射流振荡制冷机性能与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在天然气深冷加工工艺中,迫切需要能在高压下操作且高效的气体膨胀制冷设备。射流振荡制冷机是一种新型气体膨胀制冷机,其工作原理为:利用自激励射流振荡器生成的振荡射流来形成对一端封闭的振荡管的周期性入射,入射气因其能量通过载能气波的运动传递至振荡管内原有气体并经振荡管壁向环境散发损失而“冷却”。射流振荡制冷机无任何转动部件、只需简单静密封,因此特别适合用于高压天然气的加工处理。目前,射流振荡制冷机的研究还很不成熟,其性能参数(主要为等熵效率)离天然气工业生产的要求尚有一定的差距。本文结合国家863高技术项目“天然气压力能综合利用新技术研究”(No.2006AA052216)主要从实验和气体动力学数值分析两方面对射流振荡制冷机的性能与内部机理开展研究。
     (1)自激励射流振荡器是射流振荡制冷机的关键部件,它是在射流的附壁效应(也称Coanda效应)的基础上开发出来的,附壁射流的特性如偏转程度、附壁距离等是射流振荡器设计的基础性数据。射流振荡制冷机多工作在跨音速状态下,本文首先对跨音速附壁射流的特性作了数值模拟研究,分析了跨音速附壁射流的流动特征,考察了结构参数和操作参数对跨音速附壁射流的几何特性和压力分布特性的影响。结果显示,附壁射流的偏转程度和附壁距离取决于射流自身参数与压力分布,而压力分布又受元件几何尺寸和操作条件的影响,总结了附壁射流几何特性和压力分布特性受元件结构参数和操作参数影响的规律。
     (2)射流振荡器的稳定振荡是射流振荡制冷机工作的前提条件,其振荡频率的调制和总压损失的控制是改善制冷机性能的重要途径。本文将音波振荡器用于射流振荡制冷机,对跨音速音波振荡器的可振性、振荡频率和总压损失以及它们的影响因素作了实验和数值模拟研究。
     1)研究了喷嘴宽度、位差、分流劈距、控制管长度和宽度、分流劈形状、压比、压力值及介质物性对射流可振性和振荡频率的影响,得出了影响规律。通过流场分析,对音波振荡器振荡及其受各因素影响的机理均作了解释。
     2)对音波振荡器的总压损失作了数值分析,结果显示:在射流的下游,由于湍流耗散,总压将快速衰减;在低压比下(ε<2.5),总压损失主要由湍流耗散引起;在高压比下(ε>2.5),总压损失还来源于射流内部的波动,激波会引起总压的突降。此外,还考察了位差、分流劈距等结构参数对总压损失的影响。
     (3)对音波振荡器与振荡管结合部位的结构与尺寸对双振荡管射流振荡制冷机内流动参数的影响作了数值模拟研究,包括排气口宽度的影响、排气口结构的影响和位差的影响,结果表明,三者均较显著。随排气口增宽,射流对振荡管射气阶段射进振荡管的能量流量减小,排气口过窄时,排气不顺畅,导致机内的压力高,形成气波的强度弱,振荡管内气温低;而排气口过宽时,对振荡管射气时质量和能量均几乎全部从排气口处直接排出,两种情况均对制冷不利。计算了三种型式排气口结构的制冷机内的流动,发现排气口通道内的旋涡会阻碍射气时介质直接从排气口处排出,这对制冷有利。随位差的减小,射流稳定附壁阶段,其在单侧射流输出管内振荡的幅度减小,振荡管口的能量流量随时间的变化变得均匀。
     (4)对音波振荡器驱动的双振荡管射流振荡制冷机的性能作了实验研究。以等熵效率作为制冷机性能的评价指标,对等熵效率及制冷机内部压力和振荡管壁温度作了测试。
     1)基于对音波振荡器总压损失研究的结果,通过缩短音波振荡器的射流输出通道的方法来减小射流在振荡管上游的总压损失,提出了一种新型结构的射流振荡制冷机,实验得到,在相同操作条件下,新结构机器的等熵效率提高了10%以上。
     2)研究了控制管长度、排气口宽度和结构、分流劈结构尺寸和位差对制冷机性能的影响,得到:等熵效率随控制管的增长呈波动起伏式变化;存在最佳排气口宽度,且最佳排气口宽度受压比的影响;位差减小,等熵效率有所提高;分流劈结构尺寸及排气口结构对等熵效率均有较大影响。结合实验测得的压力、温度数据以及机内流场的数值模拟结果,对各因素影响制冷机性能的机理作了解释。
High-performance expansion refrigeration equipment under high pressure is needed for natural gas's expansion refrigeration.Jet-oscillation refrigerator is a new type of gas expansion refrigerator,in which self-induced jet oscillator is used to generate oscillation jet's periodical injection into oscillation tube with one-closed end.In the oscillation tube,gas waves are produced owing to interaction between the injected gas and the intrinsic gas. Energy is rapidly transferred from the injected gas to the intrinsic gas by means of propagation of those gas waves,which results in temperature increase of the latter and then heat dissipation to environment across the oscillation tube wall.The refrigeration of the injected gas is obtained due to its energy loss.The jet-oscillation refrigerator has no moving part and its seal is simple.Hence,its use is not confined under the condition of high pressure.Yet,the refrigeration efficiency of the jet-oscillation refrigerator is at a low level presently,and could not satisfy requirement of natural gas's industrial production. Performance and mechanism of the jet-oscillation refrigerator are investigated by experiment and numerical simulation in the current dissertation supported by Chinese 863 National Program Foundation "Study on new technology of combined utilization of natural gas's pressure energy"(No.2006AA05Z216).
     (1) The self-induced jet oscillator is a key component of the jet-oscillation refrigerator and it is developed based on jet's wall-attaching effect which is also called Coanda effect.The gas in the jet-oscillation refrigerator usually flows at transonic speed.Firstly,the current dissertation studies properties of the transonic wall-attaching jet by numerical simulation. Flow characteristics of the wall-attaching jet are analyzed.Effects of structural parameters and operating parameters on geometrical properties and pressure distribution are investigated。The results show that the deflection degree and attachment distance of the wall-attaching jet are determined by both the jet's flow parameters and the pressure distribution which is influenced by the element's geometrical sizes and the operating conditions.
     (2) The jet-oscillation refrigerator works on the basis of the jet's steady oscillation.Either the frequency modulation of the jet's oscillation or decrease of total pressure loss of the jet passing the oscillator is important approach to improve performance of the refrigerator.In the present dissertation,sonic oscillator is adopted and its oscillation properties and total pressure loss together with their influencing factors are investigated by experiments and numerical simulations.
     1) Effects of width of the nozzle's throat,wall offset,wedge distance,length and width of the controlling tube,the pressure ratio,the pressure value and properties of the working media on oscillation properties are all studied.Mechanisms of the jet's oscillation and those factors's affecting the jet's oscillation are explaned by means of analyzing flow parameters during the jet oscillating.
     2) Numerical analysis of the jet's total pressure loss reveals that at a certain position downstream of the jet,the total pressure begins to decay sharply due to turbulent dissipation.The total pressure loss of the jet passing the sonic oscillator is caused mainly by turbulent dissipation under the condition of low pressure ratio(the pressure ratio is less than 2.5).Under the condition of high pressure ratio(the pressure ratio is more than 2.5),the total pressure loss is moreover produced by gas waves in the jet among which shock wave could lead to the total pressure's violent decrease.Additionally,effects of the geometrical sizes on the total pressure loss are studied and the mechanisms are analyzed.
     (3) The current dissertation numerically simulates effects of configurations and geometrical sizes between the sonic oscillator and the oscillation tube on flow field in the jet-oscillation refrigerator with two oscillation tube.The results exhibit that width and configuration of the gas outlet port together with the wall offset all have great effect on flow field in the refrigerator.During the jet striking the open end of the oscillation tube,the injected mass and energy flow rate decreases with widening of the gas outlet port.However,gas couldn't be discharged freely while the gas outlet port is too narrow,which would lead to high pressure in the refrigerator.As a result,only low-intensity gas waves could be produced and the temperature of the gas in the oscillation tube stays low.With too wide gas outlet port,most of the energy would be discharged directively through the gas outlet port while the jet striking the open end of the oscillation tube.Flow fields with three types of gas outlet port are calculated and it is founded out that eddy in the gas outlet port would hind directive discharging of the gas.Therefore,the configuration in which eddy could be produced is advantageous to improvement of the refrigerator's performance.With descend of the wall offset,during the jet attaching to one wall,the jet's oscillating amplitude decreases which results in uniform variation of energy flow rate with time.
     (4) Performances of the jet-oscillation refrigerator with two oscillation tube driven by sonic oscillator are investigated by experiments.Isoentropy efficiency is introduced to characterize performance of the refrigerator.The isoentropy efficiency and pressure wave in the refrigerator in addition to temperature distribution along the oscillation tube wall are tested.
     1) Based on the numerical results about total pressure loss,a new type of jet-oscillation refrigerator is introduced on the idea of decreasing distance from outport of the nozzle to inlet port of the oscillation tube.The experimental results reveal that the isoentropy efficiency increases by more than 10%under the same operating conditions as a result of descend of the distance.
     2) Effects of length of the controlling tube,width and configuration of the gas outlet port, configuration and size of the wedge and the wall offset on isoentropy efficiency of the refrigerator are studied.The following conclusions are drawn.The isoentropy efficiency varies undulately with rise of the controlling tube's length.There exists optimal width which corresponds to the greatest isoentropy efficiency and it is revealed that the optimal width is affected by the pressure ratio.The efficiency ascends with decrease of the wall offset.The configuration of the gas outlet port and the wedge's configuration and size all have great effects on the isoentropy efficiency.Effect mechanisms of all the influencing factors on performance of the refrigerator are analyzed based on the tested data and the numerical results.
引文
[1]人民日报.2001年01月24日第七版.
    [2]英国德鲁里航运咨询公司.世界液化天然气运输市场回顾与展望(续).中国远洋航务公告,2005,9.
    [3]王铭,徐剑华.世界液化天然气航运市场走势分析.中国水运,2007,4.
    [4]许光华.透平膨胀机.北京:机械工业出版社,1982.
    [5]黄齐飞.热分离机振荡管内激波的行为与控制:(硕士学位论文).福州:福州大学,2003.
    [6]黄廷夫.脉动射流对压力波制冷机性能的影响:(硕士学位论文).福州:福州大学,2006.
    [7]李兆慈.脉管式气波制冷机耦合特性的研究:(博士学位论文).上海:上海交通大学,2001.
    [8]Fang Y Q,Zheng J,Liu R J,Zhu C,Fan J,Hu D P.Experimentalstudy of gas wave refrigeration.In:ZakayamaK(ed) Proc.18th Int Symp on Shock Waves.Springer-Verlag Berlin Heidelberg Ⅱ,1991:1335-1338
    [9]Morrison J.Harp is heart of new-stytle separator.The oil and gas journal,1971,10(6):81-85.
    [10]李学来.振荡管管壁轴向传热的研究:(博士学位学位论文).大连:大连理工大学,1996.
    [11]邵件,包裕弟.转动喷嘴膨胀机的实验研究.浙江大学学报.1984,3(18):52-54.
    [12]方曜奇,郑洁,刘润杰等.气波制冷效率影响因素的实验研究.气动试验与测量控制,1993,7(3):15-18.
    [13]李学来.管长对振荡管冷效应影响的实验研究.制冷,1996,(2):15-17.
    [14]高明.激波能量的改变对制冷效率及管内波系的影响研究.制冷,2004,23(1):19-22.
    [15]代瑞国,刘学武.旋射流型式气波制冷机实验研究.安徽化工,2003,6:45-47.
    [16]黄志达,黄钟岳,方曜奇等.新型节能装置-透平式热分离机的研究.大连工学院学报,1983,22(3):115-119.
    [17]黄志达,唐山椒.RFT-2000型透平式热分离机原理及应用.大连工学院学报,1985,24(4):123-124.
    [18]刘学武,邹久朋,朱彻等.反冲膨胀式波制冷机制冷特性.天然气工业,2005,25(2):176-180.
    [19]Coanda H.Device for deflecting a stream of elastic fluid projected into an elastic fluid:US,2052869.1936-09-01.
    [20]Sprenger H S.(U|¨)ber thermische Effekte in Resonanzrohren.Z(u|¨)rich:Mitteilungen aus dem Institut f(u|¨)r Aerodynamik ETH,1954,21:18-35.
    [21]Rennaz M C.Well head gas refrigerator field strips condensate.World Oil,1971,10:60-61.
    [22]Rennaz M C.New French gas cooler recovers 120bpd gasoline.World Oil,1973,8:57-59.
    [23]Christian D,Amande J C,Viltard C.Barge-mounted NGL plant boosts recovery from offshore field,World Oil,1982,7:105-107.
    [24]Marchal P,Malek S,Vitard J C.Skid-mounted rotating thermal seperator.Oil and Gas(TECHNOLOGY),1984,11:55-58.
    [25]#12
    [26]间宫林荣.かス冷却分离装置の化学工业への利用.化学装置,1978,2:52-57.
    [27]日特公开,昭47-10140.
    [28]日特公开,昭52-50379.
    [29]U S patent,Thermal separators employing a movable distribute May 17,1983,No4383423.
    [30]Galyukov.A,Timofeev E.Proceedings of 20th Int Sym(On Shock Waves),Australian:13-20.
    [31]Saito T,Voinovich P,Zhao W etc.Experimental and numerical study of pressure wave refrigerator performance.Shock Wave,2003,13:253-259.
    [32]高金林.热分离机制冷机理的研究-气体工质的热力过程:(硕士学位论文).杭州:浙江大学,1988.
    [33]邵件,沈永年.转动式热分离机转速与变压管长度匹配的研究.浙江大学学报,1988,22(5):114-119.
    [34]包裕弟,沈永年.回收气体压力能的转动喷嘴膨胀机的实验研究.能源工程,1982,2:27-30.
    [35]张朝函.一种新型机械-旋转式制冷机.低温工程,1993,1:34.
    [36]沈永年,王洪明.影响热分离机等熵效率的主要因素及改进方法.低温工程,1999,5:13-16.
    [37]邵件,包裕弟.转动喷嘴膨胀机的试验研究.浙江大学学报.1984,3(18):52-54.
    [38]刘海鑫,张朝涵.旋转式热分离机振荡管内热力过程的理论分析.深冷技术,2004,1:8-12.
    [39]张朝涵,周国勇.提高旋转式热分离机热力性能的实验研究.低温与超导,2002,30(4):54-58.
    [40]Shao J,Bao Y D,Shen Y N etc.Experimental Investigation of an new type expander.Advances in Cryogenic Engineering,1986,31.
    [41]Shao J,Shen Y N,Feng Y P etc.Thermodynamic analysis and experimental study on petroleum gas separation system incorporating RJE.Proceeding of ICESR,1986,9.
    [42]Shao J,Gao J,Feng Y etc.Experimental study of influence of transient performance in pressure plus tubes on isentropic efficiency of RJE ICEC 1986.Berlin-West.
    [43]邵件,沈永年,冯仰浦等.静止喷嘴膨胀机(SJE)振荡特性研究.浙江大学学报,1985,19(5):23-30.
    [44]邹久鹏,刘学武,陈淑花.削弱振荡管内反射激波能量的实验研究.低温工程,2001,3:48-53.
    [45]刘伟,冀晓辉.气波制冷等熵效率的影响因素及评价.辽阳石油化工高等专科学校学报,2001,4:402-431.
    [46]方曜奇,胡志敏.振荡管结构对热分离机制冷的影响.流体工程,1987,17(3):15-18.
    [47]李学来,方曜奇.气波制冷机振荡管外强化换热的实验研究.制冷,1996,4:7-9.
    [48]李学来.振荡管管壁轴向导热的实验研究.大连理工大学学报,1996,36(1):37-40.
    [49]李学来.振荡管管壁轴向传热的研究:(博士学位论文).大连:大连理工大学,1996.
    [50]朱彻,刘润杰,李洪安.气波制冷技术在天然气脱水净化工程中的应用.制冷,1985,50(1):10-15.
    [51]方曜奇.第四届全国激波管与激波学术会议论文集,1987:57-61.
    [52]方曜奇.第七届全国激波管与激波学术会论文集,1995:85-87.
    [53]胡大鹏.静止式气波制冷机的研制:(硕士学位论文).大连:大连理工大学,1989.
    [54]胡大鹏.第四届高校化机专业教学科研交流会论文,1991:152-158.
    [55]李力.气波制冷机截面突扩管内流动的数值模拟:(硕士学位论文).大连:大连理工大学,1994.
    [56]Fang Y Q,Hu D P.Proc of the 10th Int Heat Transfer Conf,Bmighton U K,1994:54-56.
    [57]Fang Y Q.Shock Wave Proceedings,Sendai,Japan,1991:1335-1338.
    [58]梁世彬,方曜奇.利用低温技术进行胎面胶细粉碎的实验研究.制冷学报,1995,3:27-29.
    [59]梁世彬,方曜奇.利用低温技术进行物料细粉碎的实验研究.制冷学报,1996,1:20-22.
    [60]刘润杰.气波制冷机转速与动态压力的同步测量.气动实验与测量控制,1995,2:79-82.
    [61]刘伟,胡大鹏.气波制冷机研究现状及工业应用.辽阳石油化工高等专科学校学报,2002,3:182-231.
    [62]孙以岑.利用余压的节能技术-用热分离机回收氨厂放空气的探讨.石油化工设备,1986,15(6):13-18.
    [63]朱彻,李洪安,邹久朋等.一项新兴的天然气脱水净化技术.天然气工业,1995,15(5):57-61.
    [64]代瑞国,刘学武.旋射流型式气波制冷机实验研究.安徽化工,2003,6:45-47.
    [65]刘学武,陈淑花.新型气波制冷机的节能效果.节能和环保,2001,9:34-35.
    [66]刘学武,陈淑花.热分离器现状分析与发展方向.制冷,2002,21(3):23-27.
    [67]李学来,方曜奇,朱彻.气波制冷机振荡管外强化换热的试验研究.制冷,1996,4:7-9.
    [68]刘学武,邹久朋,武君等.气波制冷机分配器出口参数的计算求解.制冷,2003,22(3):60-63.
    [69]刘学武,金良安,李志义,胡大鹏.气波管内波系影响因素的实验研究与数值模拟.化工 学报,2004,55(2):177-181.
    [70]刘学武,邹久朋,陈淑花,金良安.气波管末端边界条件对制冷效率的影响研究.流体机械,2001,29(11):55-57.
    [71]代玉强,胡大鹏,刘伟,朱彻.含有复合阻尼结构的压力波制冷机振荡管内流动分析.低温与特气,2003,21(2):23-25.
    [72]李学来,方唯奇,朱彻,刘润杰.振荡管管壁轴向导热的试验研究.大连理工大学学报,1996,36(1):37-40.
    [73]徐烈等.脉管式气波制冷机的实验研究.低温工程,1999,4:136-140.
    [74]李兆慈等.脉管式制冷机与气波制冷机的耦合研究.低温与超导,2000,28(2):1-5.
    [75]熊炜,徐烈,张涛,赵兰萍.脉管制冷与气波制冷之比较.低温工程,1998,5:45-51.
    [76]李兆慈,徐烈,张存泉,孙恒,赵兰萍.气波制冷机等熵效率影响因素的实验研究.低温工程,2000,5:50-54.
    [77]李兆慈,徐烈.气波制冷机的研究与应用.低温工程,2002,2:22-27.
    [78]李兆慈,徐烈,赵兰萍,熊炜,郭文,孙恒.脉管制冷与气波制冷藕合的研究.低温与超导,2000,28(2):1-5
    [79]李兆慈.脉管式气波制冷机机耦合特性的研究:(博士学位论文).上海:上海交通大学,2001.
    [80]李学来,朱彻.振荡管复合阻尼陷波.化工学报,2001,52(5):379-380.
    [81]李学来.振荡管冷端传热分析.制冷,1998,1:28-31.
    [82]李学来,黄齐飞.热分离技术与压力能的回收利用.福建能源开发与节约,2001,3:57-60
    [83]李学来,朱彻,方曜奇.振荡管最佳隔热位置.化工学报,2001,52(9):757-760.
    [84]李学来.压力波制冷机工作管开口端处的流动分析.福州大学学报(自然科学版),第2001,29(5):108-110.
    [85]黄齐非,李学来.热分离技术发展现状和应用前景.福建化工,2001,2:10-14.
    [86]李学来,黄齐飞,朱彻.反射激波的吸收对热分离器性能的影响.化工学报,2003,54(2):170-175.
    [87]黄齐飞,李学来.热分离技术发展现状与应用前景.福建化工,2001,2:10-14.
    [88]李学来.压力波制冷机的研究及工业开发.制冷,1997,60(3):6-12.
    [89]朱雪琴.气波制冷机振荡管最佳管长的研究.无锡轻工业学院学报,1993,2:135-140.
    [90]顾觊.热分离机的结构及应用探讨.化工装备技术,1990,11(1):24-29.
    [91]Rennaz M C.New French Gas Cooler Recovers 120 bpd Gasoline.World Oil,1973,8:57-59.
    [92]于伟.利用多孔板阻尼提高热分离器效率.青年力学协会第二届年会文流论文,1992:111-134.
    [93]YuWei(于伟).Study on the factors effect on refrigeration efficiency of thermal separator:(学位论文).Beijing:Institute of Mechanics,Chinese Academy of Sciences,1988.
    [94]俞鸿儒.热分离器内的流动.大连工学院学报,1984,23(4):1-7.
    [95]刘伟,冀晓辉.新型气波制冷机的结构设计及性能研究.流体机械,2004,32(4):63-65.
    [96]李学来.两种管外传热型式对振荡管性能的影响.化工学报,2000,51(1):12-16.
    [97]李学来.压力波制冷机的研究及工业开发.制冷,1997,60(3):6-12.
    [98]高明.激波能量的改变对制冷效率及管内波系的影响研究.制冷,2004,23(1):19-22.
    [99]李学来,郭荣伟.振荡管最佳射流激励频率钳制效应.南京航空航天大学学报,1998,30(6):606-6 10.
    [100]李学来,黄齐飞,朱彻.有关因素对振荡管最佳射流激励频率的影响.化工学报,2002,53(2):194-198.
    [101]冀晓辉,刘伟.振荡管结构对气波制冷机制冷性能影响的研究.制冷学报,2004,3:19-21.
    [102]代玉强.压力交换制冷机性能分析:硕士学位论文.大连:大连理工大学,2003.
    [103]刘虎.压力交换制冷机结构参数优化研究:硕士学位论文.大连:大连理工大学,2006.
    [104]丁美霞.压力交换制冷机参数对性能的影响:硕士学位论文.大连:大连理工大学,2007.
    [105]Sibulkon M,Vrebalovich T.J Aero sic,1958,25:465-466.
    [106]Chewter W.J Fluid Mech,1963,18(2):44-46.
    [107]Temkin S.The physics Fluids,1968,11(5):960-963.
    [108]Hrocher E,Maresca C,Bournay M H.J Fluid Mech,1970,43(2):369-384.
    [109]Jakob Keller.J Fluid Mech,1976,77(2):279-304.
    [110]Liang S B,Li X L,Ma H B.Thermoacoustic power effect on the refrigeration performance of thermal separators.Cryogenics,2003,43:493-500.
    [111]黄公明.脉动管中波的形成、反射与相交.低温工程,1987,2:16-20.
    [112]刘光宗,方航安.压力谐振管的数值计算.应用力学学报,1988,15(2):53-64.
    [113]尹荣辅.川中油气田轻烃资源回收的问题和讨论.石油和天然气化工,1994,24(1):19-22.
    [114]蒋洪,朱聪.轻烃回收技术的现状及发展方向.石油规划设计,2000,11(2):15-16.
    [115]俞鸿儒.用于低温风洞的新颖制冷方法.力学学报,1999,3l(6):645-651.
    [116]胡大鹏.SB416航空发动机高空模拟试验气波制冷系统研究与开发,2003.
    [117]刘伟.静止式气波制冷机振荡特性研究:(硕士学位论文).大连:大连理工大学,2003.
    [118]赵承庆,姜毅.气体射流动力学.北京:北京理工大学出版社,1998.
    [119]董志勇.射流力学.北京:科学出版社,2005.
    [120]原田正一,尾崎省太郎编.射流工程学.北京:科学出版社,1977.
    [121]F(o|¨)rthmann E.(U|¨)ber turvulente strahlausbreiteng.Ing.Arch.5.42(1934);NASA TM 789(1936).
    [122]Reichardt H.Gesetzm(a|¨)βigkeiten der treien turbulenz.VDI-Forschungsheft,1942.
    [123]Albertson M L,Dai Y B,Tenson R A,Rouse H.Diffusion of submerged jets.ASCE,1948,74(10):1571.
    [124]Olson R E,Miller D P.Aewolynamic studies of free and attached jet.Fluid amplification series,1963,6.
    [125]刘应书.弱欠膨胀超音速自由流流场分析.西安冶金建筑学院学报,1986,46(2):89-101.
    [126]Brown G B.On vortex motion in gaseous jets and the origin of their sensitivity to sound.Proc.Phys Soc,1935,47:702-732.
    [127]Crow S C,Champagne F H.Orderly structure in jet turbulence.J Fluid Mech.,1971,43:547-591.
    [128]Ricou F P,Spalding D B.Measurements of entrainment by axisymmetrical turbulent jets.J Fluid Mech,1961,11:21-32.
    [129]Bourque C,Newman B G.Reattachment of a two-dimensional incompressible jet to an adjacent flat plate.Aeronaut Q,1960,11:201-232.
    [130]McRee D I,Moses H L.The effect of aspect ratio and offset ratio on nozzle flow and jet reattachment.In:Advances in Fluids(ed by Brown F T).ASME Press,New York,1967:142-161.
    [131]Perry C C.Two-dimensional jet reattachment:[PhD dissertation].Michigan:University of Michigan,1967.
    [132]Rajaratnam N,Subramanya N.Plane turbulent reattachment wall jets.ASCE J Hydraulic Div,1968,94:95-112.
    [133]Ayukawa K,Shakouchi T.Analysis of a jet attaching to an offset parallel plate(1st Report,Oscillation of a jet).Bull JSME,1974,19:395-401.
    [134] Hoch J, Jiji L M. Two-dimensional turbulent offset jet-boundary interaction. Trans ASME J Fluids Eng, 1981,103: 154-161.
    
    [135] Nozaki T, Hatta K, Nakashima M, Matsumura H. Reattachment flow issuing from a finite width nozzle. Bull JSME, 1979,22: 340-347.
    
    [136] Nozaki T, Hatta K, Sato N, Matsumura H. Reattachment flowissuing from a finite width nozzle(Report 2. Effects of initial turbulence intensity).Bull JSME, 1981,24: 363-369.
    
    [137] Lund T S. Augmented thrust and mass flow associated with two-dimensional jet reattachment. AIAA J, 1986,24:1964-1970.
    
    [138] Pelfrey J R R, Liburdy J A. Effect of curvature on the turbulence of a two-dimensional jet. Exp Fluids, 1986, 4:143-149.
    
    [139] Pelfrey J R R, Liburdy J A, Mean flow characteristics of a turbulent offset jet. Trans ASME J Fluids Eng, 1986,108:82-88.
    
    [140] Kim D S, Yoon S H. Flow and heat transfer measurements of a wall attaching offset jet. Int. J Heat Mass Transfer, 1996, 39(14):2907-2913.
    
    [141] Lai C S, Lu D. Effect of wall inclination on the mean flow and turbulence characteristics in a two-dimensional wall jet. Int J Heat and Fluid Flow, 1996, 17:377-385.
    
    [142] Nasr A, Lai J C S. A turbulent plane offset jet with small offset ratio. Experiments in Fluids, 1998,24:47-57.
    
    [143] Song H B, Yoon S H, Lee D H. Flow and heat transfer characteristics of a two-dimensional oblique wall attaching offset jet. International Journal of Heat and Mass Transfer, 2000, 43:2395-2404.
    
    [144] Allery C, Guerin S, Hamdouni A, Sakout A. Experimental and numerical POD study of the Coanda effect used to reduce self-sustained tones . Mechanics Research Communications, 2004, 31:105 - 120.
    
    [145] Levin S G, Manion F M. Jet attachment distance as a function of adjacent wall offset and angle. H D L TR-1087,1962.
    
    [146] Sher N C. Jet attachment and switching in bistable fluid amplifier. ASME paper 64-FE-19,1963.
    
    [147] Brown F T. A combined analytical and experimental approach to the development of fluid jet amplifiers. Trans ASME, 1964,86:175.
    
    [148] Perry C C. Two dimensional jet attachment. Advance in fluidics. ASME, 1967:205.
    
    [149] Turkowski M. Progress towards the optimisation of a mechanical oscillator flowmeter. Flow Measurement and Instrumentation, 2003,14:13 - 21.
    
    [150] Gebhard U, Hein H, Just E, Ruther P. Combination of a Fluidic Micro-Oscillator and Micro-Actuatorin LIGA-Technique for Medical Application. TRANSDUCERS 97, lnternafional Conference on SoliOCStafe Sensors and Acfuafom, Chicago, 1997:16-19.
    [151]Zipser L,Wachter F,Franke H.Acoustic gas sensors using airborne sound properties.Sensors and Actuators B,2000,68:162-167.
    [152]Eliphas Wagner Simoes,Rogerio Furlan,Roberto Eduardo Bruzetti Leminski,Mario Ricardo Gongora-Rubio,Marcos Tadeu Pereira,Nilton Itiro Morimoto,Jorge J.Santiago Aviles.Microfluidic oscillator for gas flow control and measurement.Flow Measurement and Instrumentation 16(2005) 7-12
    [153]Furlan R,da Silva M P,Simoes E W,Leminski R E B etc.Visualization of internal liquid flow interactions in meso planar structures.Flow Measurement and Instrumentation,2006,17:298-302.
    [154]Yang J T,Chen C K,Tsai K J etc.A novel fluidic oscillator incorporating step-shaped attachment walls.Sensors and Actuators A,2007,135:476-483.
    [155]Wang H,Priestman S B,Beck S B M,Boucher R F.Development of fluidic flowmeters for nonitoering crude oil production.Flow Meas Instrum,1996,7(2):91-98.
    [156]Tesai V,Hung C H,William B Z.No-moving-part hybrid-synthetic jet actuator.Sensors and actuators A(PHYSICS),2006,125:159-169..
    [157]Morris G J,Jurewicz J T,Palmer G M.Gas-Solid Flow in a Fluidically Oscillating Jet.J Fluids Engineering,1992,114:362-366.
    [158]Koso T,Kawaguchi S,Hojo M,Hayami H.Flow mechanism of a self-induced oscillating jet from a Flip-flop jet nozzle.The fifth JSME-KSME Fluid engineering conference,Nagoya,Japan,2002:17-21.
    [159]Wada T,and Shimizu A.Mechanism and Design of Sonic Oscillator.Fluidic Q,1976,4:1~33.
    [160]#12
    [161]Hayashi S,Kamaya S.A study on mechanism of oscillation in sonic oscillator(1st report,mathematical of oscillators operated by water).Bulletin of the JSME,1975,18(123):1035-1043.
    [162]Hayashi S,Kamaya S.A study on mechanism of oscillation in sonic oscillator(2st report,mathematical of oscillators operated by air).Bulletin of the JSME,1975,18(122):841-849.
    [163]Yassour Y,Stricker J,Wolfshtein M.Heat transfer from a small pulsating jet.Proceedings of the Eighth International Heat Transfer Conference,San Francisco,USA,1986,3:1183-1186.
    [164]Tiavniek Z,Tesar V.Annular synthetic jet used for impinging flow mass-transfer.Int J Heat Mass Transfer,2003,46:3291-3297.
    [165]Tesar V,Tiavnicek Z.Pulsating and synthetic impinging jets forhigh heat and mass transfer rates.Proceedings of the Seventh BiennialASME Conference on Engineering Systems Design and Analysis ESDA,Manchester UK,Paper ESDA2004-58236,2004.
    [166]陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001.
    [167]苏铭德,黄素逸.计算流体力学基础.北京:清华大学出版社,1997.
    [168]张涵信,沈孟育.计算流体力学-查分方法的原理和应用.北京:国防工业出版社,2003.
    [169]李志印,熊小辉,吴家鸣.计算流体力学常用数值方法简介.广东造船,2004,3:5-8.
    [170]陈作斌主编.计算流体力学及应用.北京:国防工业出版社,2003.
    [171]Lee K D.3-D transonic flow computations using grid systems with block structure.AIAA 81-0998,1981.
    [172]Rai M M.An implicit,conservative,zonal-boundary scheme for Euler equations calculations.AIAA 85-0488,1985.
    [173]Steger J L,Dougherty F C,Benek J A.A chimera grid scheme.Applied mechanics,bioengineering and fluids engineering conference,Houston,Texas,1983:10-22,1983.
    [174]Lohner R.Some useful data structures for generation of unstructured grids.Comm Appl Num Math,1998,4:123-135.
    [175]Thompson J F,Warsi Z U A.Aspects of numerical grid generation:current and art.AIAA 93-3539,1993.
    [176]Lohner R,Parikh P.Generation of three dimensional unstructured grid by the advancing front method.Int J for Num Meth In Fluids,1998.
    [177]钱翼谡.空气动力学.北京:北京航空航天大学出版社,2004.
    [178]张远君等.流体力学大全.北京:北京航空航天大学出版社,1991.
    [179]王承尧,王正华.计算流体力学及并行计算.长沙:国防科技大学出版社,2000.
    [180]肖志祥.复杂流动Navier-Stokes方程数值模拟及湍流模型应用研究.西北工业大学:博士论文,2003.
    [181]van Leer,B.,1982.Flux-vector splitting for the Euler equations.Lecture Notes in Phys.170,507-512.
    [182]Anderson W K,Thomas J L.van Leer B.A comparison of finite volume flux vector spilitting for the Euler equations.AIAA paper 85-0122,1985.
    [183]吴子牛.计算流体力学基本原理.科学出版社.2001
    [184]张兆顺,崔桂香,许春晓.湍流理论和模拟.清华大学出版社,2005.
    [185]张兆顺.湍流.国防工业出版社,2002.
    [186]陈义良.湍流计算模型.中国科技大学出版社,1991.
    [187]梁在朝.工程湍流.华中理工大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700