共鸣式射流振荡器的特性分析及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静止式气波制冷机是一种利用气波的膨胀而产生制冷效应的机器,其工作过程可以归纳为:气体经过自激励射流振荡器产生振荡射流,然后该振荡射流对—端封闭的振荡管周期性的射气,入射气体通过气波的膨胀运动将能量传递给管内原有的气体,并通过振荡管的管壁向周围环境散发热量而“冷却”。由于其没有任何的转动部件,只需要简单的静密封,因此特别适合用于高压天然气的加工处理。关于共鸣式气波机的相关报道很少,故本文选用共鸣式振荡器作为研究对象。
     本文采用数值模拟和实验研究相结合的方法对共鸣式气波制冷机进行研究,主要的工作和结论如下:
     (1)振荡器是在射流附壁效应的基础上开发出来的,射流的附壁特性是气波制冷机设计时的基础性依据。关于振荡器的附壁特性,本文通过建立振荡器的几何模型,对附壁射流进行数值模拟,结果表明:大的膨胀比反而不利于附壁;在保证稳定附壁的前提下,应尽量采用大喷嘴;相同压比下,位差越大,附壁距离越小
     (2)射流振荡气波制冷机内的射流应满足:①射流能够稳定振荡;②射流以特定的频率振荡。本文对共鸣式射流振荡气波制冷机进行了整机的模拟与分析,得到了气波制冷机内的流场、压力和速度分布,结果表明:共鸣腔的直径太小时、膨胀比过大或者过小振荡机都不能振荡。此外,振荡机的振荡频率不随共鸣腔参数的改变而改变,只是随共鸣管的管长呈线性变化。本文在共鸣管中加入了突扩段,不过对频率的影响不是很大。
     (3)射流的振荡特性和制冷效率是制冷机重要的参数。本文采用实验的方法对采用共鸣式射流振荡器的气波机进行了研究,研究的主要内容是通过测量振荡管内的压力波形,分析了气波机的振荡特性;然后通过测量制冷机进口和出口的温度差,计算出其制冷效率。结果表明:振荡机的固有频率只与共鸣管长度有关,与共鸣腔与操作条件无关;制冷效率随着共鸣管的长度和膨胀比的变化而变化,但基本上不随共鸣腔参数的改变而改变。
Static gas wave refrigerator is a type of machinery, in which self-induced jet oscillator is used to produce oscillation jet's periodical injection and come into oscillating tube with one-closed end. Energy is rapidly transferred from the injected gas to the intrinsic gas by way of propagation of those gas wave, which makes the temperature of the intrinsic gas increase and deliver the quantity of heat to the surrounding environment via the oscillating tube wall. The refrigerator has no running part and its seal components are simple. So its application is appropriate for the condition of high pressure. However, the research of the resonant gas wave refrigerator is few and far between theory and experiment. So, in this paper, the resonant oscillator is studied and used into the gas wave refrigerator.
     The numerical simulation and experiments are conducted to investigate the flow and thermal of the refrigerator and validate the results, including:
     (1) The oscillating apparatus is based on the theory of jet's wall-attaching effect which is also called Coanda effect, the performance of wall-attaching is the essential data for designing the gas wave refrigerator. To research on the property of the wall-attaching, numerical models were established and numerical analysis was applied to validate the results, including:it is not conducive to jet flow wall-attached to increase the expansion ratio; with the condition of oscillating, wide nozzle is welcome; the distance of wall-attached is longer as the smaller potential difference.
     (2) Within the gas wave refrigerator, the jet flow should oscillate with a certain range of frequency. In this paper, the resonant gas wave refrigerator was simulated numerically in integery, and the emphasis is mainly established in analysis on the pressure change of the gas in the oscillating tube, and the velocity distribution. The influence of operating parameter (e.g. pressure ratio) and geometry parameters (e.g. resonant cavity diameter and resonant tube) on the flow wall-attachment effect was studied. In order to understand oscillating frequency of gas wave refrigerator with different resonant line lengths and structure, the simulation was did.
     (3) The oscillation performance of jet, as oscillating frequency and refrigeration efficiency are the essential factor for the gas wave refrigerator. To analyze these how effect, an experimental equipment was set up and applied in the research on the wave movement within the receiving tube and the temperature of inlet and outlet. The oscillating frequency of the gas wave refrigerator is connected with the resonant tube, be independent of the resonant cavity and the operating condition. However, the refrigeration efficiency has the relationship with the resonant tube and the operating condition.
引文
[1]李学来.压力波制冷机的研究与工业开发[J].制冷,1997,60(3):6-12.
    [2]Thermal separators employing a movable distribute. Compiler:US,4383423[P/OL]. 1983-05-17
    [3]刘丽译.气体冷却设备及其用途.法国专利公报,专利号:1,588,234,1970
    [4]日特公开.昭53-64671
    [5]日特公开.昭53-54169
    [6]Galyukov A Etc. Numerical Analysis of Transient Gas Flow in a Pressure Wave Refrigerator. In:EH Hirschel, J Periaux, R Piva(eds), John Wiley & Sons, Chichester, Computational Fluid Dynamics 94, S Wagner, New York, Brisbane, Toronto, Singapore, 1994:678-684
    [7]Galyukov A. Voinovich. P, Timofeev. E. Wave processes in a pressure-wave refrigerator.1593-1597
    [8]Li X L etc. Peak-Oscillating Effect of Pressure Wave Refrigerator. In:Chen Guobang and Steimle F W (e d), Cryogenics and refrigeration-Proceedings of ICCR'98, Hangzhou, China,1998:534-537
    [9]大连理工大学气波制冷技术研究所,大连气波制冷研究推广中心.气波制冷技术与装置
    [10]朱彻,李洪安,邹久朋等.一项新兴的天然气脱水净化技术[J].天然气工业,1995,15(5):57-61
    [11]朱彻,刘润杰,李洪安.气波制冷技术在天然气脱水净化工程中的应用[J].制冷,1995,50(1):10-15
    [12]龙泽智.透平膨胀机在天然气中回收轻烃的应用及其技术发展[J].天然气工业.1995,15(1):64-65
    [13]张朝涵.一种新型制冷机械——旋转式热分离机[J].低温工程,1993,1:32-35
    [14]黄志达,黄钟岳,方曜奇等.新型节能装置-透平式热分离机的研究[J].大连工学院学报,1983,22(3):115-119.
    [15]尹洪超,马春燕,邱庆刚等.滩海边远油气井放空天然气深冷液化回收利用技术方案研究[J].制冷学报,1998,23(3):49-53
    [16]蒋洪,梁政,吴小朴等.南充轻烃回收装置工艺改造方案研究[J].天然气工业,1998,18(5):80-83
    [17]张朝涵.从石油天然气中回收轻烃的新工艺—旋转式热分离机的实际应用[C].第三届全国低温工程学术会议论文集,低温工程专刊,北京,1993:217-220
    [18]张育芳.低压气、轻烃回收工艺技术路线研究[J].天然气工业,1999.1:72-76
    [19]俞鸿儒.利用热分离器产生低温试验气流[J].自然科学进展,1998,8(3):377-381
    [20]张朝涵.一种新型制冷机械—旋转式热分离机[J].低温工程,1993,57-59
    [21]李学来.轴向及径向传热对气波振荡管冷效应的影响[D].大连理工大学:1996
    [22]Rennaz M C. Well head gas refrigerator field strips condensate [J]. World Oil, 1971,10:60-61.
    [23]Rennaz M C. New French gas cooler recovers 120bpd gasoline [J]. World Oil,1973, 8:57-59.
    [24]Christian D, Amande J C, Viltard C. Barge-mounted NGL plant boosts recovery from offshore field[J]. World Oil,1982,7:105-107.
    [25]Marchal P, Malek S, Vitard J C. Skid-mounted rotating thermal seperator[J].Oil and Gas (TECHNOLOGY),1984,11:55-58.
    [27]间宫林荣.かス冷却分离装置の化学工业への利用[J].化学装置,1978,2:52-57.
    [28]日特公开.昭47-10140.
    [29]日特公开.昭52-50379.
    [30]Galyukov A, Timofeev E. Proceedings of 20th Int Sym (On Shock Waves) [C]. Australian.13-20.
    [31]Saito T, Voinovich P, Zhao W etc. Experimental and numerical study of pressure wave refrigerator performance[J]. Shock Wave,2003,13:253-259.
    [32]Shao J, Bao Y D, Shen Y N etc. Experimental Investigation of an new type expander [J].Advances in Cryogenic Engineering,1986,31:685-692.
    [33]Shao J, Shen Y N, Feng Y P etc. Thermodynamic analysis and experimental study on petroleum gas separation system incorporating RJE [J]. Proceeding of ICESR,1986, 9.
    [34]Shao J, Gao J, Feng Y etc. Experimental study of influence of transient performance in pressure plus tubes on isentropic efficiency of RJE [J]. Cryogenics,1986, 26(11):634-636.
    [35]方曜奇等.第四届全国激波管与激波学术会论文集[C].1987:67-71.
    [36]黄志达,唐山椒.RFT-2000型透平式热分离机原理及应用[J].大连工学院学报,1985,24(4):123-124.
    [37]方曜奇等.接受管结构对热分离机制冷的影响[J].流体工程,1987,17(3):15-18.
    [38]邵件,包裕弟,沈永年等.转动喷嘴膨胀机的实验研究[J].浙江大学学报,1984,18(3):25-34.
    [39]邵件,沈永年.转动式热分离机转速与变压管长度匹配的研究[J].浙江大学学报,1988,22(5):114-119.
    [40]包裕弟,沈永年,张朝涵,冯仰浦,邵件.回收气体压力能的转动喷嘴膨胀机研究[J].能源工程,1981,2:27-30.
    [41]中国石油天然气总公司科技发展局.全国各油气田原油稳定和轻烃回收情况调查.1990,12.
    [42]孙以岑.利用余压的节能技术-用热分离机回收氨厂放空气的探讨[J].石油化工设备,1986,15(6):13-18.硕
    [43]俞鸿儒.用于低温风洞的新颖制冷方法[J].力学学报,1999,31(6):645-651.
    [44]杨军.正反馈式射流振荡器性能研究及应用[D].大连:大连理工大学,2008
    [45]A Glezer, M G Allen, D J Coe, B L Smith, M A Trautman [J], J W Wiltse, Synthetic Jet Actuators and Applications Thereof US Patent 5,758,823(1998).
    [46]B L Smith, A Glezer. Jet vectoring using synthetic jets[J],J Fluid Mech.458(2002) A Glezer. Controlled transients of flow reattachment 1-34.
    [47]A Glezer, M Amitay. Synthetic jets [J], Annu Rev. Fluid Mech.34(2002) 503-529.
    [48]M. Benchiekh, J C Bera, M Michard, M Sunyach. Pulsed jet control of a short diffuser [J], C R Acad. Sci. Paris, Mecanique des fluids/Fluids Mechanics-Series IIB 328, 2000,749-765.
    [49]M Amitay, over stalled airfoils[J].Int J Heat Fluid Flow 23(2002) 690-669.
    [50]J Tensi, I Boue, F Paille, G Dury. Modification of the wake behind a circular cylinder by using synthetic jets[J].J Visual 5(1) (2002)37-34.
    [51]M Watson, A J Jaworski, N J Wood. The development of synthetic jets for enhanced control of separated flows[C]. Proceedings of the 33rd AIAA Fluid Dynamics Conference and Exhibition, AIAA Paper 2003-3716, Orlando, FL, June 2003.
    [52]S Zhong, F Millet, N J Wood. The behaviour of synthetic jets in a laminar boundary layer[C]. Proceedings of the Seventh International Symposium on Fluid Control, Measurement and Visualization, Sorrento, Italy, August,2003.
    [53]Knauff R. Converting Pressure of Liberated Gas Energy into Mechanical Work. British Patent [P].1906
    [54]Knauff R. Converting Internal Gas Energy into Mechanical Work. British Patent [P].1906
    [55]刘虎.压力交换制冷机结构参数优化研究[D].大连:大连理工大学,2006
    [56]丁美霞.压力交换制冷机参数对性能的影响[D].大连:大连理工大学,2007
    [57]徐烈,熊炜,孙恒.脉管式气波制冷的实验研究[J].低温工程,1999,4:136.
    [58]熊炜,徐烈,张涛.脉管制冷与气波之比较[J].低温工程,1998,5:45-48.
    [59]李兆慈,徐烈,赵兰萍.脉管制冷与气波制冷耦合的研究[J].低温与超导,2000(2)1-5.
    [60]David M, Marechal J C, Simon Y and Gupin C.Theory flow in orifice pulse tube refrigerator [J]. Cryogenics,1993,33,54-159.
    [61]De Boer P C T. Pressure heat pumping in the orifice pulse-tube refrigerator[J]. Adv. Cry. Eng,1996,41:1471-1478.
    [62]Kittel P. Ideal orifice pulse tube refrigerator performance [J]. Cryogenics,1996, 36:849.
    [63]俞鸿儒.热分离器内的流动[J].大连工学院学报,1984,23(4):1-7.
    [64]黄公明.脉动管并非冲波管[J].低温工程.1987 Nol.
    [65]黄公明.脉动管中波的形成、反射和相交[J].低温工程.1987 Nol.
    [66]李力.气波制冷机接受管内不定常流数值模拟[D].大连:大连理工大学.1994.
    [67]胡志敏,方曜奇等.刚直管在脉动压力作用下表面泵热的实验研究[C].全国化工机械专业教育指导委员会成立大会及第二届校际学术交流会.
    [68]熊炜.脉管式气波制冷机的实验研究[硕士学位论文].上海:上海交通大学.1999.
    [69]方曜奇,郑洁,刘润杰等.气波制冷效率影响因素的实验研究[J].气动试验与测量控制,1993,7(3):15-18.
    [70]李学来.管长对振荡管冷效应影响的实验研究.制冷,1996,(2):15-17.
    [71]李兆慈,徐烈,张存泉,孙恒,赵兰萍.气波制冷机等熵效率影响因素的实验研究[J].低温工程,2000,5:50-54.
    [72]朱雪琴.气波制冷机振荡管最佳管长的研究[J].无锡轻工业学院学报,1993,2:135-140.
    [73]Rennaz M C. New French Gas Cooler Recovers 120 bpd Gasoline[J]. World Oil,1973, 8:57-59.
    [74]方曜奇,胡志敏.振荡管结构对热分离机制冷的影响[J].流体工程,1987,17(3):15-18.
    [75]李学来,黄齐飞,朱彻.反射激波的吸收对热分离器性能的影响[J].化工学报,2003,54(2):170-175.
    [76]于伟.利用多孔板阻尼提高热分离器效率文[C].青年力学协会第二届年会文流文1992:111-134.
    [77]YuWei(于伟).Study on the factors effect on refrigeration efficiency of thermal separator[D]. Beijing:Institute of Mechanics, Chinese Academy of Sciences,1988.
    [78]李学来,朱彻.振荡管复合阻尼陷波[J].化工学报,2001,52(5):379-380.
    [79]代玉强,胡大鹏,刘伟,朱彻.含有复合阻尼结构的压力波制冷机振荡管内流动分析[J].低温与特气,2003,21(2):23-25.
    [80]邹久鹏,刘学武,陈淑花.削弱振荡管内反射激波能量的实验研究[J].低温工程,2001,3:48-53.
    [81]刘学武,陈淑花.新型气波制冷机的节能效果[J].节能和环保,2001,9:34-35.
    [82]刘学武,金良安,李志义,胡大鹏.气波管内波系影响因素的实验研究与数值模拟[J].化工学报,2004,55(2):177-181.
    [83]代玉强.压力交换制冷机性能分析[D].大连:大连理工大学,2003.
    [84]李兆慈.脉管式气波制冷机耦合特性的研究[D].上海:上海交通大学,2001.
    [85]顾凯.热分离机的结构及应用探讨[J].化工装备技术,1990,11(1):24-29.
    [86]刘海鑫,张朝涵.旋转式热分离机振荡管内热力过程的理论分析[J].深冷技术,2004,1:8-12.
    [87]黄志达,唐山椒.RFT-2000型透平式热分离机原理及应用[J].大连工学院学报,1985,24(4):123-124.
    [88]黄齐飞,李学来.热分离技术发展现状和应用前景[J].福建化工,2001,2:10-14.
    [89]刘伟,冀晓辉.新型气波制冷机的结构设计及性能研究[J].流体机械,2004,32(4):63-65.
    [90]李学来.两种管外传热型式对振荡管性能的影响[J].化工学报,2000,51(1):12-16.
    [91]张朝涵,周国勇.提高旋转式热分离机热力性能的实验研究[J].低温与超导,2002,30(4):54-58.
    [92]刘学武,邹久朋,朱彻等.反冲膨胀式波制冷机制冷特性[J].天然气工业,2005,25(2):176-180.
    [93]李学来.压力波制冷机工作管开口端处的流动分析[J].福州大学学报(自然科学版),2001,29(5):108-110.
    [94]邵件,包裕弟.转动喷嘴膨胀机的实验研究[J].浙江大学学报.1984,3(18):52-54.
    [95]包裕弟,沈永年.回收气体压力能的转动喷嘴膨胀机的实验研究[J].能源工程,1982,2:27-30.
    [96]李学来,郭荣伟.振荡管最佳射流激励频率钳制效应[J].南京航空航天大学学报,1998,30(6):606-610.
    [97]李学来,黄齐飞,朱彻.有关因素对振荡管最佳射流激励频率的影响[J].化工学报,2002,53(2):194-198.
    [98]冀晓辉,刘伟.振荡管结构对气波制冷机制冷性能影响的研究[J].制冷学报,2004,3:19-21.
    [99]李学来.振荡管管壁轴向导热的实验研究[J].大连理工大学学报,1996,36(1):37-40.
    [100]李学来.振荡管管壁轴向传热的研究[D].大连:大连理工大学,1996.
    [101]李学来,方曜奇,朱彻.气波制冷机振荡管外强化换热的试验研究[D].制冷,1996,4:7-9.
    [102]李学来,方曜奇,朱彻,刘润杰.振荡管管壁轴向导热的试验研究[J].大连理工大学学报,1996,36(1):37-40.
    [103]李学来,朱彻,方曜奇.振荡管最佳隔热位置[J].化工学报,2001,52(9):757-760.
    [104]赵承庆,姜毅.气体射流动力学[M].北京:北京理工大学出版社,1998.
    [105]董志勇.射流力学[M].北京:科学出版社,2005.
    [106]Coanda H. Device for deflecting a stream of elastic fluid projected into an elastic fluid:US,2052869[P/OL].1936-09-01.
    [107]刘伟.静止式气波制冷机振荡特性研究[D].大连:大连理工大学,2003.
    [108]原田正一,尾崎省太郎编.射流工程学[M].北京:科学出版社,1977.
    [109]Bourque C, Newman B G. Reattachment of a two-dimensional incompressible jet to an adjacent flat plate [J]. Aeronaut Q,1960,11:201-232.
    [110]McRee D I, Moses H L. The effect of aspect ratio and offset ratio on nozzle flow and jet reattachment[M]. In:Advances in Fluids (ed by Brown F T). ASME Press, New York,1967:142-161.
    [111]Perry C C. Two-dimensional jet reattachment[D]. Michigan:University of Michigan, 1967.
    [112]Rajaratnam N, Subramanya N. Plane turbulent reattachment wall jets[J].ASCE J Hydraulic Div,1968,94:95-112.
    [113]Ayukawa K, Shakouchi T. Analysis of a jet attaching to an offset parallel plate (1st Report, Oscillation of a jet). Bull JSME,1974,19:395-401.
    [114]Hoch J, Jiji L M. Two-dimensional turbulent offset jet-boundary interaction[J]. Trans ASME J Fluids Eng,1981,103:154-161.
    [115]Nozaki T, Hatta K, Nakashima M, Matsumura H. Reattachment flow issuing from a finite width nozzle[J]. Bull JSME,1979,22:340-347.
    [116]Nozaki T, Hatta K, Sato N, Matsumura H. Reattachment flowissuing from a finite width nozzle[C] (Report 2. Effects of initial turbulence intensity). Bull JSME,1981,24: 363-369.
    [117]Lund T S. Augmented thrust and mass flow associated with two-dimensional jet reattachment[J]. AIAA J,1986,24:1964-1970.
    [118]Pelfrey J R R, Liburdy J A. Effect of curvature on the turbulence of a two-dimensional jet[J].Exp Fluids,1986,4:143-149.
    [119]Pelfrey J R R, Liburdy J A, Mean flow characteristics of a turbulent offset jet[J]. Trans ASME J Fluids Eng,1986,108:82-88.
    [120]Kim D S, Yoon S H. Flow and heat transfer measurements of a wall attaching offset jet[J]. Int. J Heat Mass Transfer,1996,39(14):2907-2913.
    [121]Lai C S,Lu D. Effect of wall inclination on the mean flow and turbulence characteristics in a two-dimensional wall jet[J]. Int J Heat and Fluid Flow,1996, 17:377-385.
    [122]Nasr A, Lai J C S. A turbulent plane offset jet with small offset ratio [J]. Experiments in Fluids,1998,24:47-57.
    [123]Song H B, Yoon S H, Lee D H. Flow and heat transfer characteristics of a two-dimensional oblique wall attaching offset jet[J]. International Journal of Heat and Mass Transfer,2000,43:2395-2404.
    [124]Allery C, Guerin S,Hamdouni A, Sakout A. Experimental and numerical POD study of the Coanda effect used to reduce self-sustained tones[J]. Mechanics Research Communications,2004,31:105-120.
    [125]Parneix S, et al. Predictions of turbulent heat transfer in an axisymmetric jet impinging on a heated pedestal[J]. ASME J Heat Transfer,1999 121(2):43-49.
    [126]Speziale C G, Thangam S. Analysis of an RNG based turbulence model for separated flows [J]. Int J Engng Sci,1992,30(10) 1379-1388
    [127]Thangam S, Speziale C G. Turbulent flow past a backward-facing step:a critical evaluation of two-equation models [J]. AIAA J,1992,30(5):1314-1320
    [128]王少平,曾扬兵,沈孟育等.用RNGκ-ε模型数值模拟180°弯管内的湍流分离流动[J].力学学报,1996,28(3):257-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700