-44.
    [24]高速龙门加工中心GMC3000动态特性的有限元分析.现代制造工程[J].北京:北京机械工程学会,2007(3):113-117.
    [25]基于有限元的超高速平面磨床整机动力学建模及模态分析.湖南大学学报[J].湖南:2005(8):39-43.
    [26]杨牧原.基于有限元分析的大型落地数控镗铣床立柱的设计与优化[D].合肥:2009.
    [27]数控机床直线滚动导轨结合面有限元分析.制造技术与机床[J].北京:北京机床研究所,2007(7):75-79.
    [28]数控车床主轴部件有限元分析及其验证.东北大学学报[J].沈阳:东北大学,2009(5):720-724.
    [29]数控机床电主轴单元热-结构特性动态分析.组合机床与自动化加工技术[J].北京:组合机床与自动化加工技术,2006(12):25-30.
    [30]基于有限元分析的数控机床床身结构动态优化设计方法研究.机械强度[J].北京:机械工程学会,2004(9):25-30.
    [31]解文志.高速电主轴动静态特性的有限元分析[D].哈尔滨:哈尔滨工业大学机械学院,2006.
    [32]胡爱玲.高速电主轴动静态特性的有限元分析[D].广东:广东工业大学机械学院,2004.
    [33]机床导轨结合部的有限元模型.机械工程学报[J].北京:机械工业出版社,2004(9):1634-1637.
    [34]满佳.机床结构动态性能分析及改进的实例研究[D].天津:天津大学机械学院,2006.
    [35]方英武.机床整机结构边界元静态特性解析和优化方法研究[D].西安,西安理工大学,2000.
    [36]关于机床热关键点辨识问题的研究现状分析.组合机床与自动化技术[J].北京:中国机械工程学会与大连组合机床研究所,2004(2):32-34.
    [37]基于ANSYS数控车床床身有限元结构分析.黑龙江工程学院学报[J].哈尔滨:黑龙江工程学院,2008(12):37-41.
    [38]数控铣床振动模态分析.机床与液压[J].广州:广州机械科学研究院,2009(7):189-193.
    [39]基于有限元的并联机床整机静力特性分析.机械制造[J].北京:机械工程学会,2007(1): 4-7.
    [40]五轴联动数控铣床的高速动态特性分析.北京机械工业学院学报[J].北京:北京机械工业学院,2007(12):59-62.
    [41]机床热变形的研究现状.吉林工业大学自然科学学报[J].吉林:吉林工业大学,2001(7):95-98.
    [42]数控机床主轴部件变形的有限元分析.组合机床与自动化加工技术[J].北京:中国机械工程学会与大连组合机床研究所,2005(4):26-28.
    [43]重型卧式车床主轴系有限元分析.青海大学学报[J].青海:青海大学,2009(6):15-19.
    [44]基于ANSYS的加工中心机床热特性有限元分析.机械制造与研究[J].上海:上海机械工程学会,2008(6):22-25.
    [45]基于有限元方法的数控铣床整机热特性分析.先进制造工艺技术[J].上海:上海机械工程学会,2007(3):45-48.
    [46]减少机床热变形方法的研究.机床与液压[J].广州:广州机械科学研究院,2006(2):88-91.
    [47]数控机床热变形关键点的辨识.组合机床与自动化加工技术[J].北京:中国机械工程学会与大连组合机床研究所,2000(12):16-18.
    [48]鲁远栋.数控机床热误差检测及补偿技术研究[D].西安,西南交通大学,2007.
    [49]高速电主轴的有限元分析.装备制造工程[J].广西,广西工程学会,2007(5):40-42.
    [50]C.M.Lee,D.Y.Yang.A three-dimensional steady-state finite element analysis of square die extrusion by using automatic mesh generation[J].International Journal of Machine Tools&Manufacture,2000,33-47.
    [51]ALBERT J.SHIHT.FINITE ELEMENT ANALYSIS OF ORTHOGONAL METAL CUTTING MECHANICS[J].International Journal of Machine Tools&Manufacture,1996,36:255-273.
    [52]Jaroslav Macherle.Finite-element analysis and simulation of maching:a bibliography(1976-1996)[J].Journal of Materials Processing Technology.1999,86:17-44.
    [53]Yuan Kang,Chuan-Wei Chang,Yuanruey Huang et.al.Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools[J].International Journal of Machine Tools&Manufacture.2007,47:376-387.
    [54]David Te-Yen Huang,Jyh-Jon Lee.On obtaining machine tool stiffness by CAE techniques[J].International Journal of Machine Tools&Manufacture,2001,41:1149-1163.
    [55]Jun Wu,Jinsong Wang,Liping Wang,Tiemin Li et.al.Study on the stiffness of a 5-DOF hybrid machine tool with actuation redundancy[J].Mechanism and Machine Theory,2009,44:289-305.
    [56] Y.Kang,Y.-P.Chang,J.-W.Tsai,er.al.Integrated "CAE"strategies for the design of machine tool spindle-bearing systems[J].Fintre elements in Analysis and Design,2001,37:485-511.
    [57] Jun Wu,Jinsong Wang,Liping Wang,et.al.Study on the stiffness of a 5-DOF hybrid machine tool with actuation redundancy[J].Mechanism and Machine Theory,2009,44:289-305.
    [58] M.Weck,RWTH Aachen. Reduction and Compensation of Thermal Errors in Machine tools[J].Annals of the CIRP,1995,44:589-599.
    [59] Zhao Haitao,Yang Jianguo,Shen Jinhua.Simulation of thermal behavior of a CNC machine tool spindle[J].International Journal of Machine Tools&Manfuacture,2007,47:1003-1010.
    [60] Sun-Kyu Lee,Jae-Heung Yoo,Moon-Su Yang.Effent of thermal deformation on machine tool slide guide motion[J].Tribology International,2003,36:41-47.
    [61] ABDULLAH AKPOLAT.DEFORMATIONS AND PRESSURE DISTRIBUTION ON MACHINE TOOL SLIDEWAYS[J].Int.J.Mach.Tools Manufact,1997,37:309-318.
    [62] Xu Min,Jiang Shuyun,Cai Ying.An improved thermal model for machine tool bearings[J].International Journal of Machine Tools&Manufacture,2007,47:53-62.
    [63] C.Brecher,P.Hirsch.Compensation of Thermo-elastic Machine Tool Deformation Based on Control internal Data[J]. Int.J.Mach.Tools Manufact,2005,35:126-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700