外循环耗散式气波制冷机的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
外循环耗散式气波制冷机属于新型气波制冷机,具有结构简单、紧凑,制造成本低廉,等熵制冷效率较高,带液运行能力强等优点。可以用于天然气开采过程中脱除天然气中含有的少量水分,以及回收天然气中的轻烃,具有广阔的应用前景。
     外循环耗散式气波制冷机可调节参数较多,各个参数对性能的影响较为复杂,并存在耦合关系,为了系统的研究各种参数对设备性能的影响,本文采用一维等熵流动理论、二维数值模拟和物理实验相结合的方法对外循环耗散式气波制冷机进行了深入的研究。主要研究工作和结论如下:
     (1)针对外循环耗散式气波制冷机的结构做了大量的数值模拟,并结合一维等熵流动理论,系统的研究了设备参数的匹配问题,包括设备在固定转速时高温出口喷嘴的宽度和偏角匹配;设备在固定偏角下的最优转速匹配,得出了比较系统的匹配方法,为实验工作的开展提供了理论基础。
     (2)分析了高温出口背压对接触面移动距离的影响,并提出了最优背压的概念,从而使接触面后的温度最低。并针对排气返流和反向压缩波的产生以及对排气温度的影响做了较为细致的研究,提出减少低温气体的返流和削弱反向压缩波的方案,为提高等熵膨胀效率提供了理论依据。
     (3)针对外循环耗散式气波制冷机建立了实验流程,针对不同的结构参数和操作参数对性能的影响做了较为系统的实验,深入研究了转速、膨胀比、偏角、背压、喷嘴宽度以及回气温度和固壁长度等参数对等熵膨胀效率的影响,以及转速对等熵压缩效率的影响,并利用模拟得出的结论对实验结果进行了分析。
     通过本文的研究,发现提高转速,增大偏角,针对转速选择合适的喷嘴,并适当提高背压和延长固壁长度能够显著地提高设备性能。本文的实验结果为改进设备的结构参数和操作参数提供了坚实的实验依据。
Aggregated Thermal Dissipation Gas Wave Refrigerator (AWR) is a new innovational Gas Wave Refrigerator (GWR). It has the advantage of simple and compact structure, low manufacturing cost, high isentropic refrigeration efficiency and high ability of operation with liquid. It can be used for removal water from natural gas which contains a small amount of water in the natural gas mining process. It also can be used for recovering the lighter hydrocarbon in natural gas. So the AWR has a broad prospect of application.
     AWR has lots of parameters which can be adjusted, and effects of each parameter on device performance are relatively complex, and the effects have coupling relationship. In order to study the effects of various parameters on device performance of the equipment, one dimensional isentropic flow theory, two dimension numerical simulation and Physics experiment are used conjunctively. A deep study of AWR is made, and the main research work and the conclusions are as follow:
     (1) Lots of numerical simulation is made in allusion to the structure of AWR. Matching problems of the equipment parameters are researched systematically, which combine one dimensional isentropic flow theory. The research contains the matching of high temperature export nozzle width and drift angle in fixed rotate speed and the matching of rotate speed in fixed drift angle. The systematic matching method is summarized which provide theoretical foundation to the experimental work.
     (2) The effects of the pressure of HT port on moving distance of contact surface are analyzed. The maximum distance of contact surface is equal to the length of the passage when the HT pressure is optimum, and the gas temperature behind the contact surface is lowest. Therefore the optimum HT pressure is put forward. And the generation and effects of exhaust reflux and reverse compression wave on exhaust temperature are researched particularly. A scheme is put forward for decreasing low temperature gas reflux and weakening reverse compression wave. These results provide theoretical basis of increasing isentropic expansion efficiency.
     (3) The experiment process of AWR is built to research the effects of various structural parameters and operating parameters on performance systematically. Effects of various parameters such as rotate speed, expansion ratio, HT pressure, drift angle, width of nozzle, backflow temperature and length of solid wall on isentropic expansion efficiency and effect of rotate speed on isentropic compression efficiency are in-depth researched. And the experimental results are analyzed on the basis of numerical simulation results.
     The study demonstrates that increasing rotate speed and drift angle, selecting appropriate nozzle on the basis of rotate speed, and increasing HT pressure and the length of solid wall properly will improve performance of AWR markedly. The experimental results are very important to perfect the structural parameters and operating parameters of AWR.
引文
[1]李伟,杨义,刘晓娟.我国天然气消费利用现状和发展趋势[J].中外能源,2010,15:8-12.
    [2]吴新阳.天然气浅冷装置冷量回收优化工艺[J].石油炼制与化工,2010,41(5):62-66.
    [3]刘伟,胡大鹏.气波制冷技术研究现状[J].制冷,2002,21(4):19-24.
    [4]张祉祐,石秉三.制冷及低温技术[M].北京:机械工业出版社,1981.
    [5]文向南,李铁林.节流制冷在天然气分离中的应用[J].天然气工业,1994,14(5):62-65.
    [6]计光华.透平膨胀机[M].北京:机械工业出版社,1982.
    [7]艾丽昆.透平膨胀机叶轮强度及模态的分析研究[D].兰州:兰州理工大学,2010.
    [8]张歌.锥形双路涡流管的内部流动与性能分析[D].大连:大连理工大学,2011.
    [9]United States patent, Thermal separators employing a movable distribute:No.4383423 [P]. May 17,1983.
    [10]李力.气波制冷机接受管内不定常流数值模拟[D].大连:大连理工大学,1994.
    [11]邵件,包裕弟,沈永年等.转动喷嘴膨胀机的试验研究[J].浙江大学学报,1984,18(3):25-34.
    [12]胡志敏,方曜奇等.刚直管在脉动压力作用下表面泵热的实验研究[C].全国化工机械专业教育指导委员会成立大会及第二届校际学术交流会.
    [13]熊炜.脉管式气波制冷机的试验研究:[D].上海:上海交通大学,1999.
    [14]俞鸿儒.热分离器内的流动[J].大连工学院学报,1984,23(4):1-7.
    [15]刘培启.对冲阻尼型气波制冷机性能研究[D].大连:大连理工大学,2009.
    [16]David M, Marechal J C, Simon Y and Gupin C. Theory flow in orifice pulse tube refrigerator[J]. Cryogenics,1993,33:154-159.
    [17]De Boer P C T. Pressure heat pumping in the orifice pulse-tube refrigerator[J]. Adv.Cry. Eng,1996,41:1471-1478.
    [18]Kittel P. Ideal orifice pulse tube refrigerator performance[J]. Cryogenics,1992,32 (9):843-844.
    [19]Nalim, M. R.. Preliminary Assessment of Combustion Modes for Internal Combustion Wave Rotors[C]. AlAA-1995-2801-927.
    [20]Wilso, J., Paxson,D. E.. Wave Rotor Optimization for Gas Turbine Topping Cycles [J]. Journal of Propulsion and Power,1996,12 (4):778-785.
    [21]Hoxie, S.S., Lear, W. E., and Micklow,G. J.. A CFD Study of Wave Rotor Losses Due to the Gradual opening of Rotor Passage Inlets[C]. AlAA1998-3253-993.
    [22]Nalim,M.R.. Wave Rotor Detonation Engine. US,6460342[P],2002.
    [23]Snyder, P., Alparslan, B., and Nalim, M. R.. Wave Rotor Combustor Test Rig Preliminary Design[P].2004International Mechanical Engineering Conference, ASME Paper IMECE2004-61795,2004.
    [24]Okamoto,K,, Nagashima,T.. A Simple Numerical Approach of Micro Wave Rotor Gasdynamic Design[P].16th International Symposium on Airbreathing Engines, Paper ISABE-2003-1213,2003.
    [25]Okamoto, K., Nagashima, T., and Yamaguchi, K.. Rotor-Wall Clearance Effects upon Wave Rotor Passage FIow[P].15th International Symposium on Airbreathing Engines, Paper ISABE-2001-1222,2001.
    [26]Okamoto, K., Nagashima, T., and Yamaguchi, K.. Introductory Investigation of Micro Wave Rotor[C].2003 International Gas Turbine Congress, ASME Paper IGTC03-FR-302, Japan,2003.
    [27]Akbari, P., Muller, N.. Preliminary Design Procedure for Gas Turbine Topping Reverse-Flow Wave Rotors[C].2003 International Gas Turbine Congress, ASME Paper IGTC03-FR-301,2003.
    [28]Akbari, P., Muller, N.. Gas Dynamic Design Analyses of Charging Zone for Reverse-Flow Pressure Wave Superchargers[C].2003 ASME Spring Technical Conference, ASME Paper ICES2003-690,2003.
    [29]朱彻,刘润杰,李洪安.气波制冷技术在天然气脱水净化工程中的应用[J].制冷,1995(1):10-15.
    [30]张朝函-一种新型机械-旋转式制冷机[J].低温工程,1993,1-34.
    [31]尹荣辅.川中油气田轻烃资源回收的问题和讨论[J].石油和天然气化工,1994,24(1):19-22.
    [32]蒋洪,朱聪.轻烃回收技术的现状及发展方向[J].石油规划设计,2000,11(2):15-16.
    [33]黄齐飞,李学来.热分离技术发展现状与应用前景[J].福建化工,2001,2:10-14.
    [34]孙以岑.利用余压的节能技术-用热分离机回收氨厂放空气的探讨[J].石油化工设备,1986,15(6):13-18.
    [35]俞鸿儒.用于低温风洞的新颖制冷方法[J].力学学报,1999,31(6):645-651.
    [36]俞鸿儒.产生风洞低温试验气流的新途径[J].流体力学实验与测量,1997,11(1):1-5.
    [37]梁世斌,方曜奇.利用低温技术进行物料细粉碎的实验研究[J].制冷学报,1995 (3):27-29.
    [38]梁世斌,方曜奇.利用低温技术进行胎面胶细粉碎的实验研究[J].制冷学报,1996(1):20-22.
    [39]李超,乐嘉陵,叶希超.激波运动与反射流场的ENO算法[J].气动实验与测量控制,1996,10(2):34-40.
    [40]张京平.存在衰减和真实气体效应的激波管激波速度的计算[J].计量学报,2000,21(1):45-50.
    [41]李学来,郭荣伟.振荡管内接触面的运动[J].空气动力学学报,2000,18(1):120-124.
    [42]宋金瓯,彭宝成,赵志广.热分离机内的非正常一维流动[J].河北科技大学学报,2000,21(3):1-5.
    [43]李学来.压力波制冷机工作管开口端处的流动分析[J].福州大学学报(自然科学版),2001,29(50):108-110.
    [44]代玉强,胡大鹏,刘伟,朱彻.含有复合阻尼结构的压力波制冷机振荡管内流动分析[J].低温与特气,2003,21(2):23-24.
    [45]刘学武,邹久朋,武君,张平.气波制冷机分配器出口参数的计算求解[J].制冷,2003,22(3):60-63.
    [46]刘海鑫,张朝涵.旋转式热分离机接受管内热力过程的理论分析[J].深冷技术,2004,1:8-12.
    [47]刘学武,金良安,李志义,胡大鹏.气波管内波系影响因素的实验研究与数值模拟[J].化工学报,2004,55(2):177-181.
    [48]施友民,代瑞国,刘学武.变工况对气波制冷机出口参数影响的模拟研究[J].石油与天然气化工,2004,33(5):320-323.
    [49]冀晓辉,刘伟.静止式气波制冷机流场的数值模拟[J].流体机械,2005,33(2):62-65.
    [50]刘虎.压力交换制冷机结构参数优化研究[D].大连:大连理工大学,2006.
    [51]丁美霞.压力交换制冷机参数对性能的影响[D].大连:大连理工大学,2007.
    [52]谈文虎.压力交换制冷机结构优化研究[D].大连:大连理工大学,2008.
    [53]何格宁.压力交换制冷机入射损失与排气反流问题研究[D].大连:大连理工大学,2009.
    [54]张洋乐.外循环耗散型气波制冷机制冷特性与增压研究[D].大连:大连理工大学,2010.
    [55]李学来,方曜奇,朱彻.气波制冷机振荡管管外强化传热的试验研究[J].制冷,1996,57(4):7-9.
    [56]李学来,方曜奇,朱彻,刘润杰.振荡管管壁轴向导热的试验研究[J].大连理工大学学报,1996,36(1):37-40.
    [57]李学来,朱彻,汪昭胜,郭荣伟.振荡管内冷热气体分流的实验研究[J].大连理工大学学报,1999,39(3):396-399.
    [58]李兆慈,徐烈,张存泉,孙恒,赵兰萍.气波制冷机等熵效率影响因素的实验研究[J].低温工程,2000,117(5):50-59.
    [59]邹久朋,刘学武,陈淑花,金良安.削弱接受管内反射激波能量的实验研究[J].低温工程,2001,121(3):48-53.
    [60]李学来,朱彻.振荡管复合阻尼陷波[J].化工学报,2001,52(5):379-380.
    [61]张朝涵,周国勇.提高旋转式热分离机热力性能的实验研究[J].低温与超导,2002,30(4):54-58.
    [62]李学来,黄齐飞,朱彻.反射激波的吸收对分离器性能的影响[J].化工学报,2003,54(2):170-175.
    [63]代瑞国,刘学武.旋射流型式气波制冷机实验研究[J].安徽化工,2003,126(6):45-47.
    [64]冀晓辉,刘伟.振荡管结构对气波制冷机制冷性能影响的研究[J].制冷学报,2004,3:19-21.
    [65]周传锋.外循环耗散型气波制冷机转子结构优化研究[D].大连:大连理工大学,2011.
    [66]Tarek M. Elharis, Sameera D. Wi jeyakulasuriya, M. Razi Nalim. Analysis of Deflagrative Combustion in a Wave-rotor Constant-Volume Combustor. AIAA paper 2011-583,2011.
    [67]Yu Matsutomi, Scott E. Meyer. Experimental Investigation on the Wave Rotor Constant Volume Combustor. AIAA paper 2010-7043,2010.
    [68]Indika U. Perera, Sameera D. Wijeyakulasuriya, M. Razi Nalim. Hot Combustion Torch Jet Ignition Delay Time for Ethylene-Air Mixtures. AIAA paper 2011-95,2011.
    [69]Frank K. Lu, Eric M. Braun, Luca Massa, Donald R. Wilson. Rotating Detonation Wave Propulsion:Experimental Challenges, Modeling, and Engine Concepts (Invited). AIAA paper 2011-6043,2011.
    [70]Tarek M. Elharis, Sameera D. Wijeyakulasuriya, M. Razi Nalim. Wave Rotor Combustor Aerothermodynamic Design and Model Validation based on Initial Testing. AIAA paper 2010-7041,2010.
    [71]是勋刚.湍流直接数值模拟进展与前景[J].北京:北京大学力学系,1992.
    [72]路明,孙西欢,李彦军,范志高.湍流数值模拟方法及其特点分析[J].河北建筑科技学院学报,2006.
    [73]崔桂香,许春晓,张兆顺.湍流大涡数值模拟进展[J].空气动力学学报,2004,22(2):121-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700