压力振荡管流动和热效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压力振荡管内气体的流动是在周期性激励引起的管内气体的波动过程。波动过程涉及复杂波系的运动,并伴随能量的传递,振荡管壁上显示出相应的冷热效应。研究压力振荡管问题的关键是激励条件下波动流场的特性。压力振荡管流动及热效应的研究,对于丰富气波机械理论和完善工业应用技术具有理论意义和实用价值。
     目前,压力振荡管流动和热效应的研究已受到众多研究者的关注,以压力振荡管为核心部件的设备已在气体膨胀制冷和压力交换领域得以有效利用。这类设备具有结构简单、运转平稳和适应气液两相流等优点。但也存在管内带液、设备庞大和振动剧烈等问题,相关研究缺少对管内流动和热效应的系统深入的理论和实验研究。
     本论文采用数值模拟和实验测试方法对压力振荡管的流动及其引起的热效应开展了研究,主要工作和结论如下:
     ①为了对压力振荡管中含有激波、膨胀波等波系的复杂流动过程进行多管和多周期模拟,本文建立了压力振荡管的数值模型,采用了滑移网格技术处理转动与静止部件之间的滑动。数值分析定量描述了振荡管内激波、膨胀波和分界面的不定常流动行为,确定由波动引起的管内能量转化的关系,为压力振荡管性能研究建立了数值模拟基础。
     ②通过实验并结合数值模拟,对一端封闭压力振荡管流动及热效应进行了研究。建立了一端封闭压力振荡管实验平台,进行了多种规格和操作条件下的压力振荡管流动和性能实验。实测了管内波动瞬态压力、振荡管壁温等参数,分析了膨胀比、压力水平和频率等对一端封闭压力振荡管制冷性能的影响。研究发现:振荡管壁温沿管长迅速升高然后逐渐降低,管长、射流频率和膨胀比等参数均能影响管内流场和振荡管壁温的分布,运动的激波是影响壁温分布的主要因素。
     本文提出了一种突扩连通振荡管结构。研究表明,突扩结构能够有效地减轻反射激波对振荡管制冷性能的不利影响;在连通多振荡管后,突扩结构也能够减弱波系在不同振荡管之间的传播。为提高振荡管利用率并考虑振荡管集中排液和散热的需要,连通各振荡管后加入一换热设备。实验表明:采用封闭端突扩连通的压力振荡管的等熵制冷效率可提高15%,文中分析了突扩连通的压力振荡管的流动特点。
     ③研究了音波型振荡器内流动和振荡特性,将其与压力振荡管结合,提出了无运转部件的射流振荡型气波制冷机。结果表明:欠膨胀附壁射流在较低的压比下流动就达到“壅塞”状态,入口压力对射流附壁的影响较小,增大膨胀比、位差、喷嘴宽度等参数均不利于射流附壁,设置分流劈有利于射流附壁。音波型振荡器的射流频率由控制管长度决定。随着膨胀比的升高,振荡管内入射波的强度逐渐增强,射流振荡型气波制冷机内部各类损失占总能量的比例逐渐减小,机器等熵制冷效率逐渐增大,该变化趋势基本不受控制管长度的影响。射流振荡型气波制冷机无任何转动部件,只需简单静密封,因此特别适用于高压气体的低温处理。
     ④对两端开口压力振荡管流动及热效应进行了研究。建立了两端开口压力振荡管实验装置,进行了各种操作参数和结构参数对两端开口压力振荡管性能影响的实验。对两端开口压力振荡管进行了多管和多周期的数值模拟,定量描述了激波和接触面在振荡管内的运行规律,并根据管内波系的运动规律绘制了两端开口振荡管的理想波图。研究发现:在振荡管高温排气端口将产生一道反向压缩波,降低了振荡管的制冷性能。研究得出降低高温排气端口压力和采用两级排气腔结构可以有效地降低反向压缩波的影响。对振荡管与高压喷嘴的渐开和渐闭运动过程中产生的入射损失进行了实验和模拟研究,得出增大高压入口喷嘴宽度或调整高压入口喷嘴的射流角度均可以降低振荡管的入射损失。分析了射入与排出端口与振荡管之间间隙引起的泄漏损失,得出高压入口喷嘴与振荡管之间的间隙产生的泄漏损失较大,高温排气端口与振荡管之间的间隙产生的泄漏损失较小。
     以两端开口压力振荡管的研究为基础,本文提出了一种外循环耗散型新型气波制冷机,并测试和分析了各种操作参数和结构参数下制冷机的制冷效率。
The fluid flow in pressure oscillating tubes is a type of fluid waves under periodic input The process of such flow involves both energy transfer and various patterns of wave motion, resulting in thermal effects on the wall of the tubes. Understanding the characteristics of how the internal wave-flow filed responding to external stimuli is one of the fundamental problems in studying pressure oscillating tubes. The research into the flow and thermal effects has theoretical and practical values for the development of "wave" machines.
     The flow and thermal effects of pressure oscillating tubes has attracted wide attention in the area of air expansion refrigeration and pressure exchange. Various pressure-oscillating-tube based equipments have been developed and effectively applied. Such equipments usually have a simple structure, can work smoothly under different conditions and are able to adapt to gas-liquid two-phase flow. However, they also have some disadvantages, for instance, containing liquid inside the tube, large sized and vibrating strongly. To date, there has been limited theoretical and experimental research to look into the flow and thermal effects inside the tubes systematically.
     The aim of this research is to investigate the flow and thermal effects in pressure oscillating tubes and their potential values for practical applications. This thesis presents a detailed account of the techniques developed, the platforms designed and the numerical simulation and experiments conducted to validate the results, including:
     (1) To simulate the complex flow process containing both shock and expansion waves in a multiple-tube system over multiple periods. Numerical models, where a sliding-mesh method was employed to describe the relative slip between rotary and static components, were established for investigating the performance of pressure oscillating tubes. The numerical analysis was applied for quantitative modeling of the unsteady-flow behaviors of shock waves, expansion waves and the separation interface. It was also used for describing the energy transfer caused by wave flow inside the tubes, thus, laying a foundation for numerical simulation and performance analysis of pressure oscillating tubes.
     (2) To analyze the flow and thermal effects of one-end-closed pressure oscillating tubes through experiments and numerical simulation. An experimental platform was constructed and applied for studying the flow and performance of the tubes with different sizes under different operating conditions. The parameters such as inner transient pressure and outer wall temperature were measured in real time. The effect of expansion ratio, pressure and frequency on the refrigeration performance was examined. The results indicated that the tube-wall temperature increased rapidly at the open end and then decreased gradually along the tube. The flow and the distribution of the tube-wall temperature were affected by several parameters, including the length of the tube, jet flow frequency and expansion ratio. The results also demonstrated shock waves were a major factor affecting the distribution of the tube-wall temperature.
     In this study, a sudden-expansion structure, where an expansion chamber was connected to pressure oscillating tubes, was proposed. It has been identified that the expansion chamber can weaken the reflected shock waves, thus, enhancing the refrigeration performance. It was also found that the chamber can weaken the wave transfer between tubes in a multiple-tube system. To enhance the efficiency, discharge liquid and disperse heat, a heat exchanger was attached to pressure oscillating tubes. The experiments indicated that attaching an expansion chamber at the close end of the tubes can improve the isentropic refrigeration efficiency by 15%. In the study, the flow in such tubes was also investigated.
     (3) To investigate the flow and performance of pressure oscillating tubes propelled by an integrated jet oscillator. The pressure, velocity and flux in a bistable wall-attaching jet flow unit were analyzed. The influence of operating parameters (e.g. pressure and pressure ratio) and structural parameters (e.g. potential difference and nozzle width) on the flow velocity, wall-attachment effect and jet-pressure recovery was studied. In order to understand oscillation characteristics in a sonic under-expansion wall-attaching jet oscillator, experiments were designed to test and examine the oscillating frequencies of the sonic oscillator with different control-channel lengths. The refrigerating efficiencies of Jet-Oscillation Gas Wave Refrigerators working at different oscillating frequencies were measured.
     (4) To investigate the flow and thermal effects of double-end-open pressure oscillating tubes. An experimental platform was constructed for testing the effect of operating and structural parameters on the performance of the tubes. Numerical simulation was conducted to provide a quantitative and graphic depiction of the flow of shock waves and the separation interface in a multiple-tube system over multiple periods. The results indicated that a backward compression wave was generated at the high-temperature discharge end. This reduced the refrigeration performance. Accordingly, a structure with a two-stage discharge chamber was proposed to decrease the temperature at the high-temperature discharge end and, as a result, reduce the influence of the backward compression wave. Numerical simulation and experiments were conducted to examine the injection loss during the process of gradually opening and closing of the high-pressure nozzles. The results indicated that the loss can be reduced to a certain degree by increasing the injection-nozzle width or adjusting the jet injection angle. The analysis on the leakage loss demonstrated that there was a larger amount of the loss due to the clearance between the tube and the high-pressure injection nozzle as compared to that caused by the clearance between the tube and the high-temperature discharge nozzle. Based on the above results, we proposed a new external-circulation dissipative gas wave refrigerator. Its refrigeration efficiencies under different operating and structural parameters were measured.
引文
[1]Rennaz M C.New French gas cooler recovers 120bpd gasoline[J].World Oil,1973,8:57-59.
    [2]Christian D,Amande J C,Viltard C.Barge-mounted NGL plant boosts recovery from offshore field[J].World Oil,1982,7:105-107.
    [3]冯其标.热分离机-新型制冷和气体分离装置[J].石油化工,1982,(1):41-47.
    [4]Coanda H.Device for deflecting a stream of elastic fluid projected into an elastic fluid.US,2052869[P],1936-09-01.
    [5]E.Brocher,C.Maresca and M.H.Bournay[J].J.Fluid Mech,1970,43(2):369-384.
    [6]李兆慈,徐烈,赵兰萍.脉管制冷与气波制冷耦合的研究[J].低温与超导,2000,(2):1-5.
    [7]李兆慈.脉管式气波制冷机耦合特性的研究[D].上海:上海交通大学,2001.
    [8]徐烈,熊炜,孙恒.脉管式气波制冷的实验研究[J].低温工程,1999,(4):136-141.
    [9]外循环耗散式气波制冷机,ZL200810011257.1,实用新型专利。
    [10]J.Hartmann.On the Production of Acoustic Wave by Mean of an Air-jet of a Velocity Exceeding That Sound[J].Philosophical Magazine,ol.11,pp.926-948
    [11]H.Sprenger.Z(u|¨)rich(U|¨)ber thermische Effekte in Resonanzrohren[J].Mitteilungen aus dem Institut f(u|¨)r Aerodynamik an der E.T.H.,1954,21:18-35.
    [12]E.Brocher,C.Maressca and M.H.Bournay.Fluid Dynamics of the Resonance Tube[J].Journal of Fluid Mechanics,1970,43:369-384.
    [13]Rennaz M C.Well head gas refrigerator field strips condensate[J].World Oil,1971,10:60-61.
    [14]Marchal P,Malek S,Vitard J C.Skid-mounted rotating thermal separator[J].Oil and Gas,1984,11:55-58.
    [15]#12
    [16]间宫林荣.かス冷却分离装置の化学工业への利用[J].化学装置,1978,2:52-57.
    [17]Shao J,Bao Y D,Shen Y N etc.Experimental Investigation of an new type expander[J].Advances in Cryogenic Engineering,1986,31:685-692.
    [18]Shao J,Shen Y N,Feng Y P etc.Thermodynamic analysis and experimental study on petroleum gas separation system incorporating RJE[J].Proceeding of ICESR,1986,9.
    [19]Shao J,Gao J,Feng Y etc.Experimental study of influence of transient performance in pressure plus tubes on isentropic efficiency of RJE[J].Cryogenics,1986,26(11):634-636.
    [20]方曜奇等.第四届全国激波管与激波学术会论文集[C].1987:67-71.
    [21]黄志达,黄钟岳,方曜奇.新型节能装置-透平式热分离机的研究[J].大连工学院学报,1983,22(3):115-119.
    [22]黄志达,唐山椒.RFT-2000型透平式热分离机原理及应用[J].大连工学院学报,1985,24(4):123-124.
    [23]方曜奇等.接受管结构对热分离机制冷的影响[J].流体工程,1987,17(3):15-18.
    [24]邵件,包裕弟,沈永年等.转动喷嘴膨胀机的实验研究[J].浙江大学学报,1984,18(3):25-34.
    [25]邵件,沈永年.转动式热分离机转速与变压管长度匹配的研究[J].浙江大学学报,1988,22(5):114-119.
    [26]包裕弟,沈永年,张朝涵,冯仰浦,邵件.回收气体压力能的转动喷嘴膨胀机研究[J].能源工程,1981,2:27-30.
    [27]中国石油天然气总公司科技发展局.全国各油气田原油稳定和轻烃回收情况调查.1990,12.
    [28]李力.气波制冷机接受管内不定常流数值模拟[D].大连:大连理工大学,1994.
    [29]胡志敏,方曜奇等.刚直管在脉动压力作用下表面泵热的实验研究[C].全国化工机械专业教育指导委员会成立大会及第二届校际学术交流会.
    [30]俞鸿儒.热分离机内的流动[J].大连工学院学报,1984,23(4):1-7.
    [31]熊炜.脉管式气波制冷机的实验研究[D].上海:上海交通大学.1999.
    [32]Sibulkon M and Vrebalovich T.J.Aero.Sic.1958,25:465-466.
    [33]Temkin S.The physics Fluids.1968,11(5):960-963.
    [34]黄公明.脉动管并非冲波管[J].低温工程,1987,(1):47-51.
    [35]黄公明.脉动管中波的形成、反射与相交[J].低温工程,1987,2:16-20.
    [36]刘光宗,方杭安.压力谐振管的数值计算[J].应用力学学报,1988,15(2):53-64.
    [37]胡大鹏.第四届高校化机专业教学科研交流会论文[C],1991:152-158.
    [38]Fang Y Q,Hu D P.Proc of the 10th Int Heat Transfer Conf[C].Bmighton U K,1994:54-56.
    [39]李学来.轴向及径向传热对气波振荡管冷效应的影响[D].大连:大连理工大学,1996.
    [40]朱子华,刘学武.旋射流型式气波制冷机实验研究[J].实验流体力学,2007,21(3):35-37.
    [41]方曜奇,郑洁,刘润杰等.气波制冷效率影响因素的实验研究[J].气动试验与测量控制,1993,7(3):15-18.
    [42]朱雪琴.气波制冷机振荡管最佳管长的研究[J].无锡轻工业学院学报,1993,2:135-140.
    [43]李学来.压力波制冷机工作管开口端处的流动分析[J].福州大学学报,2001,29(5):108-110.
    [44]李学来.管长对振荡管冷效应影响的实验研究[J].制冷,1996,(2):15-17.
    [45]李兆慈,徐烈,张存泉,孙恒,赵兰萍.气波制冷机等熵效率影响因素的实验研究[J].低温工程.2000,5:50-54.
    [46]李学来.两种管外传热型式对振荡管性能的影响[J].化工学报,2000,51(1):12-16.
    [47]张朝涵,周国勇.提高旋转式热分离机热力性能的实验研究[J].低温与超导,2002,30(4):54-58.
    [48]朱彻,李洪安,邹久朋等.一项新兴的天然气脱水净化技术[J].天然气工业,1995,15(5):57-61.
    [49]刘学武,邹久朋,朱彻等.反冲膨胀式气波制冷机制冷特性[J].天然气工业,2005,25(2):176-180.
    [50]李学来,郭荣伟.振荡管最佳射流激励频率钳制效应[J].南京航空航天大学学报,1998,30(6):606-610.
    [51]李学来,黄齐飞,朱彻.有关因素对振荡管最佳射流激励频率的影响[J].化工学报,2002,53(2):194-198.
    [52]李学来,黄齐飞,朱彻.反射激波的吸收对热分离机性能的影响[J].化工学报,2003,54(2):170-175.
    [53]李学来,方曜奇,朱彻,刘润杰.振荡管管壁轴向导热的试验研究[J].大连理工大学学报,1996,36(1):37-40.
    [54]李学来,方曜奇,朱彻.气波制冷机振荡管外强化换热的试验研究[J].制冷,1996,4:7-9.
    [55]李学来,朱彻,方曜奇.振荡管最佳隔热位置[J].化工学报,2001,52(9):757-760.
    [56]方曜奇,胡志敏.振荡管结构对热分离机制冷的影响.流体工程,1987,17(3):15-18.
    [57]于伟.利用多孔板阻尼提高热分离器效率.青年力学协会第二届年会文流论文,1992:111-134.
    [58]YuWei.Study on the factors effect on refrigeration efficiency of thermal separator(D).Beijing:Institute of Mechanics,Chinese Academy of Sciences,1988.
    [59]李学来,朱彻.振荡管复合阻尼陷波[J].化工学报,2001,52(5):379-380.
    [60]邹久鹏,刘学武,陈淑花.削弱振荡管内反射激波能量的实验研究[J].低温工程,2001,3:48-53.
    [61]刘学武,陈淑花.新型气波制冷机的节能效果[J].节能和环保,2001,9:34-35.
    [62]刘学武,金良安,李志义,胡大鹏.气波管内波系影响因素的实验研究与数值模拟[J].化工学报,2004,55(2):177-181.
    [63]赵承庆,姜毅.气体射流动力学[M].北京:北京理工大学出版社,1998.
    [64]原田正一,尾崎省太郎编.射流工程学[M].北京:科学出版社,1977.
    [65]F(o|¨)rthmann E.(U|¨)ber turvulente strahlausbreiteng.Ing.Arch.5.42(1934);NASA TM 789(1936).
    [66]Reichardt H.Gesetzm(a|¨)βigkeiten der treien turbulenz.VDI-Forschungsheft,1942.
    [67]Albertson M L,Dai Y B,Tenson R A,Rouse H.Diffusion of submerged jets[J].ASCE,1948,74(10):1571
    [68]Coanda H.Device for deflecting a stream of elastic fluid projected into an elastic fluid[P].US,2052869.1936-09-01.
    [69]Bourque C,Newman B G.Reattachment of a two-dimensional incompressible jet to an adjacent flat plate[J].Aeronaut Q,1960,11:201-232.
    [70]McRee D I,Moses H L.The effect of aspect ratio and offset ratio on nozzle flow and jet reattachment[J].Advances in Fluids(ed by Brown F T).ASME Press,New York,1967:142-161.
    [71]Perry C C.Two-dimensional jet reattachment[D].Michigan:University of Michigan,1967.
    [72]Rajaratnam N,Subramanya N.Plane turbulent reattachment wall jets[J].ASCE J Hydraulic Div,1968,94:95-112.
    [73]Ayukawa K,Shakouchi T.Analysis of a jet attaching to an offset parallel plate[J].Bull JSME,1974,19:395-401.
    [74]Hoch J,Jiji L M.Two-dimensional turbulent offset jet-boundary interaction[J].Trans ASME J Fluids Eng,1981,103:154-161.
    [75]Nozaki T,Hatta K,Nakashima M,Matsumura H.Reattachment flow issuing from a finite width nozzle[J].Bull JSME,1979,22:340-347.
    [76]Nozaki T,Hatta K,Sato N,Matsumura H.Reattachment flowissuing from a finite width nozzle[J].Bull JSME,1981,24:363-369.
    [77]Lund T S.Augmented thrust and mass flow associated with two-dimensional jet reattachment[J].AIAA J,1986,24:1964-1970.
    [78]Pelfrey J R R,Liburdy J A.Effect of curvature on the turbulence of a two-dimensional jet[J].Exp Fluids,1986,4:143-149.
    [79]Pelfrey J R R,Liburdy J A.Mean flow characteristics of a turbulent offset jet[J].Trans ASME J Fluids Eng,1986,108:82-88.
    [80]Kim D S,Yoon S H.Flow and heat transfer measurements of a wall attaching offset jet [J].Heat Mass Transfer,1996,39(14):2907-2913.
    [81]胡大鹏.静止式气波制冷机的研制[D].大连:大连理工大学,1989.
    [82]刘伟.静止式气波制冷机振荡特性研究[D].大连:大连理工大学,2003.
    [83]原田正一,尾崎省太郎编.射流工程学[M].北京:科学出版社,1977.
    [84]Turkowski M.Progress towards the optimisation of a mechanical oscillator flowmeter [J].Flow Measurement and Instrumentation,2003,14:13- 21.
    [85]Gebhard U,Hein H,Just E,Ruther P.Combination of a Fluidic Micro-Oscillator and Micro-Actuatorin LIGA-Technique for Medical Application[C].TPANSDUCERS 97,lnternafional Conference on SoliOCStafe Sensors and Acfuafom,Chicago,1997:16-19.
    [86]Zipser L,Wachter F,Franke H.Acoustic gas sensors using airborne sound properties[J].Sensors and Actuators B,2000,68:162-167.
    [87]Eliphas Wagner Sim(?)es,Rogerio Furlan,Roberto Eduardo Bruzetti Leminski,Mario Ricardo Gongora-Rubio,Marcos Tadeu Pereira,Nilton Itiro Morimoto,Jorge J.Santiago Aviles.Microfluidic oscillator for gas flow control and measurement[J].Flow Measurement and Instrumentation,2005,16:7- 12.
    [88]Furlan R,da Silva M P,Simoes E W,Leminski R E B etc.Visualization of internal liquid flow interactions in meso planar structures[J].Flow Measurement and Instrumentation,2006,17:298 - 302.
    [89]Yang J T,Chen C K,Tsai K J etc.A novel fluidic oscillator incorporating step-shaped attachment walls[J].Sensors and Actuators A,2007,135:476-483.
    [90]Wang H,Priestman S B,Beck S B M,Boucher R F.Development of fluidic flowmeters for nonitoering crude oil production[J].Flow Measure Instrument,1996,7(2):91-98.
    [91]Tesar V,Hung C H,William B Z.No-moving-part hybrid-synthetic jet actuator[J].Sensors and actuators A(PHYSICS),2006,125:159 -169.
    [92]Morris G J,Jurewicz J T,Palmer G M.Gas-Solid Flow in a Fluidically Oscillating Jet [J].J Fluids Engineering,1992,114:362-366.
    [93]Koso T,Kawaguchi S,Hojo M,Hayami H.Flow mechanism of a self-induced oscillating jet from a Flip-flop jet nozzle[C].The fifth JSME-KSME Fluid engineering conference,Nagoya,Japan,2002:17-21.
    [94]Wada T,and Shimizu A.Mechanism and Design of Sonic Oscillator[J].Fluidic Q,1976,4:1-33.
    [95]#12
    [96]Hayashi S,Kamaya S.A study on mechanism of oscillation in sonic oscillator[J].Bulletin of the JSME,1975,18(123):1035-1043.
    [97]Hayashi S,Kamaya S.A study on mechanism of oscillation in sonic oscillator[J].Bulletin of the JSME,1975,18(122):841-849.
    [98]邵件,沈永年,冯仰浦等.静止喷嘴膨胀机(SJE)振荡特性研究[J].浙江大学学报,1985,19(5):23-30.
    [99]Knauff,R..Converting Internal Gas Energy into Mechanical Work.British Patent 8273,1906.
    [100]Jendrassik,G..Jet Reaction Propulsion Units Utilizing a Pressure Exchanger[P].US Patent 2757509,1956.
    [101]Jendrassik,G..Pressure Exchangers and Applications Thereof[P].US Patent 2946184,1960.
    [102]Pearson,R.D..A Pressure Exchange Engine for Burning Pyroil as the End User in a Cheap Power from Biomass System[C].15th International Congress of Combustion Engines,Paris,1983.
    [103]Pearson,R.D..A Gas Wave-Turbine Engine Which Developed 35 HP and Performed Over a 6:1 Speed Range[J].Proceeding ONR/NAVAIR Wave Rotor Research and Technology Workshop,1985:403-49.
    [104]Mathur,A..A Brief Review of the GE Wave Engine Program(1958-1963)[J].Proceeding ONR/NAVAIR Wave Rotor Research and Technology Workshop,1985,171-193.
    [105]Real,R..The 3000 kW Gas Turbine Locomotive Unit[J].Brown Boveri Review,1946,33(10):270-271.
    [106]Seippel,C..Pressure Exchanger[P].US Patent 2399394,1946.
    [107]Taussig,R.T.,Hertzberg,A..Wave Rotors for Turbomachinery[J].Winter Annual Meeting of the ASME,edited by Sladky,J.F.,Machinery for Direct Fluid-Fluid Energy Exchange,1984,7:1-7.
    [108]Thayer,W.J.,Taussig,R.T..Erosion Resistance and Efficiency of Energy Exchangers [J],1982 ASME Paper 82-GT-191.
    [109]Eidelman,S..The Problem of Gradual Opening in Wave Rotor Passages[J].Journal of Propulsion and Power,1985,1(1):22-28.
    [110]Roberts,J.W..Further Calculations of the Performance of Turbofan Engines Incorporating a Wave Rotor[J].M.S.Thesis,1990.
    [111]Wilson,J..An Experimental Determination of Loses in a Three-Port Wave Rotor[J].Journal of Engineering for Gas Turbines and Power,Also ASME Paper 96- GT-117,and NASA CR-198456.1998,120:833-842.
    [112]Wilson,J.,Paxson,D.E..Wave Rotor Optimization for Gas Turbine Topping Cycles [J].Journal of Propulsion and Power,Also SAE Paper 951411,and NASA TM-106951,1996,12(4):778-785.
    [113]Hoxie,S.S.,Lear,W.E.,and Micklow,G.J..A CFD Study of Wave Rotor Losses Due to the Gradual Opening of Rotor Passage Inlets[J].AIAA Paper 98-3253,1998.
    [114]P.Akbari,E.Szpynda,M.R.nalim.Recent Developments in Wave Rotor Combustion Technology and Future Perspectives[J].A Progress Review.AIAA,2007-5055-730:17.
    [115]朱彻,刘润杰,李洪安.气波制冷技术在天然气脱水净化工程中的应用[J].制冷,1995,50(1):10-15.
    [116]张朝函.一种新型机械-旋转式制冷机[J].低温工程,1993,1-34.
    [117]尹荣辅.川中油气田轻烃资源回收的问题和讨论[J].石油和天然气化工,1994,24(1):19-22.
    [118]蒋洪,朱聪.轻烃回收技术的现状及发展方向[J].石油规划设计,2000,11(2):15-16.
    [119]黄齐飞,李学来.热分离技术发展现状与应用前景[J].福建化工,2001,2:10-14.
    [120]孙以岑.利用余压的节能技术-用热分离机回收氨厂放空气的探讨[J].石油化工设备,1986,15(6):13-18.
    [121]俞鸿儒.用于低温风洞的新颖制冷方法[J].力学学报,1999,31(6):645-651.
    [122]俞鸿儒.产生风洞低温试验气流的新途径[J].流体力学实验与测量,1997,11(1):1-5.
    [123]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [124]刘润杰.气波制冷机转速与动态压力的同步测量[J].气动实验与测量控制,1995,2:79-82.
    [125]Parneix S,et al.Predictions of turbulent heat transfer in an axisymmetric jet impinging on a heated pedestal[J].ASME J Heat Transfer,1999,121(2):43-49.
    [126]Speziale C G,Thangam S.Analysis of an RNG based turbulence model for separated flows [J].Internetional Journal Engineeringg Science,1992,30(10):1379-1388.
    [127]Thangam S,Speziale C G.Turbulent flow past a backward-facing step:a critical evaluation of two-equation models[C].AIAA,1992,30(5):1314-1320.
    [128]Shih T H,Liou W W,Shabbir A,Yang Z G,Zhu J.A new k-ε eddy viscosity model for high reynolds number turbulent flows[J].Compute Fluids,1995,24(3):227-238.
    [129]Fernandez J A,Elicer-Cortes J C,Valencia A,Pavageau M,Gupta S.Comparison of low-cost two-equation turbulence models for prediction flow dynamics in twin-jets devices[J].Heat and Mass Transfer,2007,34(5):1-9.
    [130]Speziale C.G.,Thangam S..Analysis of an RNG based turbulence model for separated flows[J].International Journal of Engineering Science,1992,30:1397-1388.
    [131]Fernandez J.A.,Elicer-Cortes J.C.,Valencia A.,Pavageau M,Gupta S.Comparison of low-cost two-equation turbulence models for prediction flow dynamics in twin-jets devices[J].Heat and Mass Transfer,2007,34:1-9.
    [132]Van Leer B.Upwind-difference methods for aerodynamics problems governed by the Euler equations of gas dynamics[J].Lectures in Applied Mathematics,1985,(22):327-336.
    [133]Gupta S K,Petal R D and Ackerberg R C.Wall heat/mass transfer in pulsatile flow [J].Chem.Eng.Sci.,1982,37(12):1727-1739.
    [134]Lemlich R,Armour J C.Forced convective heat transfer to a pulsed liquid[J].Heat transfer,Boston,Chem.Eng.Prog.Symp.Series,1965,61:83-96.
    [135]陈作斌.计算流体力学及应用[M].北京:国防工业出版社,2003.
    [136]李德元.二维非定常流体力学数值计算[M].北京:科学出版社,1987.
    [137]黄敦.复杂激波的数值模拟[J].现代流体力学进展,1992,1:60-72.
    [138]童秉纲,张炳萱,崔而杰.非定常流与涡运动[M].北京:国防工业出版社,1993.
    [139]Van Leer B.Upwind-difference methods for aerodynamics problems governed by the Euler equations of gas dynamics[J].Lectures in Applied Mathematics,1985,(22):327-336.
    [140]黄国平,梁德旺.块结构的MUSCL算法求解三维进气道流场[J].空气动力学学报,2000,18(2):194-199.
    [141]胡大鹏,朱彻,史启才,代玉强,刘润杰.多管式射流振荡型气波制冷机及其制冷方法:中国,ZL200410021388.x[P].2008,04,30.
    [142]胡大鹏,邹久朋,代玉强,朱彻,史启才,刘培启,赵文静.一种反馈式振荡射流制冷机:中国,200820013156.3[P].2008,04,30.
    [143]胡大鹏,邹久朋,朱彻,史启才,代玉强,刘培启,赵文静.一种变气容调频自激振荡射流制冷机200820013155.9[P].2008,04,30.
    [144]胡大鹏、邹久朋、朱彻、代玉强、史启才。一种外循环耗散式气波制冷机:中国,ZL200820012509.8[P].2008,04,30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700