用户名: 密码: 验证码:
正反馈式射流振荡器性能研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气深冷加工工艺迫切需要能在高压下操作且高效的气体膨胀制冷设备。射流振荡气波制冷机是一种新型气体膨胀制冷机,其工作原理为:利用双稳射流振荡器生成的振荡射流来形成对一端封闭的接受管的周期性入射,入射气因其能量通过载能气波的运动传递给接受管内原有气体并经接受管壁向环境散发损失而“冷却”。射流振荡制冷机无任何转动部件、只需简单静密封,因此特别适合用于高压天然气的加工处理。目前,射流振荡制冷机的研究还很不成熟,其性能参数(主要为等熵效率)离天然气工业生产的要求尚有一定的差距。本文结合国家863高技术项目“天然气压力能综合利用新技术研究”(No.2006AA052216)将正反馈射流振荡器引入射流振荡气波制冷机中,从实验和气体动力学数值分析两方面对正反馈式射流振荡气波制冷机的运行性能开展研究。
     射流振荡器是射流振荡制冷机的关键部件,它是在射流的附壁效应(也称Coanda效应)基础上开发出来的。振荡器内射流的稳定振荡是射流振荡制冷机工作的前提条件,其振荡频率的调制和总压损失的控制是改善制冷机性能的重要途径。本文首先对正反馈射流振荡器的振荡特性作了研究,通过数值模拟对正反馈射流的振荡波形和内部流场进行分析,考察了元件几何尺寸和操作条件以及介质物性的影响,重点研究了这几种因素对振荡频率和可振性的影响。
     射流的振荡特性如振荡频率、振荡压比是射流振荡器设计的基础性数据,也是影响射流振荡器和接受管耦合的主要因素,决定制冷效率。本文将跨音速正反馈射流振荡器与接受管耦合,对耦合后的射流振荡气波制冷机的可振性、振荡频率以及它们的影响因素作了实验研究,得出如下结论:射流只在一定的操作条件和几何结构尺寸范围内才能稳定振荡;射流的振荡频率在较高压比下只受反馈管长和反馈管容腔大小的显著影响,在小压比下随压比的增大而增加;其它结构尺寸和操作条件只影响可振性。
     多管式射流振荡气波制冷机相比双管式更具有工业应用价值,故本文对正反馈式多管射流振荡气波制冷机进行了数值模拟分析。计算了多种排气口形式的排气效果和相应的卷吸现象。重点分析了反馈管容腔对射流切换时间的影响,得到结论:反馈管容腔增大,射流切换时间增长,有利于射流均匀射入每个接受管,提高整体制冷效率。
     本文将正反馈射流振荡器引入射流振荡气波制冷机,依据其振荡特性,得到频率高,可振范围宽的元件结构。将气波机的可运行范围扩大,为寻找最佳耦合点,提高其制冷效率奠定了基础。
High-performance expansion refrigeration equipment suited for operating condition of high pressure is needed urgently for natural gas' expansion refrigeration technology. Jet-oscillation refrigerator is a new type of expansion refrigerator, in which self-induced jet oscillator is used to generate oscillation jet's periodical injection into receiving tube with one-closed end. In the oscillation tube, gas waves are produced owing to interaction between the injected gas and the intrinsic gas. Energy is rapidly transferred from the injected gas to the intrinsic gas by means of propagation of those gas waves, which results in temperature increase of the latter and then heat dissipation to environment across the tube wall. The refrigeration of the injected gas is obtained due to its energy loss. The jet-oscillation refrigerator has no moving part and its seal is simple. Hence, its use is not confined under the condition of high pressure. Yet, the refrigeration efficiency of the jet-oscillation refrigerator is at a low level presently, and could not satisfy requirement of natural gas's industrial production. In this paper, the feedback fluidic device is introduced to jet-oscillation refrigerator for the high frequency performance. The performance and mechanism of the jet-oscillation refrigerator with feedback fluidic device are investigated in the current paper supported by Chinese 863 National Program Foundation "Study on new technology of combined utilization of natural gas's pressure energy "(No.2006AA05Z216).
     The bistable fluidic device is a key component of jet-oscillation refrigerator and it is developed on the basis of jet's wall-attaching effect which is also called Coanda effect. The frequency modulation of the jet's oscillation and decrease of total pressure loss of the jet passing the oscillator are important approach to improve the performance of the refrigerator. This paper studies the oscillation performance of jet in feedback device. First of all, the waveforms and internal flow field of the oscillation in feedback fluidic device are studies through the numerical simulation. The influence of geometrical size and operating condition also the media physical property on the performance of feedback device is investigated. The study emphasize on the variation of frequency and ratio of oscillation-available pressure with the geometrical size. Other factors determine the availability and stability of oscillation.
     The oscillation performance of jet, as oscillation frequency, is the essential data for designing the fluidic device, which is also the key factor that influence the coupling effect of fluidic device and receiving tube. This paper does experiment on the oscillation availability and frequency of feedback jet-oscillation gas wave refrigeration. As a conclusion, the jet oscillates only in a certain range of geometrical sizes and operating conditions. Under the condition of high pressure ratio, the frequency of the jet's oscillation is only affected by the feedback tube's length and chamber remarkably. Under the condition of low pressure ratio, the frequency descends with rise of the pressure ratio. The influence of outlet port clearance is explored. The change of receiving tube length mainly results in the variation of the highest oscillation-availability ratio of pressure and tube response.
     The field application showed that the multi-tube gas wave refrigerator is more effective than the double-tube. This paper also studies on the performance of multi-tube through numerical simulation emphasizing on the switching time. This paper draws a conclusion that the switching time grows with the increasing of feedback tube chamber. This law is favorable to improve the refrigeration efficiency.
     This paper introduces positive feedback to Jet-oscillation refrigerator and high frequency and a wide range of oscillation are obtained based on the oscillation property. This method widens the operation range of jet-oscillation refrigerator and lays a foundation for finding the optimal couple point and improving the refrigeration efficiency.
引文
[1]王铭,徐剑华.世界液化天然气航运市场走势分析.中国水运,2007,4.
    [2]许光华.透平膨胀机.北京:机械工业出版社,1982.
    [3]黄齐飞.热分离机振荡管内激波的行为与控制:(硕士学位论文).福州:福州大学,2003.
    [4]黄廷夫.脉动射流对压力波制冷机性能的影响:(硕士学位论文).福州:福州大学,2006.
    [5]李兆慈.脉管式气波制冷机耦合特性的研究:(博士学位论文).上海:上海交通大学,2001.
    [6]Fang Y Q,Zheng J,Liu R J,Zhu C,Fan J,Hu D P.Experimentalstudy of gas wave refrigeration.In:TakayamaK(Ed)Proc.18th Int Symp on Shock Waves.Springer-Verlag Berlin Heidelberg Ⅱ,1991:1335-1338
    [7]Morrison J.Harp is heart of new-stytle separator.The oil and gas journal,1971,10(6):81-85.
    [8]李学来.振荡管管壁轴向传热的研究:(博士学位学位论文).大连:大连理工大学,1996.
    [9]邵件,包裕弟.转动喷嘴膨胀机的实验研究.浙江大学学报.1984,3(18):52-54.
    [10]方曜奇,郑洁,刘润杰等.气波制冷效率影响因素的实验研究.气动试验与测量控制,1993,7(3):15-18.
    [11]李学来.管长对振荡管冷效应影响的实验研究.制冷,1996,(2):15-17.
    [12]高明.激波能量的改变对制冷效率及管内波系的影响研究.制冷,2004,23(1):19-22.
    [13]代瑞国,刘学武.旋射流型式气波制冷机实验研究.安徽化工,2003,6:45-47.
    [14]黄志达,黄钟岳,方曜奇等.新型节能装置-透平式热分离机的研究.大连工学院学报,1983,22(3):115-119.
    [15]黄志达,唐山椒.RFT-2000型透平式热分离机原理及应用.大连工学院学报,1985,24(4):123-124.
    [16]刘学武,邹久朋,朱彻等.反冲膨胀式波制冷机制冷特性.天然气工业,2005,25(2):176-180.
    [17]Coanda H.Device for deflecting a stream of elastic fluid projected into an elastic fluid:US,2052869.1936-09-01.
    [18]Sprenger H S.Uber thermische Effekte in Resonanzrohren.Zurich:Mitteilungen aus dem Institut fur Aerodynamik ETH,1954,21:18-35.
    [19]Rennaz M C.Well head gas refrigerator field strips condensate.World Oil,1971,10:60-61.
    [20]Rennaz M C.New French gas cooler recovers 120bpd gasoline.World Oil,1973,8:57-59.
    [21]Christian D,Amande J C,Viltard C.Barge-mounted NGL plant boosts recovery from offshore field,World oil,1982,7:105-107.
    [22]Marchal P,Malek S,Vitard J C.Skid-mounted rotating thermal seperator.Oil and Gas (TECHNOLOGY),1984,11:55-58.
    [23]#12
    [24]间宫林荣.かス冷却分离装置の化学工业への利用.化学装置,1978,2:52-57.
    [25]日特公开,昭47-10140.
    [26]日特公开,昭52-50379.
    [27]U S patent,Thermal separators employing a movable distribute May 17,1983,No4383423.
    [28]Galyukov.A,Timofeev E.Proceedings of 20th Int Sym(On Shock Waves),Australian:13-20.
    [29]Saito T,Yoinovich P,Zhao W etc.Experimental and numerical study of pressure wave refrigerator performance.Shock Wave,2003,13:253-259.
    [30]高金林.热分离机制冷机理的研究-气体工质的热力过程:(硕士学位论文).杭州:浙江大学,1988.
    [31]邵件,沈永年.转动式热分离机转速与变压管长度匹配的研究.浙江大学学报,1988,22(5):114-119.
    [32]包裕弟,沈永年.回收气体压力能的转动喷嘴膨胀机的实验研究.能源工程,1982,2:27-30.
    [33]张朝函.一种新型机械-旋转式制冷机.低温工程,1993,1:34.
    [34]沈永年,王洪明.影响热分离机等熵效率的主要因素及改进方法.低温工程,1999,5:13-16.
    [35]邵件,包裕弟.转动喷嘴膨胀机的试验研究.浙江大学学报.1984,3(18):52-54.
    [36]刘海鑫,张朝涵.旋转式热分离机振荡管内热力过程的理论分析.深冷技术,2004,1:8-12.
    [37]张朝涵,周国勇.提高旋转式热分离机热力性能的实验研究.低温与超导,2002,30(4):54-58.
    [38]Shao J,Bao Y D,Shen Y N etc.Experimental Investigation of an new type expander.Advances in Cryogenic Engineering,1986,31.
    [39]Shao J,Shen Y N,Feng Y P etc.Thermodynamic analysis and experimental study on petroleum gas separation system incorporating RJE.Proceeding of ICESR,1986,9.
    [40]Shao J,Gao J,Feng Y etc.Experimental study of influence of transient performance in pressure plus tubes on isentropic efficiency of RJE ICEC 1986.Berlin-West.
    [41]邵件,沈永年,冯仰浦等.静止喷嘴膨胀机(SJE)振荡特性研究.浙江大学学报,1985,19(5):23-30.
    [42]邹久鹏,刘学武,陈淑花.削弱振荡管内反射激波能量的实验研究.低温工程,2001,3:48-53.
    [43]刘伟,冀晓辉.气波制冷等熵效率的影响因素及评价.辽阳石油化工高等专科学校学报,2001,4:402-431.
    [44]方曜奇,胡志敏.振荡管结构对热分离机制冷的影响.流体工程,1987,17(3):15-18.
    [45]李学来,方曜奇.气波制冷机振荡管外强化换热的实验研究.制冷,1996,4:7-9.
    [46]李学来.振荡管管壁轴向导热的实验研究.大连理工大学学报,1996,36(1):37-40.
    [47]李学来.振荡管管壁轴向传热的研究:(博士学位论文).大连:大连理工大学,1996.
    [48]朱彻,刘润杰,李洪安.气波制冷技术在天然气脱水净化工程中的应用.制冷,1985,50(1):10-15.
    [49]方曜奇.第四届全国激波管与激波学术会议论文集,1987:57-61.
    [50]方曜奇.第七届全国激波管与激波学术会论文集,1995:85-87.
    [51]胡大鹏.静止式气波制冷机的研制:(硕士学位论文).大连:大连理工大学,1989.
    [52]胡大鹏.第四届高校化机专业教学科研交流会论文,1991:152-158.
    [53]李力.气波制冷机截面突扩管内流动的数值模拟:(硕士学位论文).大连:大连理工大学,1994.
    [54]Fang Y Q,Hu D P.Proc of the 10th Int Heat Transfer Conf,Bmighton U K,1994:54-56.
    [55]Fang Y Q.Shock Wave Proceedings,Sendai,Japan,1991:1335-1338.
    [56]梁世彬,方曜奇.利用低温技术进行胎面胶细粉碎的实验研究.制冷学报,1995,3:27-29.
    [57]梁世彬,方曜奇.利用低温技术进行物料细粉碎的实验研究.制冷学报,1996,1:20-22.
    [58]刘润杰.气波制冷机转速与动态压力的同步测量.气动实验与测量控制,1995,2:79-82.
    [59]刘伟,胡大鹏.气波制冷机研究现状及工业应用.辽阳石油化工高等专科学校学报,2002,3:182-231.
    [60]孙以岑.利用余压的节能技术-用热分离机回收氨厂放空气的探讨.石油化工设备,1986,15(6):13-18.
    [61]朱彻,李洪安,邹久朋等.一项新兴的天然气脱水净化技术.天然气工业,1995,15(5):57-61.
    [62]代瑞国,刘学武.旋射流型式气波制冷机实验研究.安徽化工,2003,6:45-47.
    [63]刘学武,陈淑花.新型气波制冷机的节能效果.节能和环保,2001,9:34-35.
    [64]刘学武,陈淑花.热分离器现状分析与发展方向.制冷,2002,21(3):23-27.
    [65]李学来,方曜奇,朱彻.气波制冷机振荡管外强化换热的试验研究.制冷,1996,4:7-9.
    [66]刘学武,邹久朋,武君等.气波制冷机分配器出口参数的计算求解.制冷,2003,22(3):60-63.
    [67]刘学武,金良安,李志义,胡大鹏.气波管内波系影响因素的实验研究与数值模拟.化工学报,2004,55(2):177-181.
    [68]刘学武,邹久朋,陈淑花,金良安.气波管末端边界条件对制冷效率的影响研究.流体机械,2001,29(11):55-57.
    [69]代玉强,胡大鹏,刘伟,朱彻.含有复合阻尼结构的压力波制冷机振荡管内流动分析.低温与特气,2003,21(2):23-25.
    [70]李学来,方唯奇,朱彻,刘润杰.振荡管管壁轴向导热的试验研究.大连理工大学学报,1996,36(1):37-40.
    [71]徐烈等.脉管式气波制冷机的实验研究.低温工程,1999,4:136-140.
    [72]李兆慈等.脉管式制冷机与气波制冷机的耦合研究.低温与超导,2000,28(2):1-5.
    [73]熊炜,徐烈,张涛,赵兰萍.脉管制冷与气波制冷之比较.低温工程,1998,5:45-51.
    [74]李兆慈,徐烈,张存泉,孙恒,赵兰萍.气波制冷机等熵效率影响因素的实验研究.低温工程,2000,5:50-54.
    [75]李兆慈,徐烈.气波制冷机的研究与应用.低温工程,2002,2:22-27.
    [76]李兆慈,徐烈,赵兰萍,熊炜,郭文,孙恒.脉管制冷与气波制冷藕合的研究.低温与超导,2000,28(2):1-5
    [77]李兆慈.脉管式气波制冷机机耦合特性的研究:(博士学位论文).上海:上海交通大学,2001.
    [78]李学来,朱彻.振荡管复合阻尼陷波.化工学报,2001,52(5):379-380.
    [79]李学来.振荡管冷端传热分析.制冷,1998,1:28-31.
    [80]李学来,黄齐飞.热分离技术与压力能的回收利用.福建能源开发与节约,2001,3:57-60
    [81]李学来,朱彻,方曜奇.振荡管最佳隔热位置.化工学报,2001,52(9):757-760.
    [82]李学来.压力波制冷机工作管开口端处的流动分析.福州大学学报(自然科学版),第2001,29(5):108-110.
    [83]黄齐非,李学来.热分离技术发展现状和应用前景.福建化工,2001,2:10-14.
    [84]李学来,黄齐飞,朱彻.反射激波的吸收对热分离器性能的影响.化工学报,2003,54(2):170-175.
    [85]黄齐飞,李学来.热分离技术发展现状与应用前景.福建化工,2001,2:10-14.
    [86]李学来.压力波制冷机的研究及工业开发.制冷,1997,60(3):6-12.
    [87]朱雪琴.气波制冷机振荡管最佳管长的研究.无锡轻工业学院学报,1993,2:135-140.
    [88]Rennaz M C.New French Gas Cooler Recovers 120 bpd Gasoline.World Oil,1973,8:57-59.
    [89]于伟.利用多孔板阻尼提高热分离器效率.青年力学协会第二届年会文流论文,1992:111-134.
    [90]YuWei(于伟).Study on the factors effect on refrigeration efficiency of thermal separator:(学位论文).Beijing:Institute of Mechanics,Chinese Academy of Sciences,1988.
    [91]代玉强.压力交换制冷机性能分析:硕士学位论文.大连:大连理工大学,2003.
    [92]刘虎.压力交换制冷机结构参数优化研究:硕士学位论文.大连:大连理工大学,2006.
    [93]丁美霞.压力交换制冷机参数对性能的影响:硕士学位论文.大连:大连理工大学,2007.
    [94]顾觊.热分离机的结构及应用探讨.化工装备技术,1990,11(1):24-29.
    [95]俞鸿儒.热分离器内的流动.大连工学院学报,1984,23(4):1-7.
    [96]刘伟,冀晓辉.新型气波制冷机的结构设计及性能研究.流体机械,2004,32(4):63-65.
    [97]李学来.两种管外传热型式对振荡管性能的影响.化工学报,2000,51(1):12-16.
    [98]李学来.压力波制冷机的研究及工业开发.制冷,1997,60(3):6-12.
    [99]高明.激波能量的改变对制冷效率及管内波系的影响研究.制冷,2004,23(1):19-22.
    [100]李学来,郭荣伟.振荡管最佳射流激励频率钳制效应.南京航空航天大学学报,1998,30(6):606-610.
    [101]李学来,黄齐飞,朱彻.有关因素对振荡管最佳射流激励频率的影响.化工学报,2002,53(2):194-198.
    [102]冀晓辉,刘伟.振荡管结构对气波制冷机制冷性能影响的研究.制冷学报,2004,3:19-21.
    [103]刘伟.静止式气波制冷机振荡特性研究:(硕士学位论文).大连:大连理工大学,2003.
    [104]赵承庆,姜毅.气体射流动力学.北京:北京理工大学出版社,1998.
    [105]董志勇.射流力学.北京:科学出版社,2005.
    [106]Brown G B.On vortex motion in gaseous jets and the origin of their sensitivity to sound.Proc.Phys Soc,1935,47:702-732.
    [107]Crow S C,Champagne F H.Orderly structure in jet turbulence.J Fluid Mech.,1971,43:547-591.
    [108]Ricou F P,Spalding D B.Measurements of entrainment by axisymmetrical turbulent jets.J Fluid Mech,1961,11:21-32.
    [109]原田正一,尾崎省太郎编.射流工程学.北京:科学出版社,1977.
    [110]Turkowski M.Progress towards the optimisation of a mechanical oscillator flowmeter.Flow Measurement and Instrumentation,2003,14:13-21.
    [111]Gebhard U,Hein H,Just E,Ruther P.Combination of a Fluidic Micro-Oscillator and Micro-Actuatorin LIGA-Technique for Medical Application.TRANSDUCERS 97,lnternafional Conference on SoliOCStafe Sensors and Acfuafom,Chicago,1997:16-19.
    [112]Zipser L,Wachter F,Franke H.Acoustic gas sensors using airborne sound properties.Sensors and Actuators B,2000,68:162-167.
    [113]Eliphas Wagner Simoes,Rogerio Furlan,Roberto Eduardo Bruzetti Leminski,Mario Ricardo Gongora-Rubio,Marcos Tadeu Pereira,Nilton Itiro Morimoto,Jorge J.Santiago Aviles.Microfluidic oscillator for gas flow control and measurement.Flow Measurement and Instrumentation 16(2005)7-12
    [114]Furlan R,da Silva M P,Simoes E W,Leminski R E B etc.Visualization of internal liquid flow interactions in meso planar structures.Flow Measurement and Instrumentation,2006,17:298-302.
    [115]Yang J T,Chen C K,Tsai K J etc.A novel fluidic oscillator incorporating step-shaped attachment walls.Sensors and Actuators A,2007,135:476-483.
    [116]Wang H,Priestman S B,Beck S B M,Boucher R F.Development of fluidic flowmeters for nonitoering crude oil production.Flow Meas Instrum,1996,7(2):91-98.
    [117]Tesar V,Hung C H,William B Z.No moving part hybrid synthetic jet actuator.Sensors and actuators A(PHYSICS),2006,125:159-169.
    [118]Morris G J,Jurewicz J T,Palmer G M.Gas-Solid Flow in a Fluidically Oscillating Jet.J Fluids Engineering,1992,114:362-366.
    [119]Koso T,Kawaguchi S,Hojo M,Hayami H.Flow mechanism of a self-induced oscillating jet from a Flip-flop jet nozzle.The fifth JSME-KSME Fluid engineering conference,Nagoya,Japan,2002:17-21.
    [120]Wada T,and Shimizu A.Mechanism and Design of Sonic Oscillator.Fluidic Q,1976,4:1-33.
    [121]#12
    [122]Hayashi S,Kamaya S.A study onmechanism of oscillation in sonic oscillator(1st report,mathematical of oscillators operated by water).Bulletin of the JSME,1975,18(123):1035-1043.
    [123]Hayashi S,Kamaya S.A study on mechanism of oscillation in sonic oscillator(2st report,mathematical of oscillators operated by air).Bulletin of the JSME,1975,18(122):841-849.
    [124]Yassour Y,Stricker J,Wolfshtein M.Heat transfer from a small pulsating jet.Proceedings of the Eighth International Heat Transfer Conference,San Francisco,USA,1986,3:1183-1186.
    [125]Travnicek Z,Tesar V.Annular synthetic jet used for impinging flow mass-transfer.Int J Heat Mass Transfer,2003,46:3291-3297.
    [126]Tesor V,Travnicek Z.Pulsating and synthetic impinging jets forhigh heat and mass transfer rates.Proceedings of the Seventh BiennialASME Conference on Engineering Systems Design and Analysis ESDA,Manchester UK,Paper ESDA2004-58236,2004.
    [127]傅新,王池宇,谢海波,杨华勇.射流流量计的仿真与实验研究.机械工程学报,2006,42(7):24-28
    [128]周瑞章.旁路振荡式气体流量计.液压气动与密封.1994,4:15-17
    [129]孙震,熊青山,刘加旭.控制道及劈高对气动射流振荡器射流切换的影响.西部探矿工程.2007,9:65-67
    [130]张峰,刘淑艳,王保国.射流振荡器复杂湍流场的高分辨率高精度解.机械工程学报.2008,42(2):16-21.
    [131]日本机械试验所.压力恢复率70%的射流振荡器.机械试ニコヌ.1970,11:49-50.
    [132]Raman,G.,Hailye,M.,& Rice,E.Flip-flop jet nozzle extended to supersonic flow.AIAA Journal.1993,31:1028-1035.
    [133]Raman,G.,Rice,E.J.& Cornelius,D.Evaluation of flip-flop jet nozzles for use as practical excitation devices.Journal of Fluid Engineering.116:508-515.
    [134]Raman,G.& Cornelius,D.Jet Mixing Control Using Excitation from Miniature Oscillating Jets.AIAA Journal.1995,33:365-368.
    [135]Ganesh Raman.Cavity Resonance Suppression Using Miniature Fluidic Oscillators.AIAA Paper 99-1900:653-675.
    [136]Raghu,S.& Raman,G.Miniature fluidic device for flow control,devices for flow control.ASME FEDSM.1999,99-7256.
    [137]Bray H.C.Cold weather fluidic fan spray devices and method.US Patent 4463904.1984
    [138]Bray H.C.Cold weather fluidic windshield washer method.US Patent 4645126.1987
    [139]Stouffer R.D.Liquid oscillator device.US Patent 4508267.1985.
    [140]Fonov,S.D.,Engler,R.H.,Klein,C.,Mihailov,S.V.,Mosharov,V.E.,Kulesh,V.P.,Radchenko,V.N.,and Schairer,E.Pressure Sensitive Paint for Oscillating Pressure Fields Measurements." ICIASF'99 Record,Proceedings of the 16 International Congress on Instrumentation in Aerospace Simulation Facilities(ICIASF),Institute of Electrical and Electronics Engineers(IEEE).1999,vol.16,pp.35.1-35.6.
    [141]James W.Gregory,Hirotaka Sakaue,and John P.Sullivan.Fluidic Oscillator as a Dynamic Calibration Tool.In 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference.AIAA 2002-2701.
    [142]James W.Gregory,John P.Sullivan.Effect of Quenching Kinetics on the Unsteady Response of Pressure-Sensitive Paint.In 42nd AIAA Aerospace Sciences Meeting and Exhibit.AIAA 2004-879.
    [143]James W.Gregory,John P.Sullivan.Characterization of a MicroFluidic Oscillator for Flow Control.In:2nd AIAA fow control conference.Paper 2692.2004.2692.
    [144]Rogerio Furlan,Maria Lucia Pereira da Silva,Eliphas Wagner Simoes,etc.Visualization of internal liquid flow interactions in meso planar structures.Flow Measurement and Instrumentation.2006,16(1)7-12.
    [145]Gebhardy U,Hein H,Schmidt U.Numerical investigation of fuidic micro-oscillators.Journal of Micromechanics and Microengineering.1996;6:115-7.
    [146]Ciro Cerretelli,Emad Gharaibah.An Experimental and Numerical Investigation on Fluidic Oscillators for Flow Control.In:37th AIAA Fluid Dynamics Conference and Exhibit.Paper AIAA 2007-3854.
    [147]Min Ku Jeon,Joon Ho Kim,Jermim Noh,Soo Ho Kim.Design and characterization of a passive recycle micromixer.Jornal of Micromechanics and Microengineering.2005,15:346-350.
    [148]A.Nakayama,F.Kuwahara,Y.Kamiya.A two-dimensional numerical procedure for a three dimensional internal flow through a complex passage with a small depth.International Journal of Numerical Methods for Heat & Fluid Flow.2005,15(8):863-871.
    [149]Parneix S,et al.Predictions of turbulent heat transfer in an axisymmetric jet impinging on a heated pedestal.ASME J Heat Transfer,1999 121(2):43-49.
    [150]Speziale C G,Thangam S.Analysis of an RNG based turbulence model for separated flows.Int J Engng Sci,1992,30(10)1379-1388.
    [151]Thangam S,Speziale C G.Turbulent flow past a backward-facing step:a critical evaluation of two-equation models.AIAA J,1992,30(5):1314-1320.
    [152]王少平,曾扬兵,沈孟育等.用RNG~(κ-ε)模型数值模拟180°弯管内的湍流分离流动。力学学报,1996,28(3):257-262.
    [153]马铁犹等.计算流体力学。北京航空航天大学出版社。北京:1987.
    [154]李德元等.二维非定常流体力学数值计算.科学出版社,北京:1987.
    [155]黄敦.复杂激波的数值模拟.现代流体力学进展.1992,1:60-72.
    [156]童秉纲,张炳萱,崔而杰.非定常流与涡运动。国防工业出版社,北京:1993.
    [157]Deadwyler,R.Theory of temperature and pressure insensitive fluid oscillators.Harry Diamond Laboratories TR 1422,1969.
    [158]陈祖智.射流振荡制冷机性能和机理研究:博士论文.大连:大连理工大学,2008.
    [159]陈圣涛.静止式气波制冷机振荡与制冷特性的研究:博士论文.大连:大连理工大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700