静止式气波制冷机振荡与制冷特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气波制冷机作为一种有效利用气体压力能的设备而备受瞩目。静止式气波制冷机是利用带压气体本身的压力能,通过振荡器把带压气体转变成稳定的振荡射流交替射入接受管,利用激波和膨胀波的运动,实现冷热分离,从而达到降温制冷的目的。其突出的优点是无需额外的能量输入且机器没有运动部件。本文的研究对象是以音波振荡器和正反馈振荡器作为振荡源的双管式静止气波制冷机。本文的主要工作与结论包括以下几方面的内容:
     1.研究了超音速音波振荡器和正反馈振荡器中射流的流动过程和振荡机理。本文建立了音波振荡器和正反馈振荡器的二维模型,研究了超音速射流在振荡器中附壁、切换和振荡的过程。研究发现,射流在音波振荡器中近似以“方波”的形态持续振荡,而在正反馈振荡器中以“正弦波”的形态振荡。在射流附壁时,在分流劈之前的主射流区内部有膨胀波与压缩波交替反射传播。在振荡过程中,控制管中气体的压力和动量共同对射流的切换起作用。控制口的压差随着射流振荡的过程,呈现周期性的变化,压差作用于控制管内气体时间的长短决定了控制管内气体速度的大小。流体本身的特性,如粘性,也影响振荡的切换周期。
     本文分析了入口喷嘴、劈距、出口通道等不同的几何参数对振荡器内射流振荡和流动的影响。减小劈距可以减少因卷吸而倒流进入音波振荡器的气体的量,从而减少射流的能量损失,提高出口压力恢复;而减小出口通道的长度由于降低了射流的沿程损失,同样有助于提高出口压力恢复。位差、出口通道宽度、分流劈角度、分流劈形状等都对振荡器的振荡性能有不同的影响。
     2.研究了接受管中气体和波系的运动与传播过程。入射气体在接受管中只能运动相对较小的一段距离。气体接触面开始运动的速度较快,之后为减速过程直到最大距离处,持续一段时间后以较快的速度反向排出。研究了不同压比下波在接受管中的传播过程。激波经过后,气体的压力、密度和温度都会有明显的升高。波在长直接受管的封闭端有明显的反射现象。研究了不同结构和形状的激波吸收器。结果表明收缩—突扩结构的接受管可以较明显的消除反射波的影响。研究发现,接受管结构的改变,导致气体的压力特性和相位与普通长直管不同,可以利用收缩—突扩结构的接受管起到调相作用。正反馈振荡器作用的高频射流,振荡射流的平均压力呈现周期性变化。
     3.研究了气波制冷机的不同的操作参数和结构参数对制冷特性的影响。结果表明,提高气波制冷机的入口压力,可以增大出口气体的温降,入口温度的提高也会导致温降的增大。射流振荡频率与接受管长、入口压力等有匹配关系,最高温降对应于一个最佳射流频率。振荡器与接受管之间的排气间隙的大小影响气波制冷机的制冷特性,排气间隙的大小有一最佳值。高频情况下的正反馈振荡器作为振荡源,射流对接受管内气体的做功频率较高,相对于较低频率的音波振荡器,可以得到更高的温降。
Energy source and environmental problem are becoming more and more important for the whole society, and the gas wave refrigerator has been the focus for the effective use of the pressure energy. The static gas wave refrigerator can separate the gas into hot and cold part by the motion of the shock wave and expanding wave in an oscillator using the pressure energy of the gas. So the refrigeration can be realized. The prominent advantage of this facility is that it doesn't need extra energy supply and there is no moving part. In this paper, the two-tube static gas wave refrigerator generated by a sonic oscillator and a feedback oscillator is studied. Pressure gas is converted into oscillating gas and injected into the receiving tube by using a sonic oscillator and a feedback oscillator. The work and conclusion of this study are as follows:
     1. The supersonic oscillation process and principle in the sonic oscillator and feedback oscillator are studied. A two dimension computational model is applied to simulate the attatchment, switch, oscillation and pressure wave in the sonic oscillator and feedback oscillator. The jet flow oscillates as a "square wave" in a sonic oscillator and "sine wave" in a feedback oscillator. As the jet flow is attaching to the wall, there is expanding wave and compressing wave in the jet flow zone. During the oscillation, both the pressure wave and the gas momentum act on the switch of the jet flow. The pressure difference between the controlling ports is also periodic as the jet flow oscillates, and the time the pressure difference acts on the gas in the controlling pipe determines the velocity of the gas. At the same time, the viscosity of the gas affects the period of the oscillation.
     The oscillation and flow in the oscillator is analyzed under different parameters of nozzle, splinter distance, outlet tunnel and so on. If the splinter distance is reduced, the gas involved into the oscillator also decreases, and so the energy loss can be reduced, so the outlet pressure recovery increases. Minimizing the length of the outlet tunnel can also be helpful for increasing the pressure recovery. At the same time, potential difference, the width of the outlet tunnel, degree of the splinter, shape of the splinter and so on can also contribute to the pressure recovery, and general consideration should be taken in designing and applications.
     2. The gas and wave's motion and propagation in the receiving tube are studied. Fresh gas in the receiving tube can only move for a short distance, and the contact face accelerates at first, then keeps for a while, and then exhausts rapidly. The wave moves in a certain speed and under different pressure ratio, the speed also varies. As the wave sweeps, the pressure, density and temperature of the gas rise rapidly. There is obvious reflection as the wave arrives at the close end of the straight long pipe. Different types of wave absorber are studied. The structure of shrink-expand in the close end can absorb the reflected wave. For the different oscillation of the jet flow and the different structure of the receiving tube, the pressure wave in the receiving tube is also different. So the phase can be adjusted by using the shrink-expand wave absorber. The average pressure of high frequency generated by a feedback oscillator is periodic.
     3. By the experimental study of the two-tube static gas wave refrigerator generated by a sonic oscillator and a feedback oscillator, influence of operating parameters and structure parameters is analyzed. Matching the other parameters, as the inlet pressure rises, the temperature drop also rises. The temperature drop also rises as the inlet temperature rises. Matching with the oscillation frequency, the length of the receiving tube, diameter of the nozzle and the pressure ratio, there is a best injecting frequency. The gap between the oscillator and the receiving tube also influents the refrigeration. There is also a best exhausting gap. If the gas is gernated by a high frequency oscillator- a feedback oscillator, as the frequency to drive the gas in the receiving tube is also high, so higher temperature drop can be realized as to the sonic oscillator.
引文
[1]间宫林荣.石油匕石油化学.1977,21(3):58.
    [2]间宫林荣.化学装置.1978,20(2):52.
    [3]朱彻,刘润杰,李洪安.气波制冷技术在天然气脱水净化工程中的应用.制冷.1995,50(1):10-15.
    [4]大连理工大学气波制冷技术研究所,大连气波制冷研究推广中心。气波制冷技术与装置。1990.
    [5]朱彻,李洪安,邹久鹏等.一项新兴的天然气脱水净化技术。天然气工业,1995,15(5):57-61.
    [6]龙泽智.透平膨胀机在天然气中回收轻烃的应用及其技术进展。天然气工业.1995,15(1):64-65.
    [7]张朝涵.一种新型制冷机械—旋转式热分离机。低温工程,1993,1:32-35.
    [8]黄志达,黄钟岳,方曜奇.新型节能装置—透平式热分离机的研究.大连工学院学报.1983,22(3):115-119.
    [9]尹洪超,马春燕,邱庆刚等.滩海边远油气井放空天然气深冷液化回收利用技术方案研究.制冷学报,1998,(3):49-53.
    [10]俞鸿儒.利用热分离器产生低温实验气流,自然科学进展,1998,8(3):377-381.
    [11]李学来.压力波制冷机的研究与工业开发.制冷,1997,60(3):6-12.
    [12]俞鸿儒.用于低温风洞的新颖制冷方法.力学学报,1999,31(6):645-651.
    [13]张朝涵.从石油天然气中回收轻烃的新工艺—旋转式热分离器的实际应用.第三届全国低温工程学术会议论文集,低温工程专刊,北京,1993:217-220.
    [14]梁世斌,方曜奇.利用低温技术进行物料细粉碎的实验研究.制冷学报1995(3):27-29.
    [15]梁世斌,方曜奇.利用低温技术进行胎面胶细粉碎的实验研究.制冷学报,1996(1):20-22
    [16]Sibulkon M and Vrebalovich T.Hattman effect in the tube.J.Aero.Sic.1958,25:465-466.
    [17]Vrebalovich T.Bull.Anastomosis with EEA~(TM) stapler following Hartmann procedure Am.Phys soc.1958,3:29.
    [18]W.Chewter.A numerical and mathematical method of the flow systems.J.Fluid Mech.1963,Vol.18,part 2,44-46.
    [19]Temkin S.Turbulent Hartmann flow in cylindrical ducts The physics Fluids.1968,11(5):960-963.
    [20]ALAIN T,DANIED M.Stability analysis of the mechanism of jet attachment to walls.J.International Journal of Heat and Mass Transfer,2002,45(13):2769-2775
    [21]M.Sibulkin.Analysis of the thermal effect of the jet flow in the motor.J.Aero.Sci.1963,Vol 14,695-703.
    [22]J.Keller.Nonlinear analysis for the fluids of uniform depth.J.Fluid Mech.1976,Vol 77,part 2,279-304.
    [23]M.Cotterlaz-Rennaz.The impending oil.World Oil.Nov,1971:60-61.
    [24]M.Cotterlaz-Rennaz.The impending oil.World Oil.Aug,1973:57-59.
    [25]D.Christian.J.C.Amannde,C.Viltard.Local analysis for the equipment of the current situation.World Oil.July,1982:105-107.
    [26]方曜奇等.第四届全国激波管与激波学术会论文集.1987:67-71.
    [27]黄志达,黄钟岳,方曜奇.新型节能装置-透平式热分离机的研究.大连工学院学报.1983,22(3):115-119.
    [28]黄志达,唐山椒.RFT-2000型透平式热分离机原理及应用.大连工学院学报.1985,24(4):123-124.
    [29]方曜奇等.接受管结构对热分离机制冷的影响.流体工程.1987,17(3):15-18.
    [30]邵件,包裕弟.转动喷嘴膨胀机的实验研究.浙江大学学报.1984,3(18):52-54.
    [31]邵件,沈永年.转动式热分离机转速与变压管长度匹配的研究.浙江大学学报.1988,22(5):114-119.
    [32]包裕弟,沈永年.回收气体压力能的转动喷嘴膨胀机的实验研究.能源工程.1982,2:27-30.
    [33]Zhimin Hu.Energy recovery system.US patent.No 5412950.May 9 1995.
    [34]E.Brocher,C.Maresca and M.H.Bournay.J.Fluid Mech.1970,Vol 43,part2,369-384.
    [35]Nalim,M.R.,1995,"Preliminary Assessment of Combustion Modes for Internal Combustion Wave Rotors," AIAA Paper 95-2801.Also NASA-TM 107000.
    [36]Wilson,J.,Paxson,D.E.,1996,"Wave Rotor Optimization for Gas Turbine Topping Cycles," Journal of Propulsion and Power,12,No.4,pp.778-785.Also SAE Paper 951411,and NASA TM-106951.
    [37]Hoxie,S.S,Lear,W.E,and Micklow,G.J,1998,"A CFDStudy of Wave Rotor Losses Due to the Gradual Opening of Rotor Passage Inlets," AIAA Paper 98-3253.
    [38]Nalim,M.R.,2002,"Wave Rotor Detonation Engine," US Patent 6460342.
    [39]Snyder,P,Alparslan,B,and Nalim,M.R,2002,"Wave Rotor Combustor Test Rig Preliminary Design," 2004 International Mechanical Engineering Conference,ASME Paper IMECE2004- 61795.
    [40]Okamoto,K,Nagashima,T,2003,"A Simple Numerical Approach of Micro Wave Rotor Gasdynamic Design," 16th International Symposium on Airbreathing Engines,Paper ISABE-2003-1213.
    [41]Okamoto,K,Nagashima,T,and Yamaguchi,K,2001,"Rotor-Wall Clearance Effects upon Wave Rotor Passage Flow," 15th International Symposium on Airbreathing Engines,Paper ISABE-2001-1222.
    [42]Okamoto,K,Nagashima,T,and Yamaguchi,K,2003,"Introductory Investigation of Micro Wave Rotor," 2003 International Gas Turbine Congress,ASME Paper IGTCO3-FR-302,Japan.
    [43]Akbari,P,M(u|¨)ller,N.,2003,"Preliminary Design Procedure for Gas Turbine Topping Reverse-Flow Wave Rotors,"2003 International Gas Turbine Congress,ASME Paper IGTC03-FR-301.
    [44]Akbari,P,M(u|¨)ller,N,2003,"Gas Dynamic Design Analyses of Charging Zone for Reverse-Flow Pressure Wave Superchargers," 2003 ASME Spring Technical Conference,ASME Paper ICES2003-690.
    [45]徐烈,熊炜,孙恒.脉管式气波制冷的实验研究,低温工程,1999,4:136.
    [46]熊炜,徐烈,张涛.脉管制冷与气波之比较,低温工程,1998,5:45-48.
    [47]李兆慈,徐烈,赵兰萍。脉管制冷与气波制冷耦合的研究。低温与超导.2000(2)1-5。
    [48]David M,Marechal J C,Simon Y and Gupin C.Theory flow in orifice pulse tube refrigerator.Cryogenics,1993,33,154-159.
    [49]De Boer P C T.Pressure heat pumping in the orifice pulse-tube refrigerator.Adv.Cry.Eng,1996,41:1471-1478.
    [50]Kittel P.Ideal orifice pulse tube refrigerator performance.Cryogenics,1996,36:849.
    [51]李兆慈.脉管式气波制冷机耦合特性的研究.上海交通大学博士学位论文.2001.
    [52]徐烈等.脉管式气波制冷机的实验研究.低温工程.1999.4:136-140.
    [53]U.Gebhard,H.Hein,U.Schmidt.Numerical Investigation of Fluidic Micro-Oscillators.J.Micromech.Microeng.1996,p115-117.
    [54]U.Gebhrad,R.Gunther,E.Just,P.Ruther.Fluidic Driven Linear Motor Fabricated by the LIGA-Process,Proc.Microsys.Tech.MST96,Potsdam,Germany,1996,p.609-614.
    [55]J.T.Yang,W.Z.Lin,K.J.Tsai,K.J.Huang,Fluidic oscillator,US Patent No.10/769,627(January 2005).
    [56]K.T.Chang,R.F.Huang,Develop and characterization of jet-injection Veegutter,J.Mech.20(2004) 57-63.
    [57]高纪念,马建国,蒋燕等.液压双稳射流激振器的理论分析与仿真.石油机械1999,第27卷,第6期34-36.
    [58]P.H.Wright,The Coanda Meter-a fluidic digital gas flowmeter,J.Phys.E 13(1980)433-436.
    [59]R.F.Boucher,Minimum flow optimization of fluidic flowmeters,Meas.Sci.Technol.6(1995) 872-879.
    [60]C.K.Chen,L.Wang,J.T.Yang,L.T.Chen,Experimental and computational analysis of periodic flow structure in oscillatory gas flow meters,J.Mech.22(2006) 137-144.
    [61]H.Wang,G.H.Priestman,S.B.M.Beck,R.F.Boucher,Development of fluidic flowmeters for monitoring crude oil production,Flow Meas.Instrum.7(1996) 91-101.
    [62]H.Wang,S.B.M.Beck,G.H.Priestman,R.F.Boucher,Fluidic pressure pulse transmitting flowmeter,Chem.Eng.Res.Des.75(1997) 381-391.
    [63] H. Wang, S. B. M. Beck, G. H. Priestman, R. F. Boucher, A Remote measuring flow meter for petroleum and other industrial applications, Meas. Sci. Technol. 9 (1998) 779-789.
    
    [64] U. Gebhard, H. Hein, U. Schmidt, Numerical investigation of fluidic micro-oscillators, J. Micromech. Microeng. 6 (1996) 115-117.
    
    [65] U. Gebhard, H. Hein, E. Just, P. Ruther, Combination of a fluidic microoscillator and micro-actuator in LIGA—technique for medical application, in: Proceedings of the International Conference on Solid-state Sensors and Actuators, Chicago, June, 1997, pp. 16 - 19.
    
    [66] M. K. Jeon, J. H. Kim, J. Noh, S.H. Kim, H.G. Park, S.I. Woo, Design and characterization of a passive recycle micromixer, J. Micromech. Microeng. 15 (2005) 346 - 350.
    
    [67] A. Groisman, M. Enzelberger, S. R. Quake, Microfluidic memory and control devices, Science 300 (2003) 955-958.
    
    [68] S. G. Mallinson, J. A. Reizes, G. Hong, An experimental and numerical study of synthetic jet flow, Aeronaut. J. 105 (1043) (2001) 41 - 49.
    
    [69] B. L. Smith, A. Glezer, Jet vectoring using synthetic jets, J. Fluid Mech. 458 (2002)1-34.
    
    [70] A. Glezer, M. Amitay, Synthetic jets, Annu. Rev. Fluid Mech. 34(2002) 503-529. V. Tesaˇr et al. / Sensors and Actuators A 125 (2006) 159 - 169
    
    [71] M. Amitay, A. Glezer, Controlled transients of flow reattachment over stalled airfoils, Int. J. Heat Fluid Flow 23 (2002) 690 - 699.
    
    [72] J. Tensi, I. Bou'e, F. Paill'e, G. Dury, Modification of the wake behind a circular cylinder by using synthetic jets, J. Visual. 5 (1) (2002) 37-44.
    
    [73] B. Raman, A. B. Cain, Innovative actuators for active flow and noise control, Proc. Inst. Mech. Eng. Part. G. J. Aerosp. Eng. 216 (6) (2002) 303-324.
    
    [74] V. Tesaˇr, K. Peszynski, No-moving-part fluidic circulation pumps, in: Proceedings of the XII ICMR Colloquium, Bydgoszcz, Poland, June, 2003, p. 191.
    
    [75] Z. Tr'avn'|ˇcek, V. Tesaˇr, Annular synthetic jet used for impinging flow mass-transfer, Int. J. Heat Mass Transfer 46 (2003) 3291 - 3297.
    
    [76] V. Tesaˇr, S. Zhong, Efficiency of synthetic jets generation, Trans. Aeronaut. Astronaut. Soc. Rep. China 35 (1) (2003) 45 - 53.
    
    [77] B. L. Smith, G. W. Swift, A comparison between synthetic jets and continuous jets, Exp. Fluids 34 (2003) 467 - 472.
    
    [78] M. Watson, A.J. Jaworski, N. J. Wood, The development of synthetic jets for enhanced control of separated flows, Proceedings of the 33rd AIAA Fluid Dynamics Conference and Exhibition, AIAA Paper 2003-3716, Orlando, FL, June 2003.
    [79]S.Zhong,F.Millet,N.J.Wood,The behaviour of synthetic jets in a laminar boundary layer,in:Proceedings of the Seventh International Symposium on Fluid Control,Measurement,and Visualization,Sorrento,Italy,August,2003.
    [80]S.G.Mallinson,C.Y.Kwok,J.A.Reizes,Numerical simulation of micro-fabricated zero mass-flux jet actuators,Sens.Actuators A 105(2003) 229-236.
    [81]V.Tesa r,Z.Travn| cek,Pulsating and synthetic impinging jets for high heat and mass transfer rates,Proceedings of the Seventh Biennial ASME Conference on Engineering Systems Design and Analysis ESDA 2004,Paper ESDA2004-58236,Manchester,UK,July 2004.
    [82]Z.Tr avn|cek,V.Tesar,A.-B.Wang,Hybrid synthetic jet actuators- numerical and experimental studies,Sens.Actuators A:Phys.,in press.
    [83]傅新,王驰余等.射流流量计的仿真与试验研究.机械工程学报,2006,Vol42,No 7.
    [84]V.Tesa r,Pump or blower,in particular for transporting difficult-topump fluids-in Czech,Czechoslovak Certificate of Authorship No.192 082,April 1976.
    [85]V.Tesa r,Fluidic pump driven by alternating air flow,in:Proceedings of the PNEU-HIDRO' 81-Ⅳ.Colloquium on Pneumatics and Hydraulics,Gy" or,Hungary,September,1981.
    [86]V.Tesa r,Fluidic jet-type rectifier:experimental study of generated output pressure,J.Fluid Contr.Fluid.Quar.14(4)(1983).
    [87]V.Tesa r,Law governing entrainment of surrounding fluid during alternating inflow into and outflow from an orifice - in Czech,Application P086-84,Czechoslovak Patent Office,Prague,1984.
    [88]S.Havashi,Shizuoka.Analysis of Oscillation Mechanism in A Sonic Oscillator.FluidicsQ.1976,6.
    [89]Satoru HAYSHI and Shuji KAMATA,A Study on Mechanism of Oscillation in a sonic oscillations,Bulletin of the VOL 18 NO 123 1975.9.
    [90]屈天正一,浘崎省太郎.射流工程学,科学技术出版社.
    [91]F.T Brown.A Combined Analytical and Experimental approach to the development of fluid jet amplifiers.Journal of Basic Engineering.1964,6.
    [92]A Glezer,M G Allen,D J Coe,B k Smith,M A Trautman,J W Wiltse,Synthetic Jet Actuators and Applications Thereof US Patent 5,758,823(1998).
    [93]B L Smith,A Glezer.Jet vectoring using synthetic jets,J Fluid Mech.458(2002) 1-34.
    [94]A Glezer,M Amitay.Synthetic jets,Annu.Rev.Fluid Mech.34(2002) 503-529.
    [95]M.Benchiekh,J C Bera,M Michard,M Sunyach.Pulsed jet control of a short diffuser,C R Acad.Sci.Paris,Mecanique des fluids/Fluids Mechanics-Series IIB 328,2000,pp749-765.
    [96]M Amitay,A Glezer.Controlled transients of flow reattachment over stalled airfoils.Int J Heat Fluid Flow 23(2002) 690-669.
    [97]J Tensi,I Boue,F Paille,G Dury.Modification of the wake behind a circular cylinder by using synthetic jets.J Visual 5(1)(2002) 37-34.
    [98]M Watson,A J Jaworski,N J Wood.The development of synthetic jets for enhanced control of separated flows.Proceedings of the 33rd AIAA Fluid Dynamics Conference and Exhibition,AIAA Paper 2003-3716,Orlando,FL,June 2003.
    [99]S Zhong,F Millet,N J Wood.The behaviour of synthetic jets in a laminar boundary layer.Proceedings of the Seventh International Symposiam on Fluid Control,Measurement and Visualization,Sorrento,Italy,August,2003.
    [100]包裕弟,沈永年,张朝涵,冯仰浦,邵件.回收气体压力能的转动喷嘴膨胀机研究.能源工程,1981,2,No2.
    [101]冯其标.热分离器—新型制冷和气体分离装置。石油化工,1982,1 Nol,Vol1.
    [102]邵件,包裕弟,沈永年等.转动喷嘴膨胀机的实验研究.浙江大学学报,1984,18(3):25-34.
    [103]俞鸿儒.热分离器内的流动.大连工学院学报,1984,23(4):1-7.
    [104]黄公明.脉动管并非冲波管.低温工程.1987 No1.
    [105]黄公明.脉动管中波的形成.反射和相交.低温工程.1987 No1.
    [106]李力.气波制冷机接受管内不定常流数值模拟.[硕士学位论文].大连:大连理工大学.1994.
    [107]胡志敏,方曜奇等.刚直管在脉动压力作用下表面泵热的实验研究.全国化工机械专业教育指导委员会成立大会及第二届校际学术交流会.
    [108]熊炜.脉管式气波制冷机的实验研究.[硕士学位论文].上海:上海交通大学.1999.
    [109]李学来,方曜奇.气波制冷机振荡管外强化换热的实验研究.制冷,1996,4:7-9.
    [110]朱雪琴.气波制冷机接受管最佳管长的研究.无锡轻工业学院学报.1993,2:135-140.
    [111]李学来.管长对振荡管冷效应影响的实验研究.制冷,1996,2:15-1.
    [112]李学来.振荡管管壁轴向导热的实验研究.大连理工大学学报,1996,1:37-39.
    [113]李学来.振荡管冷端传热分析.制冷,1998,1:28-31。
    [114]邹久朋.消弱接受管内反射激波能量的实验研究.低温工程.2001,3:48-53.
    [115]李兆慈等.脉管式制冷机与其波制冷机的耦合.低温与超导.2000,28(2):1-5.
    [116]刘光宗、方杭安.压力谐振管的数值计算.应用力学学报.1988,15(2):53-64.
    [117]胡大鹏.第四届高校化机专业教学科研交流会论文.1991:378-381.
    [118]李学来.两种管外传热形式对振荡性能的影响.化工学报,2000,vol51:12-15。
    [119]J.P.霍尔曼著,马庆芳等译.传热学.人民教育出版社,北京:1979.
    [120]杨世铭.传热学.人们教育出版社.北京:1980.
    [121]Craft T J,et al.Impinging jet studies for turbulence model assessment-Ⅱ.An examination of the performance of four turbulence models.Int J Heat Mass Transfer,1993,36(10):2685-2697.
    [122]Heyerichs K,Pollard A.Heat transfer in separated and impinging turbulent flows.Int J Heat Mass Transfer,1996,39(12):2385-2400.
    [123]Parneix S,et al.Predictions of turbulent heat transfer in an axisymmetric jet impinging on a heated pedestal.ASME J Heat Transfer,1999 121(2):43-49.
    [124]Speziale C G,ThangamS.Analysis of an RNG based turbulence model for separated flows.Int J Engng Sci,1992,30(10) 1379-1388
    [125]Thangam S,Speziale C G.Turbulent flow past a backward-facing step:a critical evaluation of two-equation models.AIAA J,1992,30(5):1314-1320
    [126]王少平,曾扬兵,沈孟育等.用RNG~(κ-ε)模型数值模拟180°弯管内的湍流分离流动。力学学报,1996,28(3):257-262.
    [127]马铁犹等.计算流体力学。北京航空航天大学出版社。北京:1987.
    [128]李德元等.二维非定常流体力学数值计算.科学出版社,北京:1987.
    [129]黄敦.复杂激波的数值模拟.现代流体力学进展.1992,1:60-72.
    [130]童秉纲,张炳萱,崔而杰.非定常流与涡运动。国防工业出版社,北京:1993.
    [131]Van Leer B.Upwind-difference methods for aerodynamics problems governed by the Euler equations of gas dynamics.Lectures in Applied Mathematics,1985,(22):327-336.
    [132]黄国平,梁德旺.块结构的MUSCL算法求解三维进气道流场.空气动力学学报.Vol.18 No.22000.
    [143]陶文铨,数值传热学(第二版).西安交通大学出版社,2001.
    [134]Seaton,C.E.,Henein,H.and Glatz,M.,Atomization of Molten Metals Using the Coanda Effect,Pouder Metallurgy,30,No.1,pp.33-47,(1987).
    [135]Acar,M.,Turton,R.K.and Wray,G.R.,Air Flow in Yaru Texturing Nozzles,Transactions of the ASME,Journal of Engineering for Industry,109,pp197-202,(1987).
    [136]Shigeru Mastsuo,Toshiaki Setoguchi and Takemasa Kudo.Study on the Characteristics of Supersonic Coanda Jet,J.of Thermal Science,Vol7,No3.
    [137]孔珑.可压缩流体力学.第一版.北京:水力水电出版社,1989.120-170.
    [138]张连玉等.爆炸气体动力学基础.第一版.北京:北京工业学院出版社,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700