HTPB推进剂贮存老化特性及寿命预估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
HTPB推进剂是当前和今后相当长一段时间内使用的主要推进剂品种。开展HTPB推进剂贮存老化性能研究,对认识该类推进剂贮存性能规律、分析其老化机理、预估其贮存期具有十分重要的意义。
     从宏观力学性能、粘合剂基体细观结构、填料/基体界面粘结性能和防老剂H含量等方面,考察了热和热-力耦合作用加速老化条件下HTPB推进剂的贮存性能,分析了热、力作用对HTPB推进剂老化性能的影响,结合HTPB推进剂主要组分的老化特性及组分间的相互作用分析结果,找出了HTPB推进剂贮存性能的关键影响因素,研究了HTPB推进剂的老化机理。预估了HTPB推进剂两类贮存条件下的贮存期,并进行了贮存寿命的可靠性分析。
     研究结果表明,在热加速老化过程中HTPB粘合剂易被空气中的氧气氧化,发生氧化交联反应,有多种氧化产物产生。防老剂H能够抑制HTPB的氧化。氧化剂AP能促进HTPB的氧化分解。通过理论计算和实验验证,揭示了HTPB粘合剂固化体系的弱键为氨基甲酸酯基团中的C-N键和C-O键。
     研究了HTPB推进剂中防老剂H的组成及作用机制。研究发现防老剂H是N-N’-二苯基-对苯二胺(DPPD)及其氧化性产物N-N’-二苯基-对苯醌二亚胺(DPBQ)的混合物,并获得了HTPB推进剂贮存过程中DPPD和DPBQ含量的变化规律。
     证实了在HTPB推进剂中防老剂H与TDI发生反应。研究了防老剂H与HTPB和TDI的竞争反应,在50℃条件下,HTPB/TDI的反应速率是防老剂H/TDI反应速率的12.9倍,即防老剂H仲胺基上的氢不如HTPB羟基上的氢活泼。
     确定了热和热-力耦合作用加速老化条件下HTPB推进剂老化特性的表征方法和表征参数。宏观力学性能参数包括最大抗拉强度、最大延伸率、断裂延伸率、表面硬度和损耗角正切等;粘合剂基体细观结构参数包括凝胶百分数、交联密度和C-N键相对含量等;填料/基体界面粘结性能参数包括界面张力、粘附功、临界脱粘应力和粘附指数等;同时测定了防老剂H及其氧化产物含量。最终选择最大延伸率、交联密度和粘附功分别作为宏观力学性能、粘合剂基体和填料/基体界面粘结性能的主要特征参量。
     研究了热和热-力耦合作用下加速老化过程中HTPB推进剂填料/基体界面的粘结性能。在热和热-力耦合作用下加速老化过程中,HTPB推进剂填料与粘合剂基体的粘附功和临界脱粘应力随老化时间的延长而减小,界面张力随老化时间的延长而增大,说明推进剂老化导致了填料/基体界面的脱湿。且热-力耦合作用下加速老化过程中填料/基体界面的脱湿现象比热加速老化过程中填料/基体界面的脱湿现象更严重。说明填料/基体界面的脱湿也是热-力耦合作用下HTPB推进剂的主要老化机理之一。
     在热加速老化条件下,随老化时间的增加,HTPB推进剂的最大抗拉强度、表面硬度、凝胶百分数、交联密度、DPBQ的含量和粘附指数呈增大的趋势,最大延伸率、断裂延伸率和损耗角正切的α松弛峰值则是降低的趋势,DPPD含量和C-N键相对含量先增加后降低。温度越高,各种性能的变化速率越快。结果表明,热加速老化过程中HTPB推进剂存在粘合剂基体的后固化、氧化交联和降解断链三类反应;在老化的不同阶段,三类反应的影响程度不同。老化初期主要存在后固化反应;老化中期存在氧化交联和降解断链反应,并且两者趋于平衡;老化后期,氧化交联作用强于降解断链作用。在HTPB推进剂的热加速老化过程中,粘合剂基体的氧化交联是主要影响因素。
     在热-力耦合作用下,随老化时间的增加,HTPB推进剂的最大抗拉强度先降低后增加,凝胶百分数、交联密度、DPBQ含量和C-N键相对含量先增加后降低,最大延伸率、断裂延伸率、DPPD含量和损耗角正切的α松弛峰值降低,表面硬度和粘附指数升高。温度越高,各种性能的变化速率越快。结果表明,热-力耦合作用下加速老化过程中HTPB推进剂粘合剂基体老化初期主要存在后固化反应;老化中期氧化交联作用强于降解断链作用;老化后期,降解断链作用逐渐凸现。但在热-力耦合加速老化过程中,粘合剂基体的氧化交联仍是主要的影响因素,且填料/基体界面脱湿的影响也不容忽视。
     灰色关联分析法分析结果表明,热和热-力耦合作用加速老化条件下HTPB推进剂宏观力学性能的主要影响参数为交联密度。宏观-细观性能的相关性研究表明:热加速老化条件下HTPB推进剂最大延伸率与交联密度、防老剂H氧化产物含量之间存在相关性,说明最大延伸率的降低主要是粘合剂基体的氧化交联所致。发现热-力耦合作用下HTPB推进剂最大延伸率与交联密度和粘附功存在相关关系,说明氧化交联和填料/基体界面脱湿的作用占主导地位。由此建立了由细观性能评估推进剂宏观力学性能的非破坏性/微破坏性检测方法。
     获得了热和热-力耦合作用加速老化条件下HTPB推进剂的老化机理。热和热-力耦合作用下HTPB推进剂的老化机理均为粘合剂基体的后固化、氧化交联、降解断链和填料/基体界面的脱湿。热加速老化条件下HTPB推进剂最主要的老化机理是粘合剂基体的氧化交联。热-力耦合作用下HTPB推进剂粘合剂基体的氧化交联、填料与粘合剂基体之间界面的脱湿起主要作用。
     选择最大延伸率作为老化性能评定参数,预估了HTPB推进剂贮存寿命。以最大延伸率下降30%作为评定参数临界值,预估得到常温(25℃)贮存时HTPB推进剂在单纯热老化条件下和热-力耦合作用下(15%的预应变)的贮存寿命分别为18.0年和13.8年,其可靠度分别为0.9993和0.6217;给定可靠度为0.99下单纯热老化条件下和热-力耦合作用下的贮存寿命分别为20.7年和10.7年。
As a primary propellant, HTPB propellant is widely used in solid motor currently and in the future. Therefore, research on the storage properties of the HTPB propellant is significant for understanding the storage properties, analyzing its aging mechanisms and predicting its storage life.
     The thermal accelerated aging characteristics of the HTPB propellant were investigated in the following four aspects including the macroscopical mechanics properties, the microcosmic structure of binder matrix, interfacial adhesive property of the filler/binder matrix and the content of antioxidant H under thermal and thermal-mechanical coupling aging conditions. The influence of thermal and mechanics on the HTPB propellant were analyzed. The key factors and the aging mechanisms of HTPB propellant were reviewed combining the aging properties and the relationship of the components in HTPB propellant. The storage life of HTPB propellant in the two storage conditions was calculated. The reliability of the storage life was also analyzed.
     The results show that HTPB binder is easy to be oxidated by oxygen in the air during the storage. During the process, the oxidation crosslinking occurred and multiplicate oxidation products formed. The antioxidant H can effectively prohibit the oxidation of HTPB binder. The oxidizer AP can accelerate the oxidation and decomposition of HTPB. By theoretic calculation and experimental validation, the weak bond is C-N and C-O bond of polyurethane in HTPB curing system.
     The function mechanism and the constituents of antioxidant H were studied in HTPB propellant. It is found that the Antioxidant H is composed of N-N’-Diphenyl-p–phenylenediamine (DPPD) and its oxidation product N-N’-Diphenyl-p-benzoquinone diimines ( DPBQ). The changing rule of the content of them was obtained.
     It is approved that the antioxidant H can react with toluene diisocyanate(TDI) in HTPB propellant. The competitive reaction of antioxidant H, HTPB and TDI were studied. The results show that the reactive rate of HTPB/TDI is 12.9 times higher than that of antioxidant H / TDI at 50℃. The hydrogen in antioxidant H is less active than that in HTPB.
     The aging characterization method and parameters were determined under thermal and thermal-mechanical coupling aging conditions. The macroscopical mechanics properties were studied including tensile strength, elongation at maximal and break, surface hardness, the loss factor, etc. The microcosmic structures of binder matrix were studied including the cross-linking density, the gel fraction and the relative content of the C-N bond. The interfacial properties of the filler/binder matrix were studied including the interfacial tension, the work of adhesion, the critical debonding stress and the exponent of conglutination. The content of antioxidant H and its oxidation product were also studied. At last, elongation at maximal, the cross-linking density and the work of adhesion were selected as the main characteristic parameters of the macroscopical mechanics properties, the binder matrix and the interfacial adhesive properties of the filler/binder matrix respectively.
     The interfacial adhesive property of the filler/binder matrix in HTPB propellant was studied under thermal and thermal-mechanical coupling aging conditions. Results show that the work of adhesion and the critical debonding stress are decreased while the interfacial tension increased along with the aging time. It indicates that the aging makes the interfacial of the filler/binder matrix dewetting. The interfacial dewetting of the filler/binder matrix is more seriously under thermal-mechanical coupling condition than thermal aging condition. It indicates that the interfacial dewetting of the filler/binder matrix is one of the main mechanisms under thermal-mechanical coupling aging condition.
     Under thermal aging condition, the experimental results show that tensile strength, surface hardness, the gel fraction, the cross-linking density, the content of DPBQ and the exponent of conglutination are increased along with the aging time. The elongation at maximal and break, theαrelaxation peak value of the loss factor are decreased on time duration. The content of the C-N bond and DPPD are increased at first and then decreased. The higher the aging temperature, the larger the changing rate of the aging characteristics. There are three kinds of reaction under thermal aging condition including the continued-curing reaction, the oxidative crosslinking and the degradation. The effect of the three kinds of reaction is different during the aging process. The continued-curing reaction is dominating during the aging initial stages. During the aging metaphase, the oxidative crosslinking and the degradation are existent and they tend to balanceable. During the aging anaphase, the oxidative crosslinking exceed the degradation. Oxidative crosslinking is the most important aging factor of HTPB propellant under thermal aging condition.
     Under thermal-mechanical coupling condition, the experimental results show that tensile strength are decreased at first and then increased during the aging process. The gel fraction, the cross-linking density, the content of DPBQ and the relative content of the C-N bond are increased at first and then decreased. The elongation at maximal and break, the content of DPPD and theαrelaxation peak value of the loss factor are decreased on time duration. The surface hardness and the exponent of conglutination are increased along with the aging time.The higher the aging temperature, the larger the changing rate of the aging characteristics. The results show that the continued-curing reaction of HTPB binder matrix is dominating during the aging initial stages under thermal-mechanical coupling condition. During the aging metaphase, the oxidative crosslinking exceed the degradation. During the aging anaphase, the degradation is arisen gradually. Oxidative crosslinking is the main aging factor of HTPB binder matrix and the interfacial dewetting of the filler/binder matrix can not be slighting under thermal-mechanical coupling condition.
     Based on the grey correlation analysis, the main factor of macroscopical mechanical properties is the cross-linking density under thermal and thermal-mechanics coupling aging conditions. The study on the correlation of macroscopical-microcosmic properties shows that there is linear relationship between the maximal elongation, the cross-linking density and the content of the oxidation product of antioxidant H under thermal aging condition. The reduction of the maximal elongation is caused by the oxidative crosslinking. It is found that there is correlation between the elongation at maximal and the cross-linking density, the adhesion work under thermal-mechanical coupling aging condition. It shows that the oxidative crosslinking and the interfacial dewetting of the filler/binder matrix are dominant. The method is established to evaluate the macroscopical mechanical property by studying microcosmic property as a Non-Destructive Evaluation (NDE) or Micro-Destructive Evaluation (MDE) method.
     The aging mechanisms were obtained under thermal and thermal-mechanical coupling aging conditions. The reasons of HTPB propellant performances deterioration under the two storage conditions are the continued-curing reaction, the oxidative crosslinking , the degradation and interfacial dewetting between the filler and the binder matrix. Oxidative crosslinking is the most important aging factor of HTPB propellant under thermal aging condition. Oxidative crosslinking and interfacial dewetting are the main aging factors of HTPB propellant under thermal-mechanical coupling aging condition.
     Choosing the elongation at maximal as the key aging property,the storage life of HTPB Propellant was predicted. Selecting the changed 30% of the initial value of the maximal elongation as invalidation point, the predicted storage life of the HTPB propellant at room temperature (25℃) are 18.0 years and 13.8 years respectively under thermal and thermal-mechanical coupling aging conditions. The reliability is 0.9993, and 0.6217 respectively. If the reliability is 0.99, the storage life of the HTPB propellant are 20.7 years and 10.7 years respectively under thermal and thermal-mechanical coupling aging conditions.
引文
[1]彭培根,刘培谅,张仁,等.固体推进剂性能及原理[M].长沙:国防科技大学出版社,1987.
    [2]侯林法.复合固体推进剂[M].北京:宇航出版社,1994.
    [3]郑剑,侯林法,杨仲雄.高能固体推进剂技术回顾与展望[J].固体火箭技术,2001,24(1):28~34.
    [4]周集义.NEPE推进剂[J].化学推进与高分子材料,1995,5:1~4.
    [5]庞爱民,郑剑.高能固体推进技术未来发展展望[J].固体火箭技术,2004,27(4):289~293.
    [6]张景春.固体推进剂化学及工艺学[M].长沙:国防科技大学出版社,1987.
    [7]张炜,朱慧.固体推进剂性能计算原理[M].长沙:国防科技大学出版社,1996.
    [8]欧育湘,刘进全.高能量密度化合物[M].北京:国防工业出版社,2005.
    [9] Pagoria P F , Lee G S . A review of energetic materials synthesis[J].Thermochimica Acta,2004,384:187~204.
    [10]莫红军,张海燕.高速动能导弹及超高速导弹用固体火箭推进剂[J].火炸药学报,2005,28(1):1~4
    [11]刑耀国,董可海.固体火箭发动机寿命预估研究的发展和展望[J].固体火箭技术,2001,24(3):30~33.
    [12] Larson E L.A review of the Minuteman propulsion surveillance program for assign rocket motor service life[R].AD467048,1965.
    [13] Loyd D K.Long Range Service Life Analysis (LRSLA) system trend analysis life estimating procedure[R].AIAA76746,1976.
    [14] Fillerup J , Pritchard R . Service Life Prediction Technology Program [R].AD397950,2002.
    [15] Liu C T.Fracture Mechanics and Service Life Prediction Research[R].AD410141,2003.
    [16]合成材料老化研究所编.高分子材料老化与防老化[M].北京:化学工业出版社,1979.
    [17]金日光,华幼卿.高分子物理[M].北京:化学工业出版社,1999.
    [18] Mishuck E.Chemical Principles of Solid Propellants[J].Industry and Engineering Chemistry,1960,52(9):754~760.
    [19] Hunter W.Binder Crystallization in Polysulfide Propellant[J].ARS Journal,1961,31(11):1573~1574.
    [20]贺南昌.复合固体推进剂的化学老化[J].固体火箭技术,1991,14(3):71~77.
    [21] Lillo F,Dandrea B,Marcelli G,et al.Long term aging of aerospace and tactical SRM.experimental study[R].AIAA2001-3284,1980.
    [22]贺南昌,庞爱民.不同氧化剂对丁羟(HTPB)推进剂老化性能影响的研究[J].推进技术,1990,11(6):44~47.
    [23]王春华.HTPB推进剂老化性能与贮存寿命预估的研究[D].长沙:国防科学技术大学,1998.
    [24]贺南昌,庞爱民.过氯酸铵含量对丁羟推进剂老化性能的影响研究[J].推进技术,1987,8(5):42~48.
    [25] Christionsen A G.HTPB propellant aging and service life[R].AIAA-80-1273,1980.
    [26] Gottlieb L . Analysis of DOA migration in HTPB/AP composite propell- ants[C].25th Int. Annual Coference of ICT.Karlsruhe,Germany,1994.
    [27] Gottlieb L . Migration of plasticizer between bonded propellant interfa- ces[J].Propellants,Explosives,Pyrotechnics,2003,28(1):12~17.
    [28]李东林,王吉贵.推进剂中硝化甘油向包覆层迁移的研究[J].火炸药,1995,18(2):1~4.
    [29]李东林,牛西江.双基系推进剂与包覆层之间的迁移和脱粘问题[J].火炸药,1996,19(3):41~45.
    [30] Bohn M A,Volk F.Aging behavior of propellants investigated by heat generation,stabilizer consumption,and molar mass degradation [J].Propellants,Explosives,Pyrotechnics,1992,17(4):171~178.
    [31] Lussier L S and Gagnon H.On the chemical reactions of diphenylamine and its derivatives with nitrogen dioxide at normal storage temperature conditions[J].Propellants,Explosives,Pyrotechnics,2000,25:117~125.
    [32] Sammour M H and Bellamy A J.Stabilizer reactions in cast double base rocket propellants.Part VI:reactions of propellant stabilizers with the known propellant decomposition products NO2,HNO2,and HNO3 [J].Propellants, Explosives and Pyrotechnics,1995,20:126~134.
    [33]唐汉祥.苯乙烯对推进剂力学贮存性能的影响研究[J].推进技术,1988,9(3):50~54.
    [34] QJ2328A-2005,复合固体推进剂高温加速老化试验方法[S].
    [35]关崇就.固体推进剂长期贮存性能述评[C].航天与导弹动力装置联合会议,1988.
    [36] Layton L H.Chemical structural aging studies on HTPB propellant[R].AD-A 010731,1975.
    [37] Layton L H,Christiansen A G.Effect of aging-strain on propellant mechanical properties[R].AIAA-79-1245.
    [38]张昊,罗怀德,杜娟.线性活化能法预估推进剂贮存寿命研究[J].固体火箭技术,2002,25(2):56~58.
    [39]张昊,庞爱明,彭松.方坯药预测寿命与发动机推进剂药柱实际寿命差异研究[J].固体火箭技术,2005,28(1):53~56.
    [40]谢丽宽,邢耀国.超期贮存发动机固体推进剂能量特性试验研究[J].海军航空工程学院学报,2005,20(1):153~156.
    [41]张小平,赵孝彬,杜磊,等.相分离对NEPE推进剂性能的影响[J].推进技术,2004,25(1):93~96.
    [42]谭惠民.高能推进剂的发展方向——N-15推进剂[J].北京理工大学学报,1992,12(S1):1~7.
    [43]侯竹林,韩盘铭.NEPE固体推进剂动态力学性能的研究[J].固体火箭技术,1999,22(2):37~39.
    [44] Kubota N,Hyumi Y O.Burning rate characteristics and physical properties of composite double-base propellant[R].AIAA-80-1169,1980.
    [45]鲁念惠.固体推进剂的湿老化[J].固体推进剂技术,1978,2:33.
    [46]贺南昌.丁羟推进剂老化研究[R].内部报告:国防科技大学,1991.
    [47]沈怀荣,宋先村.固体推进剂承载热老化的实验研究[J].固体火箭技术,1991,14(4):45~49.
    [48]杜磊,彭松.HTPB推进剂动态力学响应常温段松弛转变物理本质[J].推进技术,1995,16(5):72~77.
    [49]鲁国林,罗怀德.定应变下丁羟推进剂贮存寿命预估[J].推进技术,2000,21(1):79~81.
    [50]李彦丽,赵海泉.发动机装药和推进剂方坯老化性能相关性研究[J].固体火箭技术,2003,26(3):49~52.
    [51] Haridwar S.Service Life of Solid Propellant Systems[R].North Atlantic Treaty Organization,1997.
    [52] George D, Blair M.Overview of the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) Program[R].AD411290,2003.
    [53] Ronald L D.Technical Evaluation Report[R].AD-A 435326,2002.
    [54] Keizers H L J,Schadow K C.AVT-119, NATO health monitoring of munitions cooperative demonstration of technology[A].37thInternational Annual Conference of ICT[C].Karlsruhe,Germany,June,2006.
    [55] Watt D, Deschambault E, Peugeot F,et al.Overview of MSIAC Workshopexamining the effect of ageing upon Insensitive Munitions across the life cycle and the status of subsequent IM ageing efforts[A].37thInternational Annual Conference of ICT[C].Karlsruhe,Germany,June,2006.
    [56] Ellison D S, Weemes C L.The assessment of the performance of medium caliber munitions during aging as a function of thermal stability, molecular weight and chamber pressure[A] . 37th International Annual Conference of ICT[C].Karlsruhe,Germany,June,2006.
    [57] Deacon P, Garman R.Non-isothermal ageing of nitrocellulose based PBX compositions[A].37th International Annual Conference of ICT[C].Karlsruhe,Germany,June,2006.
    [58] Layton L H.Chemical structural aging effects[R].ADA002836,1974.
    [59] Cunliffe A V, Tod QinetiQ D A, Sevenoaks G B.Sol Fraction Measurements-A tool to study cross-linking and ageing in composite propellants and PBXs[A].37th International Annual Conference of ICT[C].Karlsruhe,Germany,June,2006.
    [60] Celina M.,Skutnik Elliott J.M.,Winters S.T.,et al. Correlation of antioxidant depletion and mechanical performance during thermal degradation of an HTPB elastomer[J].Polymer Degradation and Stability,2006,91(8):1870~1879.
    [61] Stephens W D, Schwarz W W, Kruse R B,et al.Application of fourier transform spectroscopy to propellant service life prediction[R].AIAA76748,1976.
    [62] Tokui H, Iwama A.Aging Characteristics of Hydroxy-Terminated Polybutadiene Propellant[J].Kayaku Gakkaishi,1991,52(2):100~107.
    [63] Chevalier S, Perut C, Billon L,et al.Antioxidant Selection Methodology for Hydroxy-Terminated Polybuadiene Type Solid Propellants[A].25th International Annual Conference of ICT[C].Karlsruhe,Germany,June,1994.
    [64] Nagle D J,Celina M,Rintoul L,et al.Infrared microspectroscopic study of the thermo-oxidative degradation of hydroxy-terminated polybutadiene/ isophorone diisocyanate polyurethane rubber[J].Polymer Degradation and Stability,2007,92(8):1446~1454.
    [65] Neviere R, Guyader M.DMA: a powerful technique to assess ageing of MED[A].37th International Annual Conference of ICT[C].Karlsruhe,Germany,June,2006.
    [66] Husband D M.Use of dynamic mechanical measurements to determine the aging behavior of solid propellant[J].Propellants,Explosives,Pyrotechnics,1992,17(4):196~201.
    [67] Duncan E J S.Characterization of Glycidyl Azide Ploymer composite propellant:Strain rate effects and relaxation response[J].Journal of applied polymer science,1995,56(3):365~375.
    [68] Duncan E J S, Brousseau P.Comparison of the uniaxial tensile modulus and dynamic shear storage modulus of a filled Hydroxyl-Terminated Polybutadiene and GAP propellant[J].Journal of materials science,1996,31(5):1275~1284.
    [69] Judge M D.The application of near-infrared spectroscopy for the quality control analysis of rocket propellant fuel pre-mixes[J].Talanta,2004,62(4):675~679.
    [70] Agrawal J P.Nitroglycerine(NG) Migration to various unsaturated polyesters and chlopolyesters used for inhibition of rocket propellants[J].Propellants,Explosives,Pyrotechnics,1999,24:371~378.
    [71] Grythe K F,Hansen F K.Diffusion rates and the role of diffusion in solid propellant rocket motor adhesion[J].Journal of Applied Polymer Science,2007,103(3):1529~1538.
    [72] Roger P.Particulate-filled polymer composites[M].London:Longman Group Limited,1995.
    [73] Bellerby J M, Kiriratnikom C.Explosive-binder adhesion and dewetting in Niramine-filled energetic material[J].Propellants,Explosives,Pyrotechnics,1989,14(2):82~85.
    [74] Hubner C, Geibler E, Elsner P.The importance of micromechanical phenomena in energetic material[J].Propellants,Explosives,Pyrotechnics,1999,24(3):119~125.
    [75] Tan H,Huang Y,Liu C T,et al.The Mori–Tanaka method for composite materials with nonlinear interface debonding[J].International Journal of Plasticity,2005,21:1890~1918.
    [76] Liu C T.Monitoring damage initiation and evolution in a filled polymeric material using nondestructive testing techniques Computers and Structures[J].International Journal of plasticity,2000,76:57~65.
    [77] Ide K M,Ho S Y,Williams R G.Fracture behaviour of accelerated aged solid rocket propellants[J].Journal of materials science,1997,34:4209~4218.
    [78] Little R R, Chelner H, Buswell H J.Development, testing and application of embedded sensors for solid rocket motor health monitoring[A].37th International Annual Conference of ICT[C].Karlsruhe,Germany,June,2006.
    [79] Johnson J L.Data collection requirements for quality evaluation of energetic materials and methods[A] . 37th International Annual Conference of ICT[C].Karlsruhe,Germany,June,2006.
    [80] Robert F,Feng J,Jose L,et al.Monitoring of chemical degradation in propellants using AOTF spectrometer[A].Proceedings of SPIE [C].2004,96~103.
    [81] Jimmy D C, Seema S, Darryl Y S,et al.Autonomous optical sensor system for the monitoring of nitrogen dioxide from aging rocket propellant[R].SAND 2001-2953,2001.
    [82] Buswell J.,Chelner H..Advances in embeddable sensors for health monitoring of solid rocket grains[A] . 37th International Annual Conference of ICT[C].Karlsruhe,Germany,June,2006.
    [83] Tussiwand G.S.,Besser H.-L.,Weterings F.P..Application of embedded DBST sensor technology to a full-scale experimental nozzleless rocket motor[A].37th International Annual Conference of ICT[C].Karlsruhe,Germany,June,2006.
    [84] Buswell J,Newton C,Fall A,et al.Lessons Learned from Health Monitoring of Rocket Motors[R].AIAA2005-4558,2005.
    [85] Lin M,Kumar A,Qing X,et al.Monitoring the integrity of filament wound structures using built-in sensor networks[R].ADA442243,2005.
    [86] Akpan O,Wong C,Martec L,et al.The role of probabilistic sensitivity analysis in assessing the service life of solid rocket motors[R].AIAA2002-1714,2002.
    [87] Marvin T,Steele J,Byington C,et al.Integrated Rocket Motor Life Prediction Software System[R].AIAA2008-5139,2008.
    [88]王春华,彭网大,翁武军,等.丁羟推进剂的化学老化机理与改善老化性能的技术途径[J].含能材料,1996,4(3):109~116.
    [89]王春华,彭网大,翁武军,等.HTPB推进剂凝胶分解特性与老化性能的相关性[J].推进技术,2000,21(2):84~87.
    [90]张昊,庞爱民,彭松.固体推进剂贮存寿命非破坏性评估方法(Ⅰ) -老化特征参数监测法[J].固体火箭技术,2005,28(4):271~275.
    [91]张昊,庞爱民,彭松.固体推进剂贮存寿命非破坏性评估方法(Ⅱ)——动态力学性能主曲线监测法[J].固体火箭技术,2006,29(3):190~194.
    [92]张昊,庞爱民,彭松.固体推进剂贮存寿命非破坏性评估方法(Ⅲ)——预测残留寿命延寿法[J].固体火箭技术,2006,29(4):279~282.
    [93]赵海泉,李彦丽,赵挨柱,等.丁羟推进剂的损伤特性研究[J].含能材料,2007, 15(4):336~340.
    [94]王鸿范,罗怀德.定应变对丁羟推进剂老化作用初探[J].固体火箭技术,1997,20(2):37~42.
    [95]张昊,彭松,庞爱民.固体推进剂应力和应变与使用寿命关系[J].推进技术,2006,27(4):372~375.
    [96]朱智春,蔡峨.固体火箭发动机寿命预估的一种考虑[J].推进技术.1996,17(4):10~13.
    [97]朱智春,蔡峨.聚氨酯推进剂的温度湿度老化有限元分析[J].推进技术.1997,18(4):80~83.
    [98]邢耀国,马银民,董可海,等.用长期贮存定期检测法预测药柱使用寿命[J].推进技术,1999,20(5):39~43.
    [99]刘德辉,贺南昌.复合推进剂贮存寿命及其可靠性研究[J].推进技术,1993,14(6):63~67.
    [100]刘兵吉.固体推进延伸率可靠寿命计算[J].推进技术,1990,11(6):46~50.
    [101]阳建红,李学东,赵光辉,等.HTPB复合固体推进剂的声发射特性及损伤模型的试验和理论研究[J].固体火箭技术,2000,23(3):37~40.
    [102] QJ924-85,复合固体推进剂单向拉伸试验方法[S].
    [103] QJ1360-88,复合固体推进剂硬度测定方法[S].
    [104] Mark J E . Experimental determinations of crosslink densities [J].Rub.Chem.Tech.,1982,55:762~768.
    [105]芦明,黄志萍.丁羟弹性体的交联密度[J].固体火箭技术,1994,17(3):54~60.
    [106]金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2007.
    [107]励杭泉,张晨.聚合物物理学[M].北京:化学工业出版社,2007.
    [108] GJB1327-91,端羟基聚丁二烯规范[S].
    [109]楚士晋.炸药热分析[M].北京:科学出版社,1994.
    [110]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001.
    [111] Royce W B,Thomas B. Thermal decomposition of energetic materials 77. behavior of N-N bridged bifurazan compounds on slow and fast hea- ting[J].Propellants,Explosives,Pyrotechnics,2000,25:241~246.
    [112]赵凤起,李上文,汪源,等. NEPE推进剂的热分解(Ⅰ)粘合剂的热分解[J].推进技术,2002,23(3):249~251.
    [113]杜磊,邓剑如,李洪旭.表界面化学原理在复合固体推进剂中的应用[J].推进技术,2000,21(1):64-66.
    [114]杜美娜,罗运军,杨寅,等.反相气相色谱法研究端羟基聚丁二烯(HTPB)粘合剂的表面性质[J].含能材料, 2007,15(6):646-649.
    [115]杜美娜,罗运军,李国平.Washburn薄层毛细渗透法测定ε晶型CL-20的表面能及其分量[J].含能材料,2007,15(3):269-272.
    [116]杜美娜,罗运军.RDX粒径和表面能对HTPB推进剂力学性能的影响[J].含能材料,2008,16(4):441-445.
    [117]吴人杰.高聚物的表面与界面[M].北京:科学出版社,1998.
    [118]田俊良,朱祖念,杜建科,等.复合材料壳体发动机推进剂药柱立式贮存应力分析[J].固体火箭技术,2003,26(4):34~37.
    [119] Sarkar S , Adhikari B . Thermal stability of lignin-hydroxy-terminated polybutadiene copolyurethanes[J].Polymer Degradation and Stability,2001,73:169~175.
    [120] Brill T B,Brush P J,Patil D G.Thermal decomposition of energetic materials 60 major reaction stages of a simulated burning surface of ammonium perchlorate[J].Combustion and Flame,1993,84:70~76.
    [121]刘子如,阴翠梅,孔扬辉,等.高氯酸铵的热分解[J].含能材料,2000,8(2):75~79.
    [122] Hackman E E,Hessor H H,Beachell H C.Detection of species resulting from condensed phase decomposition of ammonium perchlorate[J].The journal of physical chemistry,1972,76(24): 3545~3554.
    [123] Olson D B . Stability of RDX,AP and BTTN near room temperature[R].ADA158291,1985.
    [124]郭昕,南海,席鹏,等.170℃恒温条件下克级高氯酸铵的热分解特性[J].火炸药学报,2009,32(1):87~90.
    [125] Cibulkova Z , Simon P , Lehocky P , et al . Antioxidant activity of p-phenylenediamines studied by DSC[J].Polymer Degradation and Stability,2005,87(2): 479~486.
    [126] Noguchi N , Yamashita H , Gotoh N , et al . 2,2’-azobis(4-methoxy-2,4 -dimethylvaleronitrile), a new lipid-soluble azo initiator:application to oxidations of lipids and low-density lipoprotein in solution and in aqueous dispersions[J].Free radical biology & Medicine,1998,24(2): 259~268.
    [127] Rapta P,Vargova A,Polovkova J,et al.A variety of oxidation products of antioxidants based on N,N’-substituted p-phenylenediamines[J] . Polymer Degradation and Stability,2009,94(5):1457~1466.
    [128] Cataldo F.A study on the reaction N-substituted p-phenylenediamines and ozones: experimental results and theoretical aspects in relation to their antiozonant activity [J].European polymer journal,2002,38:885~893.
    [129] Breza M,Kortisova I,Cibulkova Z.DFT study of the reaction sites of N,N’-substituted p-phenylenediamine antioxidants[J].Polymer Degradation and Stability,2006,91(9):2848~2852.
    [130]潘祖仁.高分子化学(增强版)[M].北京:化学工业出版社, 2007.
    [131]辛忠.合成材料添加剂化学[M].北京:化学工业出版社, 2005.
    [132]刘海军译.多功能添加剂对苯醌二亚胺[J].世界橡胶工业,2005,32(12):3~7.
    [133]金平,陈建定.HTPB/TDI、HDI聚合反应动力学研究[J].功能高分子学报,1998,11(4):493~497.
    [134] Kothandaraman H, Nasar A S.Kinetics of the polymerization reaction of toluene diisocyanate with HTPB prepolymer[J].Journal of Applied Polymer Science, 1993,50(9):1611~1167.
    [135]王丽琴.彩绘文物颜料无损分析鉴定和保护材料研究[D].西安:西北大学,2006.
    [136]江治,袁开军,李疏芬,等.聚氨酯的FTIR光谱与热分析研究[J].光谱学与光谱分析,2006,26(4):624~628.
    [137]陈海平,乔迁,涂根国.聚氨酯材料的化学降解机理[J].辽宁化工,2007,36(8):535~539.
    [138]过梅丽.高聚物与复合材料的动力学热分析[M].北京:化学工业出版社, 2002.
    [139]季宝,许毅,翟现明.聚氨酯材料的降解机理及其稳定剂[J].聚氨酯工业,2008,23(6):39~42.
    [140]黄风雷,陈鹏万.含能材料的损伤[M].北京:国防工业出版社, 2007.
    [141] Palmer B J,Field J E,Huntley J M.Deformation, strengths and strains to failure of polymer bonded explosive[J].Proc.R.Soc.Lond.A, 1993,440(1909):399~419.
    [142] Matous K,Inglis H M,Gu X,et al. Multiscale modeling of solid propellants: From particle packing to failure[J].Composites Science and Technology,2007, 67 :1694~1708.
    [143]刘思峰,党耀国,方志耕.灰色系统理论及应用[M].北京:科学出版社, 2004.
    [144]黄克中,毛善培.随机方法与模糊数学应用[M].上海:同济大学出版社,1985.
    [145]杨为民,盛一兴.系统可靠性数字仿真[M].北京:北京航空航天大学出版社,1990.
    [146]居滋培.可靠性工程[M].北京:原子能出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700