多管静止式气波制冷机振荡特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球对能源的消费中,天然气将成为需求增长最快的能源,而在天然气加工工艺中需要能在高压下操作且高效的气体膨胀制冷设备。静止式气波制冷机是一种新型气体膨胀制冷设备,其工作原理为:利用自激励射流振荡器生成的振荡射流对一端封闭的接受管进行周期性射气,入射气把其能量通过激波的运动传递给接受管内原有气体并通过接受管壁向环境散热实现“冷却”。静止式气波制冷机无任何转动部件、只需要简单的静密封,且具有很强的带液工作能力,因此特别适合用于加工处理高压天然气。目前,静止式气波制冷机的研究还很不成熟,其性能参数(主要为等熵效率)离天然气工业生产的要求尚有一定的差距。本文结合国家863高技术项目“天然气压力能综合利用新技术研究”(No.2006AA05Z216),通过数值模拟和实验对多管静止式气波制冷机的性能进行研究。
     附壁射流的特性如偏转程度、附壁距离等是静止式气波制冷机设计的基础。本文首先对附壁射流的特性作了数值模拟,分析了附壁射流的流场,考察了附壁元件结构参数和操作参数对附壁特性的影响。研究表明射流的偏转特性主要与射流两旁的压差有关,侧壁直壁段对射流的附壁点具有很好的引导作用。
     接受管是制冷实现的场所,本文研究了接受管中波系的运动与传播过程。得出入射波扫过以后,管内气体的压力、密度、温度等有一个突跃升高。波在传播的过程中由于摩擦等原因强度会降低;在波到达之前,接受管中的气体正朝着管口的方向运动,处于排气的过程,但是在波和入射气体的共同作用下,在波面处,速度大小急剧下降,然后变成跟入射气流方向一致。
     多管静止式气波制冷机相比双管式更具有工业应用价值,故本文在对双管射流振荡器和接受管研究的基础上,开发了适合多管静止式气波制冷机需要的射流振荡器,将改造的音波和正反馈振荡器用于多管静止式气波制冷机,对振荡器的可振性、振荡频率以及它们的影响因素作了数值模拟研究,得出如下结论:射流只在一定的操作条件和几何结构尺寸范围内才能稳定振荡:在对多管静止式气波制冷机数值模拟的基础上对其进行了设计和加工,并对它进行了实验研究。结果表明,提高气波制冷机的入口压力,可以增大出口气体的温降,入口温度的提高也会导致温降的增大。高频情况下的正反馈振荡器作为振荡源,射流对接受管内气体的做功频率较高,相对于较低频率的音波振荡器,可以得到更高的温降。
Natural gas will become the fastest-growing demand energy of the global energy consumption.High-performance expansion refrigeration equipments suited for operating condition of high pressure are needed urgently for natural gas' expansion refrigeration technology.The static gas wave refrigerator is a new type of expansion refrigerator,in which the self-induced jet oscillator is used to generate oscillation jet's periodical injection into receiving tubes with one-closed end.In the receiving tube,gas waves are produced owing to the interaction between the driving gas and the driven gas.Energy is rapidly transferred from the driving gas to the driven gas by means of propagation of the gas waves,which result in temperature increase of the latter and then heat dissipates to environment across the tube wall. Static gas wave refrigerator has no moving parts and its seal is simple.Hence,its use is not confined by the condition of high pressure.However,the refrigeration efficiency of the jet-oscillation refrigerator is at a low level presently,and it could not satisfy the requirement of natural gas's industrial production.Performance and mechanism of the multiple static gas wave refrigerator are investigated in the current paper supported by Chinese 863 National Program Foundation" Study on new technology of combined utilization of natural gas's pressure energy (No.2006AA05Z216).
     The self-induced jet oscillator is a key component of static gas wave refrigerator and it is developed on the basis of jet's wall-attaching effect which is also called Coanda effect.Firstly, this paper numerically simulates the properties of wall-attaching jet and analyses the flow field of wall-attaching jet.Effects of the element's geometrical sizes and operating conditions are simulated numerically,and emphasis is placed on analysis of geometrical properties and pressure distribution properties together with their relationship.It is concluded that the deflection characteristics of the jet flow is associated with the pressure on both sides of the jet. Component geometry and operating conditions will affect the pressure distribution of the jet on both sides,and the straight wall has an optimum value for the jet's wall-attachment.
     The receiving tube is the place of refrigeration.The gas and wave's motion and propagation in the receiving tube are studied.As the wave sweeps,the pressure,density and temperature of the gas rise rapidly.After the incident,wave will be reduced because of friction in the process of dissemination.Before the arrival of the wave,the gas in the receiving tube is moving towards the open end direction,and it is in the phase of exhausting.Under the action of the waves and injecting gas,the velocity of the gas decreases suddenly,and then turns to the direction of the injecting gas.
     The application shows that the multi-tube gas wave refrigerator is more effective than the double-tube gas wave refrigerator.The jet-oscillation refrigerator works on the basis of the jet oscillator.The frequency modulation of the jet's oscillation and decreas of total pressure loss of the jet passing the oscillator are important approach to improve the performance of the refrigerator.Therefore this paper develops the jet oscillator for multi-static gas wave refrigerator based on the study of jet oscillator and the receiving tube,transforms the sonic oscillator and feedback oscillator for multi-static gas wave refrigerator.This paper numerically simulates the oscillation availability and frequency of the static gas wave refrigeration.As a conclusion,the jet oscillates only in a certain range of geometrical sizes and operating conditions.This paper does experiments on the multi-static gas wave refrigerator based on the numerical simulation and studys the effects of the element's geometrical sizes and operating conditions.In conclusion,matching the other parameters,as the inlet pressure rises,the temperature drop also rises.The temperature drop also rises as the inlet temperature rises.Matching with the oscillation frequency,the length of the receiving tube,diameter of the nozzle and the pressure ratio,there is a best injecting frequency.If the gas is generted by a high frequency oscillator-a feedback oscillator,as the frequency to drive the gas in the receiving tube is also high,so higher temperature drop can be realized as to the sonic oscillator.
引文
[1]王铭,徐剑华.世界液化天然气航运市场走势分析[J].中国水运,2007,4.
    [2]黄齐飞.热分离机振荡管内激波的行为与控制[D].福州:福州太学,2003.
    [3]黄廷夫.脉动射流对压力波制冷机性能的影响[D].福州:福州大学,2006.
    [4]李兆慈.脉管式气波制冷机耦合特性的研究[D].上海:上海交通大学,2001.
    [5]Fang Y Q,Zheng J,Liu R J,Zhu C,Fan J,Hu D P.Experimentalstudy of gas wave refrigeration[J].In:TakayamaK(ed) Proc.18th Int Symp on Shock Waves.Springer-Verlag Berlin Heidelberg Ⅱ,1991:1335-1338
    [6]Morrison J.Harp is heart of new-stytle separator[J].The oil and gas journal,1971,10(6):81-85.
    [7]邵件,包裕弟.转动喷嘴膨胀机的实验研究[J].浙江大学学报.1984,3(18):52-54.
    [8]方曜奇,郑洁,刘润杰等.气波制冷效率影响因素的实验研究[J].气动试验与测量控制,1993,7(3):15-18.
    [9]李学来.管长对振荡管冷效应影响的实验研究[J].制冷,1996,(2):15-17.
    [10]代瑞国,刘学武.旋射流型式气波制冷机实验研究[J].安徽化工,2003,6:45-47.
    [11]黄志达,黄钟岳,方曜奇等.新型节能装置一透平式热分离机的研究[J].大连工学院学报,1983,22(3):115-119.
    [12]黄志达,唐山椒.RFT-2000型透平式热分离机原理及应用[J].大连工学院学报,1985,24(4):123-124.
    [13]Coanda H.Device for deflecting a stream of elastic fluid projected into an elastic fluid[J]:US,2052869.1936-09-01.
    [14]邵件,沈永年,冯仰浦等.静止喷嘴膨胀机(SJE)振荡特性研究[J].浙江大学学报,1985,19(5):23-30.
    [15]胡大鹏.静止式气波制冷机的研制[D].大连:大连理工大学,1989.
    [16]刘伟.静止式气波制冷机振荡特性研究[D].大连:大连理工大学,2003.
    [17]Sibulkon M and Vrebalovich T.Hattman effect in the tube[J].Aero.Sic.1958,25:465-466.
    [18]Vrebalovich T.Bull.Anastomosis with EEA stapler following Hartmann procedure Am[J].Phys soc.1958,3:29.
    [19]W.Chewter.A numerical and mathematical method of the flow systems[J].Fluid Mech.1963,Vol.18,part 2,44-46.
    [20]Temkin S.Turbulent Hartmann flow in cylindrical ducts The physics Fluids[J].1968,11(5):960-963.
    [21]ALAIN T,DANIED M.Stability analysis of the mechanism of jet attachment to walls[J].International Journal of Heat and Mass Transfer,2002,45(13):2769-2775
    [22]M.Sibulkin.Analysis of the thermal effect of the jet flow in the motor[J].Aero.Sci.1963,Vol 14,695-703.
    [23]J.Keller.Nonlinear analysis for the fluids of uniform depth.[J]Fluid Mech.1976,Vol 77,part 2,279-304.
    [24]M.Cotterlaz-Rennaz.The impending oil.World Oil[J].Nov,1971:60-61.
    [25]M.Cotterlaz-Rennaz.The impending oil.World Oil[J].Aug,1973:57-59.
    [26]D.Christian.J.C.Amannde,C.Viltard.Local analysis for the equipment of the current situation[J].World Oil.July,1982:105-107.
    [27]高金林.热分离机制冷机理的研究-气体工质的热力过程[D].杭州:浙江大学,1988.
    [28]邵件,沈永年.转动式热分离机转速与变压管长度匹配的研究[J].浙江大学学报,1988,22(5):114-119.
    [29]包裕弟,沈永年.回收气体压力能的转动喷嘴膨胀机的实验研究[J].能源工程,1982.2:27-30.
    [30]张朝函.一种新型机械一旋转式制冷机[J].低温工程,1993,1:34.
    [31]沈永年,王洪明.影响热分离机等熵效率的主要因素及改进方法[J].低温工程,1999.5:13-16.
    [32]邵件,包裕弟.转动喷嘴膨胀机的试验研究[J].浙江大学学报.1984,3(18):52-54.
    [33]刘海鑫,张朝涵.旋转式热分离机振荡管内热力过程的理论分析[J].深冷技术,2004.1:8-12.
    [34]张朝涵,周国勇.提高旋转式热分离机热力性能的实验研究[J].低温与超导,2002,30(4):54-58.
    [35]Shao J,Bao Y D,Shen Y N etc.Experimental Investigation of an new type expander[J].Advances in Cryogenic Engineering,1986,31.
    [36]Shao J,Shen Y N,Feng Y P etc.Thermodynamic analysis and experimental study on petroleum gas separation system incorporating RJE[J].Proceeding of ICESR.1986,9.
    [37]Shao J,Gao J,Feng Y etc.Experimental study of influence of transient performance in pressure plus tubes on isentropic efficiency of RJE ICEC 1986[C].Berlin-West.
    [38]黄志达,黄钟岳,方曜奇等.新型节能装置-透平式热分离机的研究[J].大连工学院学报,1983,22(3):115-119.
    [39]徐烈等.脉管式气波制冷机的实验研究[J].低温工程,1999,4:136-140.
    [40]李兆慈等.脉管式制冷机与气波制冷机的耦合研究[J].低温与超导,2000,28(2):1-5.
    [41]熊炜,徐烈,张涛,赵兰萍.脉管制冷与气波制冷之比较[J].低温工程,1998,5:45-51.
    [42]李兆慈,徐烈,张存泉,孙恒,赵兰萍.气波制冷机等熵效率影响因素的实验研究[J].低温工程,2000,5:50-54.
    [43]李兆慈,徐烈.气波制冷机的研究与应用[J].低温工程,2002,2:22-27.
    [44]李兆慈,徐烈,赵兰萍,熊炜,郭文,孙恒.脉管制冷与气波制冷藕合的研究[J].低温与超导,2000,28(2):1-5.
    [45]李兆慈.脉管式气波制冷机机耦合特性的研究[D].上海:上海交通大学,2001.
    [46]李学来,朱彻.振荡管复合阻尼陷波[J].化工学报,2001,52(5):379-380.
    [47]李学来.振荡管冷端传热分析[J].制冷,1998,1:28-31.
    [48]李学来,黄齐飞.热分离技术与压力能的回收利用[J].福建能源开发与节约,2001,3:57-60
    [49]李学来,朱彻,方曜奇.振荡管最佳隔热位置[J].化工学报,2001,52(9):757-760.
    [50]李学来.压力波制冷机工作管开口端处的流动分析[J].福州大学学报(自然科学版),第2001,29(5):108-110.
    [51]黄齐非,李学来.热分离技术发展现状和应用前景[J].福建化工,2001,2:10-14.
    [52]李学来,黄齐飞,朱彻.反射激波的吸收对热分离器性能的影响[J].化工学报,2003,54(2):170-175.
    [53]黄齐飞,李学来.热分离技术发展现状与应用前景[J].福建化工,2001,2:10-14.
    [54]朱彻,刘润杰,李洪安.气波制冷技术在天然气脱水净化工程中的应用[J].制冷,1985,50(1):10-15.
    [55]朱彻,李洪安,邹久朋等.一项新兴的天然气脱水净化技术[J].天然气工业,1995,15(5):57-61.
    [56]尹荣辅.川中油气田轻烃资源回收的问题和讨论[J].石油和天然气化工,1994,24(1):19-22.
    [57]蒋洪,朱聪.轻烃回收技术的现状及发展方向[J].石油规划设计,2000,11(2):15-16.
    [58]刘伟,胡大鹏.气波制冷机研究现状及工业应用[J].辽阳石油化工高等专科学校学报,2002,3:182-231.
    [59]孙以岑.利用余压的节能技术-用热分离机回收氨厂放空气的探讨[J].石油化工设备,1986,15(6):13-18.
    [60]俞鸿儒.用于低温风洞的新颖制冷方法[J].力学学报,1999,31(6):645-651.
    [61]胡大鹏.SB416航空发动机高空模拟试验气波制冷系统研究与开发[J],2003.
    [62]方曜奇等.第四届全国激波管与激波学术会论文集.1987:67-71.
    [63]包裕弟,沈永年,张朝涵,冯仰浦,邵件。回收气体压力能的转动喷嘴膨胀机研究。能源工程,1981,2,NO2.
    [64]冯其标。热分离器—新型制冷和气体分离装置。石油化工,1982,1 NO1,Vol1.
    [65]赵承庆,姜毅.气体射流动力学[M].北京:北京理工大学出版社,1998.
    [66]董志勇.射流力学[M].北京:科学出版社,2005.
    [67]原田正一,尾崎省太郎编.射流工程学[M].北京:科学出版社,1977.
    [68]F(o|¨)rthmann E.(U|¨)ber turvulente strahlausbreiteng[J].Ing.Arch.5.42(1934);NASA TM 789(1936).
    [69]Reichardt H.Gesetzm(a|¨)βigkeiten der treien turbulenz.VDI-Forschungsheft,1942.
    [70]Albertson M L,Dai Y B,renson R A,Rouse H.Diffusion of submerged jets.ASCE,1948,74(10):1571.
    [71]Olson R E,Miller D P.Aewolynamic studies of free and attached jet[J].Fluid amplification series,1963,6.[72]刘应书.弱欠膨胀超音速自由流流场分析[J].西安冶金建筑学院学报,1986,46(2):89-101.
    [73]Ricou F P,Spalding D B.Measurements of entrainment by axisymmetrical turbulent jets[J].J Fluid Mech,1961,11:21-32.
    [74]U.Gebhard,H.Hein,U.Schmidt.Numerical Investigation of Fluidic Micro-Oscillators[J].J.Micromech.Microeng.1996,p115-117.
    [75]U.Gebhrad,R.Gunther,E.Just,P.Ruther.Fluidic Driven Linear Motor Fabricated by the LIGA-Process,Proc.Microsys[J].Tech.MST96,Potsdam,Germany,1996,p.609-614.
    [76]J.T.Yang,W.Z.Lin,K.J.Tsai,K.J.Huang,Fluidic oscillator[J].US Patent No.10/769,627(January 2005).
    [77]K.T.Chang,R.F.Huang,Develop and characterization of jet-injection Veegutter[J].Mech.20(2004) 57-63.
    [78]高纪念,马建国,蒋燕等.液压舣稳射流激振器的理论分析与仿真[J].石油机械 1999,第27卷,第6期 34-36.
    [79]P.H.Wright,The Coanda Meter—a fluidic digital gas flowmeter[J].Phys.E 13(1980)433-436.
    [80]R.F.Boucher,Minimum flow optimization of fluidic flowmeters[J].Meas.Sci.Technol.6(1995) 872-879.
    [81]C.K.Chen,L.Wang,J.T.Yang,L.T.Chert,Experimental and computational analysis of periodic flow structure in oscillatory gas flow meters[J].Mech.22(2006)137-144.
    [82]H.Wang,G.H.Priestman,S.B.M.Beck,R.F.Boucher,Development of fluidic flowmeters for monitoring crude oil production[J],Flow Meas.Instrum.7(1996)91-101.
    [83]H.Wang,S.B.M.Beck,G.H.Priestman,R.F.Boucher,Fluidic pressure pulse transmitting flowmeter[J],Chem.Eng.Res.Des.75(1997) 381-391.
    [84]H.Wang,S.B.M.Beck,G.H.Priestman,R.F.Boucher,A Remote measuring flow meter for petroleum and other industrial applications[J],Meas.Sci.Technol.9(1998)779-789.
    [85]U.Gebhard,H.Hein,U.Schmidt,Numerical investigation of fluidic micro-oscillators[J],J.Micromech.Microeng.6(1996) 115-117.
    [86]U.Gebhard,H.Hein,E.Just,P.Ruther,Combination of a fluidic microoscillator and micro-actuator in LIGA—technique for medical application[C],in:Proceedings of the International Conference on Solid-state Sensors and Actuators,Chicago,June,1997,pp.16-19.
    [87]M.K.Jeon,J.H.Kim,J.Noh,S.H.Kim,H.G.Park,S.I.Woo,Design and characterization of a passive recycle micromixer[J],J.Micromech.Microeng.15(2005) 346-350.
    [88]A.Groisman,M.Enzelberger,S.R.Quake,Microfluidic memory and control devices[J],Science 300(2003) 955-958.
    [89]A Glezer,M G Allen,D J Coe,B L Smith,M A Trautman[J],J W Wiltse,Synthetic Jet Actuators and Applications Thereof US Patent 5,758,823(1998).
    [90]B L Smith,A Glezer.Jet vectoring using synthetic jets[J],J Fluid Mech.458(2002)1-34.
    [91]A Glezer,M Amitay.Synthetic jets[J],Annu.Rev.Fluid Mech.34(2002) 503-529.
    [92]M.Benchiekh,J C Bera,M Michard,M Sunyach.Pulsed jet control of a short diffuser[J],C R Acad.Sci.Paris,Mecanique des fluids/Fluids Mechanics-Series ⅡB 328,2000,pp749-765.
    [93]M Amitay,A Glezer.Controlled transients of flow reattachment over stalled airfoils[J].Int J Heat Fluid Flow 23(2002) 690-669.
    [94]J Tensi,I Boue,F Paille,G Dury.Modification of the wake behind a circular cylinder by using synthetic jets[J].J Visual 5(1)(2002) 37-34.
    [95]M Watson,A J Jaworski,N J Wood.The development of synthetic jets for enhanced control of separated flows[C].Proceedings of the 33rd AIAA Fluid Dynamics Conference and Exhibition,AIAA Paper 2003-3716,Orlando,FL,June 2003.
    [96]S Zhong,F Millet,N J Wood.The behaviour of synthetic jets in a laminar boundary layer[C].Proceedings of the Seventh International Symposium on Fluid Control,Measurement and Visualization,Sorrento,Italy,August,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700