自然置换通风条件下室内空气污染的演化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然通风是人们改善室内环境的重要手段。空气热浮力驱动的自然置换通风是自然通风的一种基本形式,该通风过程经历一段时间的发展后将到达稳定状态。自然置换通风向稳态发展的过程相对于建筑使用阶段来说并不简短,因此该过程对室内热环境和空气污染状况的影响应该引起足够的重视。
     本文在已有的瞬态自然通风模型的基础上,通过系统的理论分析,给出了3个描述室内外初始温度相同条件下(△T0=0)自然置换通风瞬态过程的改进模型。与已有的Kaye&Hunt模型相比,改进模型认为室内上部的热空气区并非充分混合的,而市由紧靠天花板处温度较高的热空气簿层及其下方的热空气层两部分组成,从而对天花板处的热空气薄层结构和排出空气的浮升力进行了分析和简化。将改进模型的计算结果与文献中的实验数据进行对比后发现,3个改进模型对瞬态通风过程的预测精度均优Kaye&Hunt模型,其中改进模型三的总体性能又稍好于其他两个改进模型。
     利用改进模型三分析了△T0=0条件下自然置换通风瞬态过程的热分层特性、热空气浮升力和瞬时通风量随时间的变化规律。结果指出,无量纲的有效通风面积α越小,通风过程中热分层界面下移越过稳态热分层界面的现象越明显,热分层界面的最低高度与稳态高度之间的差值越大,但这一差值相对于空间高度很小通风过程中,天花板处热空气薄层的厚度将越来越小,其下方热空气层的厚度先快速增加至最大值,后小幅变化。无量纲的有效通风面积越小,通风过程的3个无量纲时间越长。热空气浮升力和瞬态通风量均取决于热源浮升力通量B0、有效通风口面积A*、房间面积S和房间高度H,增加B0、减小S、A*或H均能增大热空气的浮升力,减小S、增大B0、A*或H可以使房间获得较大的通风来那个。
     在对通风房间的气流型式和气流速度进行简化分析的基础匕,给出了室内外初始温度相同条件下通风房间内的气态污染物输送模型,并利用该模型对室内外初始温度相等的通风房间的空气污染状况进行了分析。结果发现,室内热空气层的污染物浓度和室内原有冷空气层的污染物浓度均表现为先升高、后快速降低的特征。室外污染物浓度越大,室内污染物浓度的上升阶段越长,瞬时浓度越大增大B0或减小S有利于改善通风气流对室内污染物的冲刷效果;增大A*或减小H虽然也能使污染物浓度快速变化,但是却会使污染物浓度峰值升高。
     针对室内初始温度高于室外温度(△T0>0)的情况,深入分析了Fitzgerald&Woods理论模型中的4种可能的通风模式,进一步明确了其中3种模式中区分不同通风情形的室内初始浮升力δ0的临界值δ0c。并通过分析,给出了四温度层模型、渗透不回流模型等改进理论模型。
     对室内初始温度高于室外温度条件下的瞬态自然置换通风过程,除通风模式二外,Fitzgerald&Woods模型的其余三种通风模式均可能出现热分层界面上移或下移越过稳态热分层界面的现象。对通风模式一而言,在室内初始浮升力小于临界值的条件下,室内原有热空气层上界而将下移越过稳态热分层界面,且无量纲的有效通风面积或室内初始浮升力越小,该现象越明显。通风模式三和通风模式四的热分层界面会上移越过稳态热分层界面,且室内初始浮升力越大,该现象越显著。
     对室内初始温度高于室外温度条件下的瞬态自然置换通风过程,其初始通风量与有效通风口面积A*、房间高度H、室内初始温度T0和室外温度Ta瓦有关,且与前三个参数成正比,与室外温度成反比。稳态通风量则取决于A*、H和B0,并与它们成正比。除通风模式一的初始通风量可能小于稳态通风量外,其余三种通风模式的初始通风量均大于稳态通风量。增大B0、A*或H均可以提高四种通风模式的瞬态通风量,增大S除了可能使通风模式一的瞬态通风量减小外,可以使其他三种通风模式获得较大的瞬态通风量。提高室内初始温度T0可以使通风模式、模式二和模式四获得较大的瞬态通风量,但是提高T0却可能使通风模式三的瞬态通风量由于下降太快而在通风开始几分钟后反而较小。
     参照室内初始温度高于室外温度条件下瞬态自然置换通风的四种模式的热分层状况,给出了室内不同区域的气态污染物守恒方程,并联立瞬态通风模型,求解得到了典型条件下室内不同区域内气态污染物浓度的变化过程。对室内初始温度高于室外温度条件下的自然置换通风过程,增大A*、减小S或H均可以促进室内污染物浓度的衰减,增大Bo对通风模式三的室内污染状况影响不大,但是有利于其他三种通风模式下室内污染物浓度的快速下降。提高室内初始温度T0可以加速通风模式一、模式二和模式三的污染物浓度衰减过程,但是却不利于降低通风模式四的室内气态污染物浓度。
     根据理论研究结果,本文通过实验测试了典型条件下的自然置换通风过程中实验舱内的瞬时温度分布和CO2浓度分布,分析了室内外初始温差、通风口特性、热源特性等因素对瞬态通风过程的影响。结果表明,室内外初始温差对通风房间的热分层特性、浓度分层特性、通风量变化过程以及通风气流排除污染物的效果均有重要影响。通风口面积变化对室内高度方向的最大温差和头足部温差的影响很小,对室内热分层特性的影响则与室内外初始温差条件有关。通风口面积越大,瞬时通风量越大,污染物排除速度也越快。通风口形状对通风过程中室内高度方向的最大温差及头足部温差的影响也较小。通风口形状变化对室内污染物排除效果的影响比较复杂,实测结果显示,采用竖长形通风口有利于室内污染物的快速排出。
     实验表明,室内热源功率较大时,沿房间高度方向的最大温差和头足部温差均较大,但热源功率的变化对室内热分层现象产生的影响并不明显。在室内外初始温差大于零或等于零的条件下(△T0≥0),热源功率越大,获得的瞬时通风量亦越大,从而可以改善室内污染物的清除效果。但在室内外初始温差小于零的条件下(△T0<0),提高热源功率,反而不利于室内污染物的快速排除。此外,热源垂直位置对室内高度方向的最大温差和头足部温差均有明显影响。热源位置越高,室内上部区域的温度梯度越明显,下部区域的温度梯度越小。但热源位置变化对瞬时通风量和△T≥0条件下通风气流排除室内污染物效果的影响均不明了。在室内初始温度低于室外温度条件下(△T0<0),提高热源位置可以加速室内污染物的排除。地面热源的水平位置对室内高度方向的最大温差和头足部温差、室内热分层特性、瞬时通风量以及室内污染物排除速率的影响均很小。
Natural ventilation is an important strategy for improving the indoor air environment. The buoyancy-driven natural displacement ventilation is one of the major types of natural ventilation and the ventilation flow would reach the steady state after a period of development. However, the timescale of the transient natural displacement ventilation to its steady state may be comparable to the time of occupancy, and more attention should be paid on the study of the effects of the transient flow on the indoor thermal environment and indoor air pollution.
     Three modified theoretical models were developed on the basis of previous models to examine the transient natural displacement ventilation in an enclosure which is initially of uniform temperature, equal to the exterior (ΔT0=0). The main difference between modified models and Kaye&Hunt's model is that the buoyant layer is regarded as composed of a middle layer and a near-ceiling layer rather than being well-mixed. Different assumptions on the buoyancies of the near-ceiling layer and the outflow through the upper opening were made in different modified models. Comparisons were made between the predictions of Kaye&Hunt's model and three modified models and experimental results reported in the literature. Three modified models were found to perform better than Kaye&Hunt's model. Meanwhile, the predictions of the Modified Model3seemed to agree slightly better with the experimental data than those of the other two modified models.
     The Modified Model3was then employed to investigate the time evolution of the thermal stratification interface height, thermal buoyancy and flow rate during the transient process in the case of ΔT0=0. The results indicated that the extent to which the warm air layer depth overshoots its steady-state depth is more significant when the dimensionless effective vent area, a, is smaller. However, the overshoot scale is very small relative to the enclosure height even for a near zero. The near-ceiling layer depth becomes smaller gradually and the middle warm layer depth increases rapidly to its maximum during the early stage and then varies slightly. It is shown that the dimensionless time taken for the thermal stratification interface to reach three characteristic positions is longer for smaller dimensionless effective vent area. The variations of the warm layer buoyancy and ventilation flow rate with time are both dependent on the source buoyancy flux (Bo), the floor area (S), the effective vent area (A*) and the enclosure height (H). The larger buoyancy may be obtained for larger B0or smaller S, A*or H. The larger ventilation flow rate may be achieved by decreasing S or increasing Bo. A*or H.
     The gaseous pollutant transport model during transient natural ventilation was presented on the basic of the airflow characteristic to analyze the time variation of indoor pollutant concentration in the case of ΔT0=0. It is demonstrated that the gaseous pollutant concentrations of the warm layer and the original layer first increase evidently in the early stage of ventilation and then decrease continuously. The elevation phase of indoor concentration is longer and the transient pollutant concentration indoors is higher for higher outdoor concentration. The pollutant flushing effect of ventilation flow can be improved by increasing B0or decreasing S. The variation of indoor concentration is more rapid and the peak concentration is higher for larger.A*or smaller H.
     Four modes of the transient natural displacement ventilation in a pre-heated room (ΔT0>0) were analyzed by using the theoretical model proposed by Fitzgerald&Woods, and three critical values of initial buoyancy of indoor air, δ0c, were then presented in Mode1, Mode3and Mode4respectively to distinguish different cases of the three modes. The cases or phases in every ventilation mode were then analyzed in detail and some improved models, such as four-layer model and penetration without entrainment model, were developed.
     The theoretical analysis of the transient natural ventilation in a pre-heated room show that the thermal stratification interface may ascend or descend across the steady-state interface during the transient process of three modes except for Mode2. As for Mode1, the upper interface of the original layer would descend across the steady-state interface if the initial buoyancy of indoor air is less than its critical value. The extent to which the depth of the upper warm layer overshoots its steady-state depth is more significant for smaller dimensionless effective vent area or smaller initial buoyancy. In Mode3and Mode4, the thermal stratification interface would ascend across the steady-state interface during the evolution. The extent to which the depth of the lower layer overshoots its steady-state depth is more significant when the initial buoyancy of indoor air, δ0, is larger.
     As for the transient natural ventilation in the case of ΔT0>0, the initial flow rate depends on the effective vent area (A*), the enclosure height (H), the initial indoor temperature (To) and outdoor temperature (Ta), and is proportional to the first three parameters but is inversely proportional to Ta. The steady-state flow rate is determined by A*. H and B0and is proportional to these three parameters. The initial flow rate is larger than the steady-state flow rate in three ventilation modes except for Mode1. The larger flow rate during transient ventilation may be achieved for larger Bo, A*or H in all ventilation modes. Increasing the floor area, S, tends to obtain larger flow rate during the transient process of three modes except for Mode1. Furthermore, the transient flow rate increases as the initial temperature of indoor air, To, increases in Mode1, Mode2and Mode4. As for Mode3, the flow rate decreases more rapidly and the transient flow rate is smaller after a few minutes of evolution for higher T0.
     The conservation equations of indoor gaseous pollutant for ΔT0>0were presented on the basic of the thermal stratification characteristic during the transient ventilation. The time evolution of indoor gaseous pollutant concentration can be obtained by solving the simultaneous equations including the pollutant equations and the transient ventilation models. For the transient pollutant flushing of natural displacement ventilation from a pre-heated room, the indoor pollutant concentration would decrease more rapidly by increasing A*or decreasing S or H. Increasing B0is beneficial to reduce the pollutant concentration in Mode1, Mode2and Mode4, and has little influence on the pollutant flushing in Mode3. The pollutant removal efficiency can be enhanced by increasing the initial temperature of indoor air in three ventilation modes with the exception of Mode4.
     Full-scale experiments were conducted to measure the time variation of temperature distribution and CO2concentration in a chamber during the transient natural displacement ventilation, and to investigate the effects of the initial temperature difference between interior and exterior, the vent characteristic and the heat source characteristic on the transient process. The results indicated that the initial temperature difference (ΔT0) plays an important role on the thermal stratification, the pollutant concentration stratification, the flow rate variation and the pollutant flushing of airflow. The area and shape of the vent have little effect on the maximum temperature difference along the vertical direction and the temperature difference between head and foot. But the vent area would affect the thermal stratification characteristic to different extent for different initial temperature difference. The transient flow rate is larger and hence is good to the removal of indoor pollutant for larger vent. The effect of the vent shape on the pollutant removal is comparatively complex. The experimental results merely suggested that the pollutant flushing of ventilation flow is more efficient if the vent height is much greater than its width.
     Experiments showed that increasing the heat source strength will increase the maximum temperature difference along the vertical direction and the temperature difference between head and foot. But the change of heat source strength has no evident influence on the thermal stratification indoors. The larger ventilation flow rate can be achieved by increasing the heat source strength when ΔT0≥0, which is consistent with the theoretical analysis above. The removal of indoor pollutant can therefore be speeded up by increasing Bo in the case of ΔT0≥0. However, increasing B0is not helpful to reduce the pollutant concentration indoors when ΔT0<0. The vertical position of the heat source has great effect on the vertical temperature distribution. The vertical temperature gradients in the upper zone and lower zone are more evident and smaller respectively as the heat source is located in higher position. However, the effects of the vertical position of heat source on the transient flow rate and pollutant removal efficiency when ΔT0≥0are both unclear. The pollutant flushing effect of ventilation flow can be improved by elevating the heat source if the room is initially colder than the exterior. The effects of the horizontal position of heat source on the vertical temperature difference, the thermal stratification, the ventilation flow rate and the concentration decay of indoor pollutant are all negligible.
引文
[1]刘加平.建筑物理[M].北京:中国建筑工业出版社.2009.
    [2]周浩明,张晓东.生态建筑[M].南京:东南大学出版社,2002.
    [3]汤过华.岭南湿热气候与传统建筑[M].北京:中国建筑工业出版社,2005.
    [4]刘小虎.从自然通风到多样化的生态建造体系[J].武汉大学学报(工学版),2004,37(2):138-141.
    [5]沈肾明.室内空气品质若干误区辨析[J].暖通空调,2002,32(5):37-39.
    [6]沈晋明,许钟麟.空调系统的二次污染与细菌控制[J].暖通空调,2002,32(5):3033.
    [7]李慧星,耿耿.李贝妮,肖玮.公共建筑中央空调系统对室内空气品质的影响及控制[J].沈阳建筑大学学报(自然科学版).2011,27(4):725-730.
    [8]公共建筑节能设计标准抓玳GB 50189-2005[S].北京:中国建筑工业出版社,2005.
    [9]《采暖通风和空气调节设计规范》GB50019-2003[S].北京:中国计划出版社,2003.
    [10]Linden P F, Lane-serff G F and Smeed D A. Emptying filling boxes:the fluid mechanics of natural ventilation [J]. Journal of Fluid Mechanics,1990,212:309-335.
    [11]Linden P F. The fluid mechanics of natural ventilation [J]. Annual Review of Fluid Mechanics 1999.31:201-238.
    [12]Li Y. Buoyancy-driven natural ventilation in a thermally stratified one-zone building [J]. Building and Environment,2000,35(3):207-214.
    [13]Gladstone C and Woods A W. On buoyancy-driven natural ventilation of a room with a heated floor [J]. Journal of Fluid Mechanics,2001.441:293-314.
    [14]Chen Z D and Li Y. Buoyancy-driven displacement natural ventilation in a single-zone building with three-level openings [J]. Building and Environment,2002,37(3):295-303.
    [15]Caulfield, C P and Woods. A W. The mixing in a room by a localized finite-mass-flux source of buoyancy [J]. Journal of Fluid Mechanics,2002,471.33-50.
    [16]Anderson K T. Theory for natural ventilation by thermal buoyancy in one zone with uniform temperature [J]. Building and Environment,2003,38(11):1281-1289.
    [17]Favarolo P A and Manz H. Temperature-driven single-sided ventilation through a large rectangular opening [J]. Building and Environment,2005,40(5):689-699.
    [18]Chenvidyakarn T and Woods A W. Multiple steady states in stack ventilation [J]. Building and Environment,2005,40(3):399-410.
    [19]Flynn M R and Caulfield C P. Natural ventilation in interconnected chambers [J]. Journal of Fluid Mechanics,2006,564:139-158.
    [20]隋学敏,官燕玲,李安桂,张旭.双热源热压自然通风流场数值模拟研究[J].建筑科学,2007,23(10):13-17.
    [21]隋学敏.官燕玲,李安桂,张旭.热源面积对室内热压自然通风的影响[J].建筑科学与工程学报.2007,24(2):80-85.
    [22]Fitzgerald S D and Woods A W. On the transition from displacement to mixing ventilation with a localized heat source [J]. Building and Environment,2007,42 (6):2210-2217.
    [23]Liu P, Lin H and Chou J. Evaluation of buoyancy-driven ventilation in atrium buildings using computational fluid dynamics and reduced-scale air model [J]. Building and Environment, 2009,44(9):1970-1979.
    [24]Gan G. Simulation of buoyancy-driven natural ventilation of buildings—Impact of computational domain [J]. Energy and Buildings,2010,40(7):1290-1300.
    [25]Kaye N B and Hunt G R. The effect of floor heat source area on the induced airflow in a room [J]. Building and Environment,2010,45(4):839-847.
    [26]Fitzgerald S D and Woods A W. Transient natural ventilation of a room with a distributed heat source [J]. Journal of Fluid Mechanics,2007,591:21-42.
    [27]Bolster D, Maillard A and Linden P. The response of natural displacement ventilation to time-varying heat sources [J]. Energy and Buildings,2008,40(12):2099-2110.
    [28]Fitzgerald S D and Woods A W. Transient natural ventilation of a space with localised heating [J]. Building and Environment,2010,45(12):2778-2789.
    [29]Stoakes P, Passe U and Battaglia F. Predicting natural ventilation flows in whole buildings. Part 1:The Viipuri Library [J]. Building Simulation,2011,4(3):263-276.
    [30]Chenvidyakarn T and Woods A W. Stratification and oscillations produced by pre-cooling during transient natural ventilation [J]. Building and Environment,2007,42(1):99-112.
    [31]Kaye N B and Hunt G R. Heat source modeling and natural ventilation efficiency [J]. Building and Environment,2007,42(4):1624-1631.
    [32]Bower D J, Caulfield C P, Fitzgerald S D, and Woods A W. Transient ventilation dynamics following a change in strength of a point source of heat [J]. Journal of Fluid Mechanics 2008,614:15-37.
    [33]Bolster D and Caulfield C P. Transients in natural ventilation-a time-periodically varying source [J]. Building Services Engineering Research and Technology,2008,29:119-135.
    [34]Sandbach S D and Lane-Serff G F. Transient buoyancy-driven ventilation:Part 1. Modelling advection [J]. Building and Environment,2011,46(8):1578-1588.
    [35]Baek S O, Kim Y S and Perry R. Indoor air quality in homes, offices and restaurants in Korean urban areas [J]. Atmospheric Environment,1997,31(4):529-544.
    [36]张大年.城市大气可吸入颗粒物的研究[J].上海环境科学.1999,18(4):154-157.
    [37]Chaloulakou A and Mavroidis 1. Comparison of indoor and outdoor concentrations of CO at a public school[J]. Atmospheric Environment,2002,36(11):1769-1781.
    [38]《室内空气质量标准》GB/T18883-2002[S].北京:中国标准出版社,2002.
    [39]Cook M J and Lomas K J. Evaluation of two eddy viscosity turbulence models for predicting buoyancy driven displacement ventilation [J]. Building Services Engineering Research and Technology,1998,19:15-21.
    [40]Jiang Yi and Chen Q. Buoyancy-driven single-sided natural ventilation in buildings with large openings [J]. International Journal of Heat and Mass Transfer,2003,46(6):973-988.
    [41]Cook M J, Ji Y and Hunt G R. CFD modeling of natural ventilation:combined wind and buoyancy forces [J]. International Journal of Ventilation,2003,1(3):169-179.
    [42]Yang T, Wright N, Etheridge D and Quinn A. A comparison of CFD and full-scale measurements for analysis of natural ventilation [J]. International Journal of Ventilation, 2006,4(4):337-348.
    [43]Ji Y and Cook M J. Numerical studies of displacement natural ventilation in multistory buildings connected to an atrium [J]. Building Senices Engineering Research and Technology,2007,28:207-222.
    [44]Ji Y, Cook M J and Hanby V I. CFD modeling of natural displacement ventilation in an enclosure connected to an atrium [J]. Building and Environment,2007,42(3):1158-1172.
    [45]Kaye N B, Ji Y and Cook M J. Numerical simulation of transient flow development in a naturally ventilated room [J]. Building and Environment,2009,44(5):889-897.
    [46]Phillipsa J C and Woods A W. On ventilation of a heated room through a single doorway [J]. Building and Environment,2004,39(3):241-253.
    [47]Kaye N B and Hunt G R. Time-dependent flows in an emptying filling box [J]. Journal of Fluid Mechanics,2004,520:135-156.
    [48]Hunt G R and Coffey C J. Emptying boxes-classifying transient natural ventilation flows [J]. Journal of Fluid Mechanics,2010,646:137-168.
    [49]Cooper P and Hunt G R. The ventilated filling box containing a vertically distributed source of buoyancy [J]. Journal of Fluid Mechanics,2010,646:39-58.
    [50]Haghighat F. Zonal model-a simplified multi-flow model element [C]. The First International One Day Forum on Natural and Hybrid Ventilation, HybVent Forum'99, Sydney, Australia, 1999.
    [51]Axley J W. Surface-drag flow relations for zonal modeling [J]. Building and Environment, 2001,36(7):843-850.
    [52]Andersen K T. Theoretical considerations on natural ventilation by thermal buoyancy [J]. ASHRAE Transactions,1995,101(2):1103-1117.
    [53]Hunt G R and Kaye NB. Pollutant flushing with natural displacement ventilation [J]. Building and Environment,2006,41(9):1190-1197.
    [54]Hunt G R, Cooper P and Linden P F. Thermal stratification produced by plumes and jets in enclosed spaces [J]. Building and Environment,2001,36(7):871-882.
    [55]高军,赵加宁,高甫生.多股等羽流的速度与流量修正及其对高大空间自然通风的影响[J].暖通空调,2004,34(10):21-28.
    [56]高军,高甫生,赵加宁.采用“二区+CFD”模型研究点源自然通风及其羽流[J].暖通空调,2005.35(1):20-25.
    [57]王利霞.自然置换通风的气流模型研究[J]建筑热能通风空调.2006.25(3):77-80
    [58]Kaye N B and Hunt G R. An experimental study of large area source turbulent plumes [J]. International Journal of Heat and Fluid Flow,2009,30(6):1099-1105.
    [59]Cooper P and Linden P F. Natural ventilation of an enclosure containing two buoyancy sources [J]. Journal of Fluid Mechanics,1996,306:153-176.
    [60]Linden P F, Cooper P. Multiple sources of buoyancy in a naturally ventilated enclosure [J]. Journal of Fluid Mechanics,1996,306:177-192.
    [61]Livermore S R and Woods A W. Natural ventilation of a building with heating at multiple levels [J]. Building and Environment,2007,42(3):1417-1430.
    [62]Fitzgerald S D and Woods A W. Natural ventilation of a room with vents at multiple levels [J]. Building and Environment,2004,39(5):505-521.
    [63]Li Y, Delsante A and Symons J. Prediction of natural ventilation in buildings with large openings [J]. Building and Environment,2000,35 (3):191-206.
    [64]钱华,吴静怡,李玉国.一种基于自然通风的室内空气悬浮颗粒浓度的动态预测方法[J].上海交通大学学报.2003.37(9):1492-1496.
    [65]段双平,张国强,彭建国,周军莉.自然通风技术研究进展[J].暖通空调,2004,34(3):22-28.
    [66]张野,章宁峰,宋芳婷,燕达,江亿.建筑环境设计模拟分析软件DeST [J].暖通空调,2005,35(2):57-70.
    [67]张金萍,李安桂.自然通风的研究应用现状与问题探讨[J].暖通空调,2005,35(8): 32-38.
    [68]Stewart J and Ren Z. Prediction indoor gaseous pollutant dispersion by nesting sub-zones within a multizone model [J]. Building and Environment,2003,38(5):635-643.
    [69]Feuste1 H E. COMIS-an international multizone airflow and contaminant transport model [J]. Energy and Building,1999,30(1):3-18.
    [70]Haas A, Weber A, Dorer V, Keilholz W and Pelletret R. COMIS v3.1 simulation environment for multizone air flow and pollutant transport modeling [J]. Energy and Building,2002,34(9):873-882.
    [71]Bojic M and Kostic S. Application of COMIS software for ventilation study in a typical building in Serbia [J]. Building and Environment,2006,41(1):12-20.
    [72]Fracastoro G V, Mutani G and Perino M. Experimental and theoretical analysis of natural ventilation by windows opening [J]. Energy and Buildings,2002,34(8):817-827.
    [73]Evola G and Popov V. Computational analysis of wind driven natural ventilation in buildings [J]. Energy and Buildings,2006,38(5):491-501.
    [74]Bu Z and Kato S. Wind-induced ventilation performances and airflow characteristics in an areaway-attached basement with a single-sided opening [J]. Building and Environment.2011. 46(4):911-921.
    [75]Deng B and Kim C N. CFD simulation of VOCs concentrations in a resident building with new carpet under different ventilation strategies [J]. Building and Environment,2007,42(1): 297-303.
    [76]Zhong K, Yang X and Kang Y. Effects of ventilation strategies and source locations on indoor particle deposition [J]. Building and Environment,2010,45(2):655-662.
    [77]Allocca C, Chen Q and Glicksman L R. Design analysis of single-sided natural ventilation [J]. Energy and Buildings,2003,35(8):785-795.
    [78]Tan G and Glicksman L R. Application of integrating multi-zone model with CFD simulation to natural ventilation prediction [J]. Energy and Buildings,2005,37(10):1049-1057.
    [79]Baines W D and Turner J S. Turbulent buoyant convection from a source in a confined region [J]. Journal of Fluid Mechanics,1968,37:51-80.
    [80]Turner J S. Turbulent entrainment:the development of the entrainment assumption and its application to geophysical flows [J]. Journal of Fluid Mechanics,1986,173:431-471.
    [81]Baines W D. Turner J S and Campbell I M. Turbulent fountains in an open chamber [J]. Journal of Fluid Mechanics.1990,212:557-592.
    [82]Germeles A E. Forced plumes and mixing of liquids in tanks [J]. Journal of Fluid Mechanics 1975,71:601-623.
    [83]Sandbach S D and Lane-Serff G F. Transient buoyancy-driven ventilation:Part 2. Modelling heat transfer [J]. Building and Environment,2011,46(8):1589-1599.
    [84]Lister J A. On penetrative convection at low Peclet number [J]. Journal of Fluid Mechanics, 1995.292:229-248.
    [85]Lin Y J P and Linden P F. Buoyancy-driven ventilation between two chambers [J]. Journal of Fluid Mechanics,2002.463:293-312.
    [86]Holford J M and Hunt G R. Fundamental atrium design for natural ventilation [J]. Building and Environment,2003,38(3):409-426.
    [87]Thomas L P, Marino B M, Tovar R and Linden P F. Buoyancy-driven flow between two rooms coupled by two openings at different levels [J]. Journal of Fluid Mechanics,2008, 594:425-443.
    [88]Chenvidyakarn T and Woods A W. On the natural ventilation of two independently heated spaces connected by a low-level opening [J]. Building and Environment, 2010,45(3): 586-595.
    [89]Bolster D and Linden P F. Contaminants in ventilated filling boxes [J]. Journal of Fluid Mechanics,2007.591:97-116.
    [90]Bolster D and Linden P F. Particle transport in low energy ventilation systems. Part 2: Transients and Experiments [J]. Indoor Air,2009,19:130-144.
    [91]Zhong K. Yang X, Feng W and Kang Y. Pollutant dilution in displacement natural ventilation rooms with inner sources [J]. Building and Environment,2012.56(1):108-117.
    [92]Epstein M and Burelbach J P. Vertical mixing above a steady circular source of buoyancy [J]. International Journal of Heat and Mass Transfer,2001,44(3):525-536.
    [93]Hunt G R and Linden P F. Displacement and mixing ventilation driven by opposing wind and buoyancy [J]. Journal of Fluid Mechanics,2004,527:27-55.
    [94]Chen Z D, Li Y and Mahoney J. Experimental modelling of buoyancy-driven flows in buildings using a fine-bubble technique [J]. Building and Environment,2001,36(4): 447-455.
    [95]Chen Z D, Li Y and Mahoney J. Natural ventilation in an enclosure induced by a heat source distributed uniformly over a vertical wall [J]. Building and Environment,2001,36(4): 493-501.
    [96]Howell S A and Potts I. On the natural displacement flow through a full-scale enclosure, and the importance of the radiative participation of the water vapor content of the ambient air [J]. Building and Environment,2002,37(8):817-823.
    [97]Xing H and Awbi H B. Measurement and calculation of the neutral height in a room with displacement ventilation [J]. Building and Environment,2002,37(10):961-967.
    [98]Haslavsky V, Tanny J, Teitel M. Interaction between the mixing and displacement modes in a naturally ventilated enclosure[J]. Building and Environment,2006,41(12):1755-1761.
    [99]Tanny J, Haslavsky V and Teitel M. Airflow and heat flux through the vertical opening of buoyancy-induced naturally ventilated enclosures [J]. Energy and Buildings,2008,40(4): 637-646.
    [100]Hunt G R and Kaye N G. Virtual origin correction for lazy turbulent plumes [J]. Journal of Fluid Mechanics,2001,435:377-396.
    [101]Murakami S, Ohira N and Kato S. CFD analysis of a thermal plume and the indoor air flow using k models with buoyancy effects [J]. Applied Scientific Research,2000,63:113-134.
    [102]Yan Z. Large eddy simulations of a turbulent thermal plume [J]. Heal Mass Transfer,2007. 43:503-514.
    [103]易大义.陈道琦.数值分析引论[M].杭州:浙汀大学出版社.2002.
    [104]施吉林,刘淑珍,陈桂芝.计算机数值方法[M].北京:高等教育出版社.1999.
    [105]秦宏立,李娌.一类四阶Runge-Kutta法算法的构造[J].延安大学学报(自然科学版)2009,28(1):23-26.
    [106]刘利斌,正伟.四阶Runge-Kutta算法的优化分析[J].成都大学学报(自然科学版),2007,26(1):19-21.
    [107]刘元高,刘耀儒Mathematica4.0实用教程[M].北京:国防工业出版社,2000.
    [108]邓建松,彭冉冉译.D.尤金著Mathematica使用指南[M].北京:科学出版社,2002.
    [109]张宝善Mathematica符号运算与数学实验[M].南京:南京大学出版社,2007.
    [110]徐安农Mathematica数学实验[M].北京:电子工业出版社,2009,第2版.
    [111]吴飞Mathematica i寅示项目笔记[M].北京:清华大学出版社,2010.
    [112]王同科,张东丽,王彩华Mathematica与数值分析实验[M].北京:清华大学出版社.2011.
    [113]Morton B R, Taylor G I and Turner J S. Turbulent gravitational convection from maintained and instantaneous sources [J]. Proceedings of the Royal Society A,1956,234:1-23.
    [114]Baines W D and Turner J S. Turbulent buoyant convection from a source in a confined region [J]. Journal of Fluid Mechanics,1969,37:51-80.
    [115]Linden P F. The interaction of a vortex ring with a sharp density interface:a model for turbulent entrainment [J]. Journal of Fluid Mechanics,1973,60:467-480.
    [116]Baines W D. Entrainment by a plume or jet at a density interface [J]. Journal of Fluid Mechanics,1975,68:309-320.
    [117]Kumagai M. Turbulent buoyant convection from a source in a confined two-layered region [J]. Journal of Fluid Mechanics,1984,147:105-131.
    [118]Bloomfield L J and Kerr R C.A theoretical model of a turbulent fountain [J]. Journal of Fluid Mechanics,2000,424:197-216.
    [119]Lin, Y J P and Linden P F. The entrainment due to a turbulent fountain at a density interface [J]. Journal of Fluid Mechanics,2005,542:25-52.
    [120]Lagus P and Persily A K. A review of tracer-gas technique on measuring airflow in buildings [J].ASHRAE Trans,1985,91:1075-1087.
    [121]朱能,田哲,王侃红.示踪气体跟踪测量方法在空调通风上的应用[J].暖通空调,1999,29(2):58-62.
    [122]李先庭,王欣,李晓锋,朱颖心.用示踪气体方法研究通风房间的空气龄[J].暖通空调,2001,31(4):79-81.
    [123]魏景妹,赵加宁,高军.自然通风技术研究方法及工具[J].应用能源技术,2006.7:1-5.
    [124]Yoon D W. The evaluation of multi-zone air flow pattern and ventilation rates with trace gas methods in apartment house [C]. Proceedings of 9th International Conference on Indoor Air Quality and Climate,2002, Monterey, California:296-301.
    [125]Roulet C and Foradini F. Simple and cheap air change rate measurement using CO2 concentration decay [J]. International Journal of Ventilation,2002,1(1):39-44.
    [126]王立鑫,白郁华,刘兆荣,李金龙.CO2示踪气体法测定室内新风计算方法研究[J].建筑科学,2007,23(8):36-40.
    [127]付腾,唐中华,唐易达.通风条件下C02浓度的测量与预测模型的建立[J].暖通空调,2010,40(3):103-106.
    [128]下烨,武弋.冬季自然通风对住宅室内空气品质的改善性能评价[J].安全与环境学报,2008,8(5):104-108.
    [129]GB/T 18204.18-2000公共场所室内新风量测定方法[S].北京:中国标准出版社,2000.
    [130]李晓峰,朱颖心.示踪气体浓度衰减法在民用建筑自然通风研究中的应用[J].暖通空调,1997(4):7-10.
    [131]Awbi H B. Air movement in naturally-ventilated buildings, Department of Construction Management& Engineering, The University of Reading, WREC,1996.
    [132]Holford J M and Hunt G R. The dependence of the discharge coefficient on density contrast —experimental measurements [C]. Proceedings of 14th Australasian fluid mechanics conference,2001:123-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700