数控机床热误差检测及建模技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文在分析国内外数控机床热误差补偿技术研究现状及发展趋势的基础上,以数控机床热误差补偿中温度与热误差检测系统的开发、热关键点辨识技术、热误差建模方法为主要研究内容。
     开发了温度与热误差检测系统。系统硬件以温度传感器、位移传感器和PCI数据采集卡为核心;数据连续采集模块采用局部循环缓存技术,提高了整个采集程序的运行速率。为实现较高的测量精度,采取了包括信号调理电路在内的一系列防干扰措施。经试验,此采集系统满足测量精度和自动采集的要求。
     在机床热关键点辨识研究中,针对聚类分组法当温度变量组之间出现交叉现象时分组难以进行的问题,提出了改进方法,即典型温度变量选择方法。该方法对温度变量与热误差观测值之间相关性高的变量优先分析,选出典型温度变量;用多元线性回归模型对各变量组合的模型拟合精度进行分析,从而优选出温度变量组合。
     研究了基于最小二乘的多元线性回归、BP神经网络和RBF神经网络三种热误差建模方法。采用这三种建模方法对HG-410立式数控铣床和MCH63卧式加工中心分别建立其热误差模型,通过试验验证了各模型的热误差预测能力。分析比较各模型的热误差预测精度,综合考虑模型的复杂程度,得出多元线性回归法适用于HG-410立式数控铣床进行热误差建模,BP神经网络适用于MCH63卧式加工中心进行热误差建模的结论。
Based on fully understanding and deeply analyzing the current status of the research and trend of thermal error compensation technique for CNC machine tools, the development of temperature and thermal error data acquisition system, identification technique of thermal key points and the modeling methods of thermal errors for CNC machine tools were the main research contents of this paper.
     A temperature and thermal errors measurement system was developed. It’s hardware was based on temperature sensors, displacement sensors and PCI data acquisition card; the whole operation rate of data acquisition program was enhanced by using local circulation cache technology for dada continuous acquisition module. In order to acquire high measuring accuracy, a series of measures including signal processing circuit were adopted. Test results indicated that the system completely met the requirements of precision and automatic measurement.
     In the research of thermal key points identification, in order to solve the problem of when the crossover phenomenon appeared among temperature variable groups grouping was hard to implement, a improved method ,selection method of typical temperature variables was proposed; in order to choose the reasonable temperature variable combination multiple linear regression (MLR) model was also used.
     The modeling methods of multiple linear regression based on least square method,BP neural network and RBF neural network were studied. Taking HG-410 vertical CNC machine tools and MCH63 horizontal machining center as the test objects, the models of these machine tools were established respectively by the three modeling methods, and the prediction ability of these models were proved by experiments. By comparison of the prediction accuracy and comprehensive consideration of the complex degree of these models , a conclusion is: MLR modeling methods is suitable for HG-410 vertical CNC machine tools and BP neural network is suitable for MCH63 horizontal machining center.
引文
[1]王先逵.机械制造工艺学[M].北京:机械工业出版社.2004.
    [2] ShuHe Li, YiQun Zhang, GuoXiong Zhang. A study of pre-compensation for thermal errors of CNC machine tools[J]. International Journal of Machine Tools & Manufacture,1997,37 (12):1715-1719.
    [3] R.Ramesh, M.A.Mannan, A.N.Poo. Error compensation in machine tools—a review Part II: thermal errors [J]. International Journal of Machine Tools & Manufacture,2000,(40):1257–1284.
    [4]陈子辰.热敏感度和热耦合度研究[D]. 1992年全国机床热误差控制和补偿研究会议论文集.1992:49-53.
    [5]潘淑微,傅建中.数控车床嵌入式智能温度检测与试验[J].制造技术与机床,2007,(9):44-47.
    [6] M.Weck. Compensation of Thermal Errors in Machine Tools with Minimum Number of Temperature Probes Based on Neural Network[J]. ASME,1998,(34):735-743.
    [7] S.K.Kim. Real-time Estimation of Temperature Distribution in a Ball-screw System [J].International Journal of Machine Tools and Manufacture , 1997,37 (4): 451-464.
    [8] M.H. Attia. Thermometric Design Considerations for Temperature Monitoring in Machine Tools and CMM Structures[J]. The International Journal of Advanced Manufacturing Technology, 1993,(8):311-319.
    [9]李书和,张国雄.机床热变形误差实时补偿技术[J].天津大学学报, 1998,31 (6):881-884.
    [10]李书和,张奕群.加工中心误差补偿的研究[J].制造技术与机床, 1997, (6):16-19.
    [11] H.Y. Seung, H. K. Ki. Measurement of spindle thermal errors in machinetool using hemispherical ball bar test[J]. International Journal of Machine Tools & Manufacture, 2004,(44):333-340.
    [12] D.S.Lee, J.Y.Choi,D.H.Choi. ICA based thermal source extraction and thermal distortion compensation method for a machine tool[J]. Machine tools & manufacture, 2003, (3):589-597.
    [13] J.S.Chen, Computer-aided accuracy enhancement for multi-axis CNC machine tools[J], International Journal of Machine Tools and Manufacture, 1995,35 (4):593–605.
    [14] J.C. Liang, H.F. Li,J.X. Yuan, J. Ni. A comprehensive error compensation system for correctinggeometric thermal and cutting force induced errors[J]. The International Journal of Advanced Manufacturing Technology, 1997,(13):708-712.
    [15]曹永洁,傅建中.基于高精度位移传感器的机床主轴热变形实时测量[J].组合机床与自动化加工技术, 2006,(12):42-45.
    [16]潘淑微,傅建中.数控机床嵌入式智能温度检测与实验[J].制造技术与机床, 2007,(9):44-47.
    [17]潘志宏.数控机床误差建模及温度与热误差检测系统[D].上海:上海交通大学, 2001.
    [18]张志飞.多轴数控机床热误差与几何误差建模及补偿技术的研究[D].天津,天津大学, 2001.
    [19]张志飞.加工中心热误差补偿研究[J].制造技术与机床, 2001,(1):27-29.
    [20] D. A.Krulewic. Temperature integration model and measurement selection for thermally induced machine tool errors[J]. Mechatronics, 1998,(8):395-412.
    [21] M.H.Attia, S.Fraser. A generalized modeling methodology for optimized real-time compensation of thermal deformation of machine tools and CMM structures[J]. Internal Journal of Machine Tools& Manufature, 1999,(39):1383-1396.
    [22] J.H. Lee, S.H.Yang. Statistical optimization and assessment of a thermal error model for CNC machine tools[J]. International Journal of Machine Tool &Manufacture, 2002,(42):147-155.
    [23] C.H. Lo, jingxia Yuan, Jun Ni. Optimal temperature Variable selection by grouping approach for thermal error modeling and compensation[J]. International Journal of Machine Tool & Manufacture, 1999,(39):1383-1396.
    [24]于金.数控机床热误差的模型预报补偿[J].组合机床与自动化加工技术, 2002,(4):7-8.
    [25]于金,赵树国,于治明.数控机床热变形关键点的辨识与补偿方法的研究[J].机械设计与制造, 2000,(6):73-74.
    [26]李小力,周云飞,李作清,等.数控机床热敏感点识别研究[J].机械与电子, 1998,(6):30-32.
    [27]闫守红,马术文,闫开印,等.数控机床热变形模型中测温点的优化选择研究[J].机械, 2006,33(5):37-39.
    [28]沈金华,赵海涛,张宏韬,等.数控机床热补偿中温度变量的选择与建模[J].上海交通大学学报, 2006,40(2):181-184.
    [29]邓卫国,杨建国,任永强,等.精密车削中心热误差测试和优化建模[J].机械制造, 2004,42(479):22-25.
    [30]窦小龙,杨建国,关贺,等.温度测点优化在机床主轴热误差建模中的应用[J].航空精密制造技术, 2003,39(4):33-36.
    [31]罗立辉,郭建钢,苏继龙.机床热误差温度测点优化和补偿建模研究现状[J].机床与液压, 2006,(9):52-53.
    [32]杨建国,邓卫国,任永强.机床热补偿中温度变量分组优化建模[J].中国机械工程,2004,15(6):478-481.
    [33]钱华芳.数控机床温度传感器优化布置及新型测温系统的研究[D],杭州:浙江大学, 2006.
    [34]陈征.关于机床热关键点辨识问题的研究现状分析[J].组合机床与自动化加工技术, 2004,(2):33-34.
    [35] S.C.Huang. Analysis of a model to forecast thermal deformation of ball screw for thermally induced machine tool errors[J]. Mechtronics, 1998,(8):395-412.
    [36] A.Balsamo, D.Marques, S.Sartori. A method for thermal deformation corrections of CMMs[J], Annals of the CIRP, 1990,39 (1):557–560.
    [37]项伟宏,郑力,刘大成,等.机床主轴热误差建模[J].制造技术与机床, 2000,(11):12-15.
    [38]王新,满蛟,穆塔里夫·阿赫迈德.加工中心主轴热误差的分析与建模[J].组合机床与自动化加工技术, 2005,(7):46-47.
    [39]穆塔里夫·阿赫迈德,项伟宏,郑力.加工中心热误差实验分析与建模[J].组合机床与自动化加工技术, 2002,(9):15-17.
    [40]杨庆东,C.范丹伯格,P.范赫里克,等.数控机床热误差补偿建模方法[J].制造技术与机床, 2000,(2):10-13.
    [41]杨庆东.机床动态热性能研究和误差补偿[J].重庆工业高等学校专科学校学报, 1999,14(3):232-234.
    [42]杨建国,薛秉源. CNC车削中心热误差模态分析及鲁棒建模[J].中国机械工程, 1998,9(5):31-35.
    [43] J.Jedrzejewski, J.Kaczmarek,Z.Kowal. Numerical optimization of thermal behavior of machine tools [J]. Annals of the CIPP, 1990,39 (1):478-481.
    [44] S.Y.Won, K.K.Soo. Thermal error analysis for a CNC lathe feed drive system [J]. International Journal of Machine Tools and Manufacture, 1999,(39):1087-1101.
    [45] J.Jedrzejewski, W.Modrzycki. A new approach to modelling thermal behaviour of a machine tool under service conditions[J]. Annals of the CIRP, 1992,41 (1):455–458.
    [46] J.S.Chen,C.Ling. Improving the machine tool accuracy through machine tool metrology anderror correction[J]. The International Journal of Advanced Manufacturing Technology, 1996,(11):198–205.
    [47] J.S.Chen. A study of thermally induced machine tool errors in real cutting conditions[J]. International Journal of Machine Tools& Manufacture, 1996,36 (12):1401–1411.
    [48]杨庆东.神经网络补偿机床热变形误差的机器学习技术[J].机械工程学报, 2000,36(1):92-105.
    [49]杜正春,杨建国,窦小龙,等.基于RBF神经网络的数控车床热误差建模[J].上海交通大学学报,2003,37(1):26-28.
    [50]许亚洲.基于最小二乘支持向量机的数控机床热误差建模的研究[D].浙江:浙江大学, 2006.
    [51]李永祥,杨建国.灰色模型在机床热误差建模中的应用[J].中国机械工程, 2006,17(23):2439-2442.
    [52]李永祥.数控机床热误差建模新方法及其应用研究[D].上海:上海交通大学2007.
    [53]吾祖堂,李岳,李琦,等.复杂机械设备运行状态趋势的灰色预测[J].机械研究与应用,1998,(1):44-45.
    [54]张奕群,李书和.基于主轴转速的机床热误差状态方程模型[J].仪器仪表学报, 1998,19(5):460-463.
    [55]吴汉夫.基于电流与速度参数的加工中心热误差预测方法[J].制造技术与机床, 2008,(6):41-43.
    [56]宾鸿赞.加工过程数控[M].武汉:华中理工大学出版社, 1999,4.
    [57]倪军.数控机床误差补偿研究的回顾及展望[J].中国机械工程, 1997,8(1):29-33.
    [58]潘淑薇,傅建中,等.基于PMAC的数控车床主轴热误差补偿系统研究[J].机械制造, 2007,45(513):40-42.
    [59]任永强,杨建国,罗磊,等.基于外部机床坐标系偏移的热误差实时补偿[J].中国机械工程,2003,14(14):1243-1245.
    [60]杨建国,张宏涛,等.数控机床热误差实时补偿应用[J].上海交通大学学报, 2005,39 (9):1389-1392.
    [61] ADLINK Technology Inc. DAQ-2204/2205/2206 Use’s Guide, 2007:31.
    [62]王庆田,陈元俊.统计预测[M].沈阳:东北工学院出版社, 1990.
    [63]葛哲学,孙志强.北京:神经网络理论与MATLAB R2007实现[M].电子工业出版设, 2007.
    [64]张立燕.基于神经网络的数控机床热误差补偿系统的研究[D].北京:北京工业大学, 2004.
    
    [65]廖平兰.机床加工过程综合误差实时补偿技术[J].机械工程学报, 1992,(2):65-68.
    [66]张韵华,奚梅成,陈效群.数值计算方法与算法[M].北京:科学出版社, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700