用户名: 密码: 验证码:
锂离子电池正极材料层状LiNi_xCo_(1-2x)Mn_xO_2的合成与改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发高性能、低成本的新型电极材料一直是锂离子电池的研究方向。多元过渡金属氧化物正极材料LiNi_xCo_(1-2x)Mn_xO_2与LiCoO_2比较,价格相对低廉,质量比容量相当,热稳定性能和循环性能更好,被认为是最具开发应用前景,现实替代LiCoO_2的新型正极材料之一,目前该材料已经逐步走向市场,应用领域不断扩大。
     然而,LiNi_xCo_(1-2x)Mn_xO_2材料属于多元复合氧化物,制备过程较LiCoO_2复杂。本文以制备高性能可商业化应用的LiNi_xCo_(1-2x)Mn_xO_2系列材料为目标,选取低Co含量的LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2材料为主要研究对象,在合成方法上寻求探索和突破,采用喷雾热分解法和控制结晶法两种技术路线合成层状结构材料LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2。同时,分析LiNi_xCo_(1-2x)Mn_xO_2系列材料由于过渡金属元素含量的变化带来材料性能上的差异,以及阴阳离子掺杂对材料在高截止电压下循环性能的影响。论文主要的研究工作如下:
     (1)喷雾热分解机理模型的建立和实验条件研究。针对合成过程易产生空心破碎粒子,降低材料振实比重的现象,在分析喷雾热分解固体颗粒形成过程步骤的基础上,建立关键控制步骤的数学模型,并提出合成高比重实心粒子的机理模型。机理模型认为,溶剂从液滴表面蒸发液滴收缩变小的过程中,在液滴表面达到过饱和浓度开始出现晶核(t=(?)_1)和液滴表面壳体完全形成(t=(?))两个时刻,如液滴中心浓度达到溶液的饱和平衡浓度,即C_A(0,(?)_1)≥C_(AE),液滴才能形成实心颗粒。而后,通过不同的工艺条件小试实验,探讨喷雾热分解过程中影响粉体形貌的各种因素。研究表明,在前驱溶液中添加一定量的尿素,经热分解过程在液滴内分解成的OH~-和NH_4~+有利于生成成核晶种,从而有利于实心粒子的形成。
     (2)率先进行了喷雾热分解技术在锂离子电池正极材料制备领域应用的工程化实践。在小试实验确定优化合成工艺条件的基础上,自行设计一套喷雾热分解中试设备,并进行放大试验,研究合成条件对LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2性能的影响,探索喷雾热分解技术合成LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2材料产业化应用的可行性。试验结果表明,经喷雾热分解合成的前驱体,可以在较低的后续烧结温度(900℃),较短的烧结时间(6h)制备出晶型完备,电化学性能优良的正极材料LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2。
     (3)控制结晶法制备LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2中试生产技术研究。采用氢氧化物控制结晶法合成LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2时,主要探讨前驱体的合成条件对形貌、粒度、振实比重、比表面积等物理性能的影响。pH值、氨水含量对前驱体微观晶粒形貌影响显著,提高pH值和合成温度,增加反应溶液中的氨水含量,有利于提高前驱体的振实比重,减小比表面积。研究锂化烧结温度和气氛对材料性能的影响,最佳的烧结制度为:100℃/h升温至750℃保温10h而后再升温至950℃保温10h。在此实验基础上,形成了整套控制结晶法合成LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2中试生产技术,包括原料物理化学指标、工艺技术参数、前驱体合成和锂化合成的主要设备。
     (4)系统研究了LiNi_xCo_(1-2x)Mn_xO_2(x=0.25,0.33,0.4,0.5)系列材料性能上的差异。采用喷雾热分解技术合成不同组分的LiNi_xCo_(1-2x)Mn_xO_2(x=0.25,0.33,0.4,0.5)系列材料,研究组分的变化对材料结构和电化学性能的影响。Co含量的增加有利于提高材料的二维层状结构特征及结构的稳定性,降低金属阳离子的混排现象,改善材料的循环性能和倍率性能。提高截止电压LiNi_xCo_(1-2x)Mn_xO_2系列材料可获得更高的比容量,但是在循环过程中的衰减加剧。
     (5)研究Ti、F掺杂对层状LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2材料电化学性能的影响。Ti、F掺杂可明显改善LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2在高截止电压下的循环性能。掺杂材料Li_(0.4)Co_(0.2)Mn_(0.4-x)O_(2-y)(x=0.02,y=0.06)在2.5~4.7V电压区间首次容量达193.5 mAh·g~(-1),40次循环容量保持在91.5%。
Intensive research and development work is being conducted to further improve the performance of lithium ion batteries and reduce the cost of electode materials.Multi-element transition metal oxides of LiNi_xCo_(1-2x)Mn_xO_2 is considered as a potential and active one of the new cathode materials of Li-ion batteries to replace LiCoO_2,for its inexpensive,which also has higher specific capacity,better thermal stability and better cyclic performance compared with LiCoO_2.Recently,this material begins to be commercially employed and has been applied in more and more fields.
     The multiple complex oxides of LiNi_xCo_(1-2x)Mn_xO_2 have more complicated preparation than LiCoO_2.In this dissertation,the research aims at synthesizing LiNi_xCo_(1-2x)Mn_xO_2 that can reach a level of commercial application.The layer-structured material of LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2 with low Co content is selected to be emphases of the research works.To make a breakthrough in prepared method, the materials had been synthesized by two different routes as spray pyrolysis and co-precipitated metal hydroxide by controlling crystallization.In addition,the effect of different transition-metal content on the structural and electrochemical characteristics had been studied.The influence of doping anion and cation on the cyclic performance at higher cut-off voltage were also investigated.The main results are as follows:
     (1) The mechanism model of spray pyrolysis was established and the experimental conditions was researched.To overcome low tap density caused by the hollow and crushing phenomenon,in this work,on the basis of studying the process stages of the particle formation in spray pyrolysis,the mathematical model of the key controlling stages was established and the mechanism model of forming the filled dense particle was proposed.Mechanism model is described as follows:during the solvent evaporation from a free liquid surface,at the moments of the solute concentration on the droplet surface reaching its critical supersaturation(t=(?)_1) and full crust forming(t=(?)),if the droplet center concentration reached equilibrium saturation of solute,the liquid droplet would form the filled dense particle.The effects on the particle morphology were also studied by small experimental with different synthesis conditions.Moreover,the experimental results showed that addition of polymeric precursor solutions containing urea,which decomposed and produces OH~- and NH_4~+ as the precipitation during spray pyrolysis process,was advantageous to formation of filled dense particle.
     (2) The engineering practice of spray pyrolysis in the field of preparing lithium-ion battery cathode material were implemented firstly.To explorate the feasiblitity of realizing industrial applications of spray pyrolysis,based of the small experiment,the pilot experiment was implemented on pilot experimental platform designed by ourself and the effect of synthesis conditions on the performance of LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2 was studied.The test result indicated,when the precursor prepared by spray pyrolysis was used as primal materials,LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2 with the perfect crystal and excellent electrochemical performance could be synthesized by low temperature(900℃) and short sintering time(6h).
     (3) The pilot technique of LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2 was also synthesized by co-precipitated metal hydroxide by controlling crystallization.The effect of operating conditions on precursor morphology,particle size,tap density and specific surface area was investigated.PH and ammonia content significantly influenced micro-morphology of precursor.With increasing pH,preparing temperature and ammonia content in reaction solution,tap density of precursor was increased and specific surface area was decreased. Meanwhile,influence of sintering temperature and sintering atmosphere of lithiation sinter on material performance was investigated.The optimized sintering conditions was obtained as follows:At the elevating rate of 100℃/h,the material was sintered at 750℃for 10h,then,raise to 950℃for 10h.On this basis,a pilot-production technique of co-precipitated metal hydroxide by controlling crystallization was developed to prepare LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2.The technique includes:the physical & chemical index,technology technique parameter and main equipment.
     (4) A systematic study of the performance difference on LiNi_xCo_(1-2x)Mn_xO_2 is conducted.The series composites of LiNi_xCo_(1-2x)Mn_xO_2(x=0.25,0.33,0.4,0.5) were synthesized by spray pyrolysis.The influence of different transition-metal content on the structural and electrochemical characteristics were studied.The increase of Co content improved characteristics of two-dimensional layered structure and structure stablitity,reduced the degree of the cation mixing and improved the cyclic performance and rate capability.The capacity of LiNi_xCo_(1-2x)Mn_xO_2 increases with higher cut-off voltage,but the capacity retention in the cyclic tests become worse.
     (5) The effects of doping F and Ti on the structure and electrochemical performance of LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2 were studied. The results indicated that the material with doping F and Ti could help to improve the cyclic performance at higher cut-off voltage. LiNi_(0.4)Co_(0.2)Mn_(0.38)Ti_(0.02)O_(1.94)F_(0.06) exhibited the specific capacity of 193.5 mAh·g~(-1),and its capacity retained 91.5%after cycling 40 times in the voltage range of 2.5~4.6V.
引文
[1]李景虹.先进电池材料[M].北京:化学工业出版社,2004:1-14
    [2]吕鸣祥,黄长保,宋玉谨.化学电源[M].天津:天津大学出版社,1992:306-307
    [3]蔡克群.次世代二次电池-锂金属二次电池开发展望[J].工业材料,1999,146:127-133
    [4]郭炳煜,徐徽,王先友,肖立新.锂离子电池[M].长沙:中南大学出版社.2002:1-17
    [5]M.Yoshio,H.Tanaka,K.Tominaya,et al.Synthesis of LiCoO_2 from cobalt-organic acid complex and its electrode behavior in a lithium secondary battery[J].J.Power Sources,1992,40:347-353
    [6]M.M.Thackeray.Structural considerations of layered and spinel lithiated oxides for lithium ion battery[J].J.Electrochem Soc.,1995,142(8):2558-2563
    [7]A.Rougier,P.Gravereau,C.Delmas.Optimization of composition of the Li_(1-z)Ni_(1+z)O_2 electrode material:Structural,magnetic and electrochemical studies[J],J.Electrochem Soc.,1996,143(4):1168-1175
    [8]T.Ohzuku,M.Kitagawa,T.Hiral.Electrochemistry of manganese dioxide in lithium nonaqueous cell[J].J.Electrochem Soc.,1990,137(3):769-775
    [9]T.A.Chirayil,P.Y.Zavalij,M.S.Whitetingham.A new vanadium dioxide cathode[J].J.Electrochem Soc.,1996,143(9):L193-L195
    [10]H.Fujimoto,A.Mabuchi,K.Tokumitsu,et al.Effect of crystallite size on the chemical compositions of the stage 1 alkali metal-graphite intercalation compounds[J].Carbon,1994,32(4):193-198
    [11]王先友.锂离子电池碳负极研究新动向[J].电源技术,1999,23(4):233-237
    [12]张文.锂离子电池用碳负极材料[J].电池,1997,27(3):132-135
    [13]A.Mabuchi.Charge-discharge characteristics of the mesocarbon microbeads heat-treated at different temperatures[J].J.Electrochem Soc.,1995,142(4):1041-1046
    [14]马树华.锂离子电池负极材料的表面改性与修饰[J].电化学,1997,3(3):293-296
    [15]M.Nishijima.Li deintercalation-intercalation reaction and structural change in lithium transition metal nitrides Li_7MnN_4[J].J.Electrochem Soc, 1994,141:2966-2971
    [16]M.Nishijima.Anode performance of new layered nitrades[J].J.Electrochem Soc,1996,83:107-117
    [17]李建军.锂离子电池负极材料氢氧化锡包覆天然石墨的研究[C].第二十四届中国化学与物理电源学术年会论文集,哈尔滨,2000,282-283
    [18]华寿南.铁钠复合氧化物作锂离子电池负极材料的研究[J].电源技术,1999,23(1):2-4
    [19]吴宇平.锂离子蓄电池锡基负极材料的研究[J].电源技术,1999,23(3):191-193
    [20]杜翠薇.锂离子电池非碳负极材料的研究进展[C].第二十四届中国化学与物理电源学术年会论文集,哈尔滨,2000:294-295
    [21]扬遇春,郑有国.锂离子电池材料新进展[J].电池,1998,28(4):181-183
    [22]M.Zhao,H.D.Dewald,F.R.Lemke,et al.Electrochemical stability of graphite-coated copper in lithium-ion battery electrolytes[J],J.Electrochem Sot.,2000,147(11):3983-3988
    [23]Y.Ein-Eli,S.R.Thomas,V.R.Koch.The role of SO_2 as an additive to organic Li-ion battery electrolytes[J].J.Electrochem Soc.,1997,144(4):1159-1165
    [24]E.S.Takeuchi,H.Gan,M.Palazzo,et al.Anode passivation and electrolyte solvent disproportionation:mechanism of ester exchange reaction in lithium-ion batteries[J].J.Electrochem Soc.,1997,144(6):1944-1948
    [25]M.C.Smart,B.V.Ratnakumar,S.Surampudi,et al.Irreversible capacities of graphite in low temperature electrolytes for lithium-ion batteries[J].J.Electrochem Soc.,1999,146(11):3963-3969
    [26]刘业翔,胡国荣,禹筱元.锂离子电池研究与开发的新进展[J].电池,2002,32(5):269-273
    [27]田春霞.电动汽车用先进电池的现状及发展[J].电池,2000,30(2):83-85
    [28]I.D.Bloom,S.A.Jones,V.S.Battaglia.Performance evaluation of the advance technology development program gen 2 cells[C].204th meeting of the electrochemicasl society co-sponsored in part by the electronics division of the American ceramic society,program information,October 12-13,2003
    [29]包信国,阎智刚,章宁琳等.国外电动车的发展近况[J].电池,2001,31(3):138-141
    [30]陈立泉.锂离子电池最新动态和进展[J].锂电池专讯,1999,2:1-2
    [31]H.Katz,W.Bogel,J.P.Buchel.Industrial awareness of lithium batteries in the word,during the past two years[J].J.Electrochem Soc.,1998,72:43-50
    [32]林美云.日本新阳光计划中的锂二次电池的发展现况[J].工业材料,1999,146:162-169
    [33]H.Andoh,R.Ishilawa,S.Furuta,et al.Lithium secondary batteries in Japan[J].J.Power Sources,1995,54:306-309
    [34]屈平,方芳.锂离子电池的技术与市场[J].国际电源商情,2004,9:32-35
    [35]谢成兴.车用大型锂离子电池发展概论[J].工业材料,1999,146:146-151
    [36]K.Tamura,T.Horiba.Large-scale development of lithium batteries for electric vehicles and electric power storage applications[J].J.Power Sources,1999,81-82:156-161
    [37]雷惊雷,张占军,吴立人等.电动车用电源及其发展战略[J].电源技术,2001,25(1):40-46
    [38]雷永泉,万群,石永康.新能源材料[M].天津:天津大学出版社,2000:1-143
    [39]K.Mizushima,P.C.Jones,J.B.Goodenough,et al.Li_xCoO_2(0<x<1):A new cathode material for batteries of high energy density[J].Mat.Res.Bull.,1980,15(6):783-789
    [40]J.Akimoto,Y.Gotoh,Y.Oosawa.Synthesis and structure refinement of LiCoO_2 single crystals[J].J.Solid State Chemistry,1998,141:298-302
    [41]J.M.Paulsen,J.R.Muller-Nehaus,J.R.Dahn.Layered LiCoO_2 with a different oxygen stacking(O_2 structure) as a cathode material for rechargeable lithium batteries[J].J.Electrochem Soc,2000,147(2):505-516
    [42]J.N.Reimers,J.R.Dahn.Electrochemical and In Situ X-Ray diffraction studies of lithium intercalation in Li_xCoO_2[J].J.Electroehem Soc.,1992,139:2091-2097
    [43]J.N.Reimers,J.R.Dahn,U.N.Sacken.Effects of impurities on the electrochemical properties of LiCoO_2[J].J.Electrochem Soc.,1993,140:2752-2754
    [44]A.Mendiboure,C.Delmas,P.Hagenmuller.New layered structure obtained by electrochemical deintercalation of the metastable LiCoO_2(O_2)variety[J].Mter.Res.Bull.,1984,19:1353-1392
    [45]K.Mizushima,P.C.Jones,J.B.Goodenough.LixCoO_2(0<x≤1):A new cathode material for batteries of high energy density[J].Solid State Ionics,1981,3-4:171-174
    [46]M.G.S.R.Thomas,P.G.Bruces,J.B.Goodenough.AC impedance of the Li_(1-x))CoO_2 electrode[J].Solid State Ionics,1986,18-19:794-798
    [47]J.Molenda.Electronic processes in electrode materials of A_xMx_2-Type[J].Status Solidi B,1984,122:591-598
    [48]J.Molenda,A.Stoklosa,T.Bak.Modification in the electronic structure of cobalt bronze Li_xCoO_2 and the resulting electrochemical properties[J].Solid State Ionics,1989,36:53-58
    [49]G.G.Amatucci,J.M.Tarascon,L.C.Klein.CoO_2,The end member of the Li_XCoO_2 solid solution[J].J.Electrochem.Soc.,1996,143:1114-1123
    [50]T.Ohzuku,A.Ueda,M.Nagayama.Electrochemistry and structural chemistry of LiNiO_2(R~3m) for 4 volt secondary lithium cells[J].J.Electrochem Soc.,1993,140:1862-1870
    [51]F.Ronci,B.Scrosati,V.R.Albertini,et al.A novel approach to In Situ diffractometry of intercalation materials:The EDXD technique preliminary results on LiNi_(0.8)Co_(0.2)O_2[J].Electrochem.Solid-State Lett.,2000,3:174-177
    [52]R.Yazami.High performance LiCoO_2 positive electrode material[J].J.Power Sources,1995,54(2):389-392
    [53]D.Larcher.Electrochemically active LiCoO_2 and LiNiO_2 made by cation exchange under hydrothermal conditions[J].J.Electrochem Soc.,1997,144(2):408-417
    [54]章福平.酒石酸法合成LiCoO_2的的结构及其二次锂电池行为研究[J].电化学,1995,3:342-347.
    [55]A.D.Epifanio,F.Croce,F.Ronci,et al..Thermal,electrochemical and structural properties of stabilized LiNiyCo_(1-y-z)M_zO_2 Lithium-ion cathode material prepared by a chemical route[J].Phys.Chem.Chem.Phys.,2001,67(3):4399-4403.
    [55]刘景,温兆银,吴梅梅等.锂离子电池正极材料的研究进展[J].无机材 料学报,2002, 17(6):1-9
    [57] A.R. Armstrong, A.D. Robertson, G. Robert, et aL.The layered intercalation compounds Li(Mn_(1-y)Co_y)O_2:postive electrode materials for lithium-ion batterys[J]. J. Solid State Chemistry, 1999,145(2):549~556
    [58] M. Holzapfel, R. Schreiner, A. Ott. Lithium-ion conductors of the system LiCo_(1-x)Fe_xO_2: a first electrochemical investigation[J]. Electrochemical Acta, 2001, 46(7): 1063-1070
    [59] S. Madhvi, G.V. Subba Rao, B.V.R. Chowdari, et al. Effect of Cr dopant on the cathodic behavior of LiCoO_2[J].Electrochimica Acta,2002,48(3):219-226
    [60] S. Madhavi, G.V. Subba Rao, B.V.R. Chowdari, et al.. Synthesis and cathodic properties of LiCo_(1-y)Rh_yO_2(0≤y≤0.2) and LiRhO2[J].J. Electrochem Soc., 2001, 148(4):A1279-A1286
    [61] B.J. Hwang, Y.W. Tasi, G.T.K. Fey, et al. Effect of Lanthanum dopant on the structural and electoral and electrical properties of LiCoVO_4 cathode materials investigated by EXAFS[J]. J. Power Sources, 2001, 97-98(4):551-554
    [62] G.T.K. Fey, J.G. Chen, V. Subramanian, et al. Preparation and electrochemical properties of Zn-doped LiNi_(0.8)Co_(0.2)O_2[J]. J. Power Sources, 2002, 112(2):384-394
    [63] I. Kodama, Y. Yoshida, I. Nakane, et al. Non-aqueous electrolyte cell having a positive electrode with Ti-attached L1CoO_2 [P].United states: 6395426, May 28, 2002
    [64] M. Mladenov, R.Stoyanova, E. Zhecheva, et al. Effect of Mg doping and MgO-surface modification on the cycling Stability of LiCoO_2 electrodes[J].Electrochemistry Communications, 2001,3:410-416
    [65] S. Levasseur, M. Menetrier, C. Delmas. On the Li_xCo_(1-y)Mg_yO_2 system upon deintercalation: electrochemical, electronic properties and 7Li MAS NMR studies[J].J. Power Sources, 2002,112(2): 1-9
    [66] G. Ceder, Y.M. Chiang, D.R. Sadoway, et al. Identification of cathode materials for lithium batteries guided by first-principles calculations[J]. Nature, 1998, 392(2):694-696
    [67] W.S. Yoon, K.K. Lee, K.B. Kim. Synthesis of LiAl_yCo_(1-y)O_2 using Acrylic acid and its electrochemical properties for Li rechargeable batteries[J]. J. Power Sources,2001,97-98(2):303-307
    [68]J.J.Kim,K.H.Ryu,K.Sakaue,et al..Strutural characterization for the chemically Li~+ ion extracted LiyCoO_2,LiyCo_90.95)Ga_(0.05)O_2 and Li_yCo_(0.9)Ga_90.1)O_2 compounds[J].Journal of Physics and Chemistry of Solids.,2002,63(11):2037-2045
    [69]N.Imanishi,M.Fujii,A.Hirano,et al..Structure and electrochemical behaviors of Li_xCoO_2(x>1) treated under high oxygen pressure[J].Solid state ionics.,2001,140(1-2):45-53
    [70]吴宇平,方世壁,刘昌炎,周恒辉,江英彦.锂离子电池正极材料氧化钴锂的进展[J].电源技术,1997,21(5):208-209
    [71]G.T.K.Fey,V.Subra,V.Subramanian,et al.Electrochemical performance of Sr~_(2+)-doped LiNi_(0.8)Co_(0.2)O_2 as a cathode material for lithium batteries synthesized via a wet chemistry route using oxalic acid[J].Materials letters.,2002,52(3):197-202
    [72]R.Alcantara,P.Lavela,J.L.Tirado.Structure and electrochemical Properties of Boron-Doped LiCoO_2[J].J.Solid State Chemistry,1997,134(2):265-273
    [73]J.K.Hong,J.H.Lee,M.seung.Effect of carbon additive on electrochemical performance of LiCoO_2 composite cathodes[J].J.Power Sources,2002,111(1):90-96
    [74]A.Rougier,P.Gravereau,C.Delmas.Optimization of the composition of the Li_(1-x)Ni_(1-z)O_2 electrode materials:structural Magnetic and electrochemical studies[J].J Electrochem Soc.,1996,143:1168-1175
    [75]L.Wu,J.N.Reimers,J.R.Dahn.Crystal structure of Li,,Ni_(2-x)O_2 and a lattice-gas model for the order-disorder transition[J].Phys.Rev.B.,1992,46:3236-3245
    [76]C.Delma,J.Peres,A.Rougier,et al.On the behavior of the Li_xNiO_2system an electrochemical and structural overview[J].J.Power Sources,1997,68:120-125
    [77]B.Banov,J.Bourilkov,M.Mladeilov.Cobalt stabilized layered lithium-nickel oxides cathodes in lithium rechargeable cells[J].J.Power Sources,1995,54:268-270
    [78]A.Rougier,I.Saadoune,P.Gravereau,et al.Effect of cobalt substitution on cationic distribution in LiNi_(1-y)Co_yO_2 electrode materials[J].Solid State Ionics 1996,90:83-90 [79] D. Caurant, N. Baffler, B. Garcia, et al. Synthesis by a soft chemistry route and characterization of LiNi_xCo_(1-x)O_2 (0 ≤ x ≤ 1) cathode materials[J]. Solid State Ionics 1996,91:45-54
    [80] M. K. Ayclinol, A. F. Kohan, G. Ceder. An initio study of lithium intercalation in metal oxides and metal dichalcogenides[J]. Phys. Rev. B, 1997,56(3):1354-1365
    [81] I. Saadoune, C. Delmas. The LiNi_(0.8)Co_(0.2)O_2 system[J]. J. Solid State Chemistry, 1998,136:8-15
    [82] C. Pouillerie, L. Croguennec, C. Delmas. The Li_xNi_(1-y)MgyO_2(y=0.05,0.10) system: structural modifications observed upon cycling[J]. Solid State Ionics. 2000, 132(1-2): 15-29
    [83] L. Chen, X. Huang, E. Kelder, et al. Diffusion enhancement in Li_xMn_2O_4[J]. Solid State Ionics, 1995,76:91-96
    [84] J. Barker, R. Pynenburg, R. Koksbang. Determination of thermodynamic, kinetic and interfacial properties for the Li//Li_xMn_2O_4 system by electrochemical techniques[J]. J. Power Sources, 1994,52:185-192
    [85] E. Deiss, D. H(?)ringer, P. Nov(?)k, O. Haas. Modeling of the charge-discharge dynamics of lithium manganese oxide electrodes for lithium-ion batteries[J]. Electrochim. Acta, 2001,46:4185-4196
    [86] W. I. F. David, M. M. Thacheray, L. A. Picciotto, et al. Structure refinement of the spinel-related phases Li_2Mn_2O_4 and Li_(0.2)Mn_2O_4[J]. J. Solid State Chem., 1987,67:316-323
    [87] W. Liu, K. Kowal, G. C. Farrington. Mechanism of the electrochemical insertion of Lithium into LiMn_2O_4 spinels[J]. J. Electrochem Soc., 1998,145:459-465
    [88] X. Q. Yang, X. Sun, S. J. Lee, et al. In situ synchrotron X-Ray diffraction studies of the phase transitions in Li_xMn_2O_4 cathode materials[J]. Electrochem. Solid-State Lett., 1999,2:157-160
    [89] W. Liu, G. C. Farrington, F. Chaput, et al. Synthesis and electrochemical studies of spinel phase LiMn_2O_4 cathode materials prepared by the pechini process[J]. J. Electrochem Soc., 1996,143:879-884
    [90] R.J. Gummow, M.M. Thackeray. An investigation of spinel-related and orthorhombic LiMnO_2 cathodes for rechargeable lithium batteries[J]. J. Electrochem Soc., 1994,141:1178-1182
    [91] J.B. Goodenough. Design considerations[J]. Solid State Ionics, 1994,69:184-198
    [92] M.M. Thackeray, L.A. de Picciotto, A. de Kock, et al. Spinel electrodes for lithium batteries-Areview[J].J. Power Sources, 1987,21:1-8
    [93] A. Yamada, M. Tanaka. Jahn-Teller structural phase transition around 280K in LiMn_2O_4[J]. Mate. Res. Bull., 1995, 30:715-721
    [94] J.M. Tarascon, W.R. McKinnon, F. Coowar, et al. Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn_2O_4[J]. J. Electrochem Soc., 1994,141:1421-1431
    [95] R.J. Gummow, A.D. Kock, M.M. Thackeray. Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells[J]. Solid State Ionics, 994, 69:59-67
    [96] A.J. Berlinsky, W.G. Unruh, W.R. McKinnon, et al. Theory of lithium ordering in Li_xTiS_2[J]. Solid State Commun., 1979,31:135-138
    [97] Y. Gao, J.N. Reimers, J.R. Dahn. Changes in the voltage profile of Li/Li_(1-x)Mn_(2-x)O_4 cells as a function of x[J]. Phys. Rev. B, 1996,54:3878-3883
    [98] Y.Xia, M.Yoshio. Studies on Li-Mn-O spinel system (obtain from melt-impregnation method) as a cathode for 4V lithium batteries, Part Ⅳ High and low temperature performance of LiMn_2O_4 [J]. J.Power Sources, 1997,66:129-133
    [99] T. Eriksson, T. Gustafsson, J.O. Thomas. Surface structure of LiMn_2O_4 electrode[J]. Electrochem. Solid-State Lett., 2002,5:A35-A35
    [100] D.H. Jang, S.M. Oh. Electrolyte effects on spinel dissolution and cathodic capacity losses in 4V Li/Li_xMn_2O_4 rechargeable cells[J]. J. Electrochem Soc, 1997,144:3342-3348
    [101] D.H. Jang, Y.J. Shin, S.M. Oh. Dissolution of spinel oxides and capacity losses in 4V Li/Li_xMn_2O_4 cells[J]. J. Electrochem Soc., 1996,143:2204-2211
    [102] Y. Xia, Y. Zhou, M. Yoshio. Capacity fading on cycling of 4 V Li/LiMn_2O_4 cells[J].J. Electrochem Soc, 1997,144:2593-2600
    [103] A.D. Pasquier, A. Blyr, P. Courjal, et al. Mechanism for limited 55℃ storage performance of Li_(1.05)Mn_(1.95)O_4 electrodes [J]. J. Electrochem Soc., 1999,146:428-436
    [104] G.G. Amatucci, N. Pereira, T. Zheng, et al. Failure mechanism and improvement of the elevated temperature cycling of LiMn_2O_4 compounds through the use of the LiAl_xMn_(2-x)O_(4-z)F_z solid solution[J]. J. Electrochem Soc., 2001,148:A171-A182
    [105] Y. Xia, N. Kumada, M. Yoshio. Enhancing the elevated temperature performance of Li/LiMn_2O_4 cells by reducing LiMn_2O_4 surface area[J].J. Power Sources, 2000,90:135-138
    [106] N. Treuil, C. Labrug(?)re, M. Menetrier, et al. Relationship between Chemical Bonding Nature and Electrochemical Property of LiMn_2O_4 Spinel Oxides with Various Particle Sizes: "Electrochemical Grafting" Concept[J]. J. Phys. Chem. B., 1999,103:2100-2106
    [107] N.V. Kosova, I.P. Asanov, E.T. Devuyatkina, et al. State of manganese atoms during the mechanochemical synthesis of LiMn_2O_4[J]. J. Solid State Chem., 1999,146:184-188
    [108] Y.Gao, M.N. Richard, J.R. Dahn. Photoelectron spectroscopy studies of Li_(1-x)Mn_(2-x)O_4 for Li ion battery applications[J]. J. Appl. Phys., 1996,80:4141-4152
    [109] X. Sun, H.S. Lee, X.Q. Yang, et al. Improved elevated temperature cycling of LiMn_2O_4 spinel through the use of a composite LiF-Based electrolyte[J]. Electrochem. Solid-State Lett., 2001,4:A184-A186
    [110] D. Guyomard, J.M. Tarascon. High voltage stable liquid electrolytes for Li_(1+x)Mn_2O_4/carbon rocking-chair lithium batteries[J]. J. Power Sources, 1995, 54:92-98
    [111] Y.Gao, P.G. Dahn. The high temperature phase diagram of Li_(1+x)Mn_(2-x)O_4 and its implication [J], J. Electrochem Soc, 1996, 143:1783-1788
    [112] H.Huang, P.G. Bruce. 3V and 4V lithium manganese oxide cathodes for rechargeable lithium batteries [J]. J.Power Source, 1995, 54:52-57
    [113] J.M. Tarascon, E. Wang, F.K. Shokoohi, et al. The spinel phase of LiMn_2O_4 as a cathode in secondary lithium cells[J], J. Electrochem Soc., 1991,138:2859-2864
    [114] D. Guyomard, J.M. Tarascon. The carbon/Li_(1+x)Mn_2O_4 system [J], Solid State Inoics, 1994,69:222-237
    [115] A. Yamada, Kmiura, K. Hinokuma. Synthesis and structural aspects of LiMn_2O_(4±δ) as a cathode for rechargeable lithium batteries [J], J. Electrochem Soc., 1995,142:2149-2156
    [116] P. Barboux, J.M. Tarascon, F.K. Scokoohi. The use of acetates as precursors for the low temperature synthesis of LiMn_2O_4 and LiCoO_2intercalation compounds[J].J.Solid State Chem.,1991,94:185-189
    [117]X.Qiu,X.Sun,W.Shen,et al.Spinel Li_(1+x)Mn_2O_4 synthesized by co-precipitation as cathodes for lithium ion batteries[J],Solid State Inoics,1997,93:335-339
    [118]S.Bach,J.Farcy,J.P.Pereira-ramos.An electrochemical investigation of Li intercalation in the sol-gel LiMn_(2-x)Co_xO_4 spinel oxide[J].Solid State Inoics,1998,110:193-198
    [119]S.I.Pyun,Y.M.Choi,I.D.Jeng.Effect of the lithium content on electrochemical lithium intercalation into amorphous and crystalline powdered Li_(1±δ)Mn_2O_4 electrodes prepared by sol-gel methode[J].J.Power Source,1997,68:593-599
    [120]Y.K.Sun,K.H.Lee,I.Moon,et al.Effect of crystalinity on the electrochemical behavior of spinel Li_(1.03)Mn_2O_4 cathode materials[J].Solid State Inoics,1998,112:237-243
    [121]T.Tsumura,M.Inugaki.Preparation of LiMn_2O_4 via dicarboxylates and their lithium extraction/insertion behavor[J].Solid State Inoics,1997,104:35-43
    [122]Y.K.Sun.Synthesis and electrochemical studies of spinel Li_(1.03)Mn_2O_4cathode materials prepared by a sol-gel method for lithium secondary batteries[J].Solid State Inoics,1997,100:115-125
    [123]Y.Xia,M.Yoshio.Optimization of spinel Li_(1+x)Mn_(2-y)O_4 as a 4V Li-cell cathode in terms of Li-Mn-O phase diagram[J].J.Electrochem Soc.,1997,114:4186-4194
    [124]S.R.S.Prabaharan,M.S.Mchael,T.Premkumar,et al.Soft chemistry synthesis of electrochemically-active spinel LiMn_2O_4 for Li ion batteries[J].Solid State Inoics,1998,112:25-34
    [125]J.H.Choy,D.H.Kim,C.W.Kwon,et al.Physical and electrochemical characterization of nanocrystalline LiMn_2O_4 prepared by a modified citrate route[J].J.Power Source,1999,77:1-11
    [126]杨文胜,刘庆国,仇卫华等.柠檬酸络合反应方法制备尖晶石型LiMn_2O_4[J].电源技术,1999,23(增刊):49-52
    [127]K.T.Hwang,W.S.Um,H.S.Lee,et al.Powder synthesis and electrochemical properties of LiMn_2O_4 prepared by an emulsion-drying method [J]. J.Power Source, 1998,74:169-174
    [128] Y. Gao, J.R. Dahn. Synthesis and characterization of Li_(1+x)Mn_(2-x)O_4 for Li-ion battery applications[J]. J. Electrochem Soc., 1996,143:100-114
    [129] Z. Jiang, K.M. Abraham. Preparation and electrochemical characterization of micron-sized spinel LiMn_2O_4[J]. J. Electrochem Soc., 1996,143:1591-1598
    [130] C. Tsang, A. Manthiram. New route for the synthesis of LiMn_2O_4 cathode: variation of composition, microstructure, and electrochemical behavior with synthesis temperature[J]. Solid State Inoics, 1996,89:305-312
    [131] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. J. Electrochem. Soc, 1997,144(4): 1188-1193
    [132] A.S. Andersson, B. Kalska, et al. Lithium extraction/insertion in LiFePO_4:an X-ray diffraction and mossbauer spectroscopy study[J]. Solid State Ionics 2000, 130(1-2):41-52.
    [133] A. Yamada, S.C. Chung, K. Hinokuma. Optimized LiFePO_4 for lithium battery cathodes[J]. J Electrochem. Soc, 2001,148(3):A224-A229.
    [134] A.S. Andersson, J.O. Thomas. The source of first-cycle capacity loss in LiFePO_4[J].J Power Source, 2001,97-98:498-502
    [135] R. Chen, M. S. Whittingham. Cathodic behavior of alkali manganese oxides from permanganate[J]. J. Electrochem Soc., 1997,144:L64-L67
    [136] T. Ohzuku, Y. Makimura. Layered lithium insertion material of LiNi_(1/2)Mn_(1/2)O_2 : a possible alternative to LiCoO_2 for advanced lithium-ion batteries[J].Chem. Lett., 2001,30:744-745
    [137] B.L. Cushing, J.B. Goodenough. Influence of carbon coating on the performance of a LiMn_(0.5)Ni_(0.5)O_2 cathode[J]. Solid State Sci., 2002,4:1487-1493
    [138] S.-H. Kang, J. Kim, M.E. Stoll, et al. Layered Li(Ni_(0.5-x)Mn_(0.5-x)M_(2x))O_2 (M'=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries[J]. J. Power Sources, 2002,112:41-48
    [139] S.-H. Kang, K. Amine. Comparative study of LiNi_(0.5-x)Mn_(0.5-x)M_(2x)O_2 (Mo, Mg, Al, Co, Ni,Ti; x = 0, 0.025) cathode materials for rechargeable lithium batteries[J]. J. Power Sources, 2003,119-121:150-155
    [140] T. Ohzuku, Y. Makimura. Layered lithium insertion material of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 for lithium-ion batteries[J]. Chem. Lett., 2001,30:642-643
    [141] Z. Lu, D.D. MacNeil, and J.R. Dahn. Layered cathode materials Li[Ni_xLi_((1/3-2x/3))Mn_((2/3-x/3))]O_2 for lithium-ion batteries[J]. Electrochem. Solid-State Lett., 2001,4:A191-A194
    [142] Z. Lu, D.D. MacNeil, J.R. Dahn. Layered Li[Ni_xCo_(1-2x)Mn_x]O_2 cathode materials for lithium-ion batteries. Electrochem. Solid-State Lett., 2001,4:A200~203
    [143] D. D. MacNeil, Z. Lu, J. R. Dahn. Structure and Electrochemistry of Li[Ni_xCo_(1-2x)Mn_x]O_2(0<x<1/2)[J]. J. Electrochem Soc, 2002,149:A1332 -1336.
    [144] Y. Koyama, I. Tanaka, T. Ohzuku, et al. Crystal and electronic structures of superstructural Li_(1-x)[Co_(1/3)Ni_(1/3)Mn_(1/3)]O_2(0≤x≤1)[J]. J. Power Sources, 2003,119-121:644-648
    [145]Y. Koyama, N. Yabuuchi, T. Ohzuku, et al. Solid-state chemistry and electrochemistry of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 for advanced Lithium-ion batteries[J]. J. Electrochem Soc, 2004,151(10):A1545-A1551.
    [146] J.M. Panlsen, L. Kieu, B.G. Ammundsen, et al. Lithiated oxide materials and methods of manufacture[P]. EP:1189296A2, 2002
    [147] Y. Gao, M. Yakovleva, H.H. Wang, et al. Method of producing layered lithium metal oxides free of localized cubic spinel-like structural phases[P]. US:6620400,2003
    [148] S. Jouarmeau, K.W. Eberman, J.R. Dahn, et al. Synthesis, characterization, and electrochemical behavior of improved Li[Ni_xCo_(1-2x)Mn_x]O_2 (0.1≤x≤0.5) [J]. J. Electrochem Soc, 2003,150(12).A1637-A1642
    [149] K.H. Dai, Y.T. Xie, Y.J. Wang,et al. Effect of fluorine in the preparation of Li(Ni_(1/3)Co_(1/3)Mn_(1/3))O_2 via hydroxide co-precipitation[J]. Electrochimica Acta, 2008,53:3257-3261
    [150] J.F. Ni, H.H. Zhou, J.T. Chen,et al. Improved electrochemical performance of layered LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2 via Li_2ZrO_3 coating[J]. Electrochimica Acta, 2008,53:3075-3083
    [151] G.H. Kim, J.H. Kim, S.T. Myung, et al. Improvement of high-voltage cycling behavior of suface-modified Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 cathodes by fluorine substitution for Li-ion batteries[J]. J. Electrochem Soc, 2005,152(9):A1707-A1713
    [152] Y.S. He, P. Li, X.Z. Liao, et al. Synthesis of Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_(2-z)F_z cathode material from oxalate precursors for lithium ion battery[J]. Journal of Fluorine Chemistry, 2007,128:139-143
    [153] G.H. Kim, S.T. Myung, H.S. Kim, et al. Synthesis of spherical Li[Ni_(1/3-z)Co_(1/3-z)Mn_(1/3-z)Mg_z]O_2 as positive electrode material for lithium-ion battery[J]. Electrochimica Acta, 2006,51:2447-2453
    [154] H.S. Shin, D. Shin, Y.K. Sun. Improvement of electrochemical properties of Li[Ni_(0.4)Co_(0.2)Mn_((0.4-x))Mg_x]O_(2-y)F_y cathode materials at high voltage region[J]. Electrochimica Acta,2006,52:1477-1482
    [155] J. Ying, C. Wan, C. Jiang. Surface treatment of LiNi_(0.8)Co_(0.2)O_2 cathode material for lithium secondary batteries[J]. J. Power Sources, 2001,102:162-166
    [156] H.J. Kweon, D.G. Park. Surface Modification of LiSr_(0.002)Ni_(0.9)Co_(0.1)O_2 by overcoating with a magnesium oxide[J]. Electrochem Solid-State Lett. 2000,3:128-130
    [157] J. Cho, Y.J. Kim, B. Park. High-performance ZrO_2-Coated LiNiO_2 cathode material[J]. Electrochem. Solid-State Lett., 2001,4:A159-A161
    [158] S. T. Myung, K. Izumi, S. Komaba, et al. Role of alumina coating Li-Ni-Co-Mn-O particles as positive electrode material for Lithium-ion batteries[J]. Chem. Mater., 2005,17(14):3695-3704
    [159] D.C. Li, Y. Sasaki, M. Kageyama, et al. Structure, morphology and electrochemical properties of LiNi_(0.5)Mn_(0.5-x)Co_xO_2 prepared by solid state reaction[J]. J. Power Sources, 2005,148:85-89
    [160] M. Yoshio, H. Noguchi, J. Itoh, et al. Preparation and properties of LiCo_xMn_yNi_(1-x-y)O_2 as a cathode for lithium ion batteries[J]. J. Power Sources, 2000,90:176-181
    [161] Y. Chen, G.X. Wang, K. Konstantinov, et al. Synthesis and characterization of LiCo_xMn_yNi_(1-x-y)O_2 as a cathode material for secondary lithium batteries[J]. J. Power Sources, 2003,119-12:1184-188.
    [162] M.-H. Lee, Y.-J. Kang, S.-T. Myung, et al. Synthetic optimization of Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 via co-precipitation[J]. Electrochimica Acta, 2004,50:939-948
    [163] T.H. Cho, S.M. Park, M. Yoshio, et al. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni_(1/3)Mn_(1/3)Co_(1/3)]O_2prepared by carbonate co-precipitation method[J].J.Power Sources,2005,142:306-312
    [164]H.-S.Shin,S.-H.Park,Y.C.Bae,et al.Synthesis of Li[Ni_(0.475)Co_(0.05)Mn_(0.475)]O_2 cathode materials via a carbonate process[J].Solid State Ionics,2005,176:2577-2581
    [165]N.Yabuuchi,T.Ohzuku.Novel lithium insertion material of LiCo_91/3)Ni_(1/3)Mn_(1/3)O_2 for advanced lithium-ion batteries[J].J.Power Sources,2003,119-121:171-174
    [166]K.M.Shaju,G.V.Subba Rao,B.V.R.Chowdari.Performance of layered Li(Ni_(1/3)Co_(1/3)Mn_(1/3))O_2 as cathode for Li-ionbatteries[J].Electrochimica Acta,2002,48:145-151
    [167]曹立新,袁迅道,万海宝,等.溶胶-凝胶法制备有机-无机纳米复合材料[J].应用化学,1998,15(3):1-5
    [168]李彬.溶胶-凝胶法及其在无机材料合成中的应用[J].材料科学与工程,1990,8(2):26-30
    [169]S.Patoux,M.M.Doeff.Direct synthesis of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 from nitrate precursors[J].Electrochemistry Communications,2004,6:767-772
    [170]J.H.Kim,C.W.Park,Y.K.Sun.Synthesis and electrochemical behavior of Li[Li_(0.1)Ni_(0.35)Co_xMn_(0.55)]O_2 cathode materials[J].Solid State Ion.,2003,164(1-2):43-49
    [171]K.S.Park,M.H.Cho,S.J.Jin,et al.Structural and electrochemical properties nanosize layered Li[Li_(1/5)Ni_(1/10)Co_(1/5)Mn_(1/2)]O_2[J].Electrochem.Solid-State Lett.,2004,7(8):A239-A241
    [172]Y.W.Tsai,B.J.Hwang,G.Ceder,et al.In-situ x-ray absorptionspectroscopic study on variation of electronic transitions and local structure of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 cathode material during electrochemical cycling[J].Chem.Mater.,2005,17(12):3191-3199
    [173]B.J.Hwang,Y.W.Tsai,D.Carlier.A combined computational/experimental study on LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2[J].Chem.Mater.,2003,15(19):3676-3682
    [174]Y.S.Meng,Y.W.Wu,B.J.Hwang,et al.Combining ab initio computation with experiments for designing new electrode materials for advanced lithium batteries:LiNi_(1/3)Fe_(1/6)Co_(1/6)Mn_(1/3)O_2[J].J.Electrochem Soc., 2004,151(8):A1134-A1140
    [175]H.M.Wu,J.P.Tu,Y.F.Yuan,et al.Structural,morphological and electrochemical characteristics of spinel LiMn_2O_4 prepared by spray-drying method[J].Scripta Materialia,2005,52:513-517
    [176]H.M.Wu,J.P.Tu,Y.F.Yuan,et al.Synthesis and electrochemical characteristics of spinel LiMn_2O_4 via a precipitation spray-drying process[J].Materials Science and Engineering B,2005,119:75-79
    [177]H.M.Wu,J.P.Tu,Y.F.Yuan,et al.Electrochemical and ex situ XRD studies of a LiMn_(1.5)Ni_(0.5)O_4 high-voltage cathode material[J].Electrochimica Acta,2005,50:4104-4108
    [178]S.H.Oh,W.T.Jeong,W.I.Cho,et al.Electrochemical characterization of high-performance LiNi_(0.8)Co_(0.2)O_2 cathode materials for rechargeable lithium batteries[J].J.Power Sources,2005,140:145-150
    [179]D.C.Li,H.Noguchi,M.Yoshio.Electrochemical characteristics of LiNi_(0.5-x)Mn_(0.5-x)Co_(2x)O_2(0 ≤ x ≤ 0.1) prepared by spray dry method[J].Electrochimica Acta,2004,50:427-430
    [180]D.C.Li,T.Muta,L.Q.Zhang,et al.Effect of synthesis method on the electrochemical performance of LiNi_(1/3)Mn_(1/3)CO_(1/3)O_2[J].J.Power Sources,2004,132:150-155
    [181]J.M.Kim,N.Kumagai,S.Komaba.Improved electrochemical properties of Li_(1+x)(Ni_(0.3)Co_(0.4)Mn_(0.3))O_(2-δ)(x = 0,0.03 and 0.06) with lithium excess composition prepared by a spray drying method[J].Electrochimica Acta,2006,52:1483-1490
    [182]G.V.Jayanthi,S.C.Zhang,G.L.Messing.Modeling of Solid Particle Formation During Solution Aerosol Thermolysis:The Evaporation Stage[J].J.Aerosol.Sci.Technol.,1993,19(4):478-490
    [183]D.M.Roy,R.R.Neurgaonkar,T.P.O'Holleran,et al.Preparation of Fine Oxide Powders by Evaporative Decomposition of Solutions[J].Am.Ceram.Soc.Bull,1977,56:1023-1032
    [184]M.Ruthner.Industrial Production Multicomponent Ceramic Powders By Means of the Spray Roasting Technique[J].Ceramic Powders,1983:515-523
    [185]林宣精.当今废酸再生工艺的评析[J].化工环保,1998,18:208-214
    [186]刘键,郑腾鹏,罗泽中.废酸喷雾焙烧再生技术[J].攀钢技术, 1996.19:12-15
    [187]韩廷信.喷雾焙烧法从蛇纹石中制取轻质氧化镁[J].无机盐工业,1999,3:10-11
    [188]陈祖耀,张大杰等.喷雾热解法制备超细粉末及其应用[J].硅酸盐通报,1988,6:54-58
    [189]戴遐明.喷雾热解--种重要的微粉制备工艺[J].中国粉体技术,1995,3:28-33
    [190]赵新宇,张煜,古宏晨等.喷雾热解制备稀土超细粉末-氧化钇粒子形态与形成机理[J].高等学校化学学报,1998,19(4):507-510
    [191]I.Taniguchi,D.Song,M.Wakihara.Electrochemical properties of LiM_(1/6)Mn_(11/6)O_4(M Mn,Co,Al and Ni) as cathode materials for Li-ion batteries prepared by ultrasonic spray pyrolysis method[J].J.Power Sources,2002,109:333-339
    [192]S.L.Bewlay,K.Konstantinov,G.X.Wang,e al.Conductivity improvements to spray-produced LiFePO_4 byaddition of a carbon source[J].Materials Letters,2004,58:1788-1791
    [193]S.H.Park,Y.K.Sun.Synthesis and electrochemical properties of 5V spinel LiNi_(0.5)Mn_(1.5)O_4 cathode materials prepared by ultrasonic spray pyrolysis method[J].Electrochimica Acta,2004,50:431-434
    [194]S.H.Park,S.W.Oh,S.T.Myung,et al.Sun.Effects of synthesis condition on LiNi_(1/2)Mn_(3/2)O_4 cathode material for prepared by ultrasonic spray pyrolysis method[J].Solid State Ionics,2005,176:481-486
    [195]K.Y.Choi,K.D.Kim,J.W.Yang.Optimization of the synthesis conditions of LiCoO_2 for lithium secondary battery by ultrasonic spray pyrolysis process[J].Journal of Materials Processing Technology,2006,171:118-124
    [196]S.W.Oh,S.H.Park,C.W.Park,Yang-Kook Sun.Structural and electrochemical properties of layered Li[Ni_(0.5)Mn_(0.5)]_(1-x)Co_xO_2 positive materials synthesized by ultrasonic spray pyrolysis method[J].Solid State Ionics,2004,171:167-172
    [197]S.H.Ju,D.Y.Kim,Y.C.Kang.The characteristics of Li(Ni_(1/3)Co_(1/3)Mn_(1/3))O_2 particles prepared from precursor particles with spherical shape obtained[J].Ceramics International,2007,33:1093-1098
    [198]S.H.Park,C.S.Yoon,S.G.Kang,et al.Synthesis and structural characterization of layered Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 cathode materials by ultrasonic spray pyrolysis method[J]. Electrochimica Acta, 2004, 49:557-563
    [199] D.W. Sproson, G.L. Messing. Ceramic Powder Synthesis by thermal reaction of atomized solutions[J].Am.Ceram.Soc,1987:99-106
    [200] G.L. Messing, S.C. Zhang, GV. Jayanthi. Ceramic Power Synthesis by Spray Pyrolysis[J]. J.Am.Ceram.Soc, 1993,76(11):2707-2726
    [201] J.C. Lin, J. W.Gentry. Control of particle morphology and homogeneity during spray pyrolysis[J]. J.Aerosol Sci., 1996, 27:375-376
    [202] Y.H. Zhou, J. Lin, M.Yu, et al. Morphology control and luminescence properties of YAG:Eu phosphors prepared by spray pyrolysis[J]. Materials Research Bulletin, 2003,38:1289-1299
    [203] S. Che, O. Sakurai, K. Shinozaki, et al. Partcile structure control through intrapapticle reactions by spray pyrolysis[J]. J.Aerosol Sci.,1998,29:271-278
    [204] R.C. Reid, J.M. Prausnitz, B.E. Poling. The Properties of Gases and Liquids[M]. New York: McGraw-Hill, 1987(4th Edition):388
    [205] J.H. Seinfld. Atomspheric Chemistry and Physics of Air Pollution[M]. New York: John Wiley & Sons, 1986:235
    [206] 吴志泉,徐晋林等.化工工艺计算[M].上海华东化工学院出版社,1992:133
    [207] D.H. Charlesworth, J. Marshall. Evaporation from Drops Contaning Dissolved Solids[J]. AIChEJ., 1960,6(1):9-19
    [208] G.C. Gardner. Asymptotic Concentrantion Distribution of an Involatile Solute in an Evaporating Drop[J]. Int. J. Heat Mass Trans., 8:667-668
    [209] K.S. Pitzer, G. Mayorga. Thermodynamics of electrolytes. Ⅱ. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent[J]. J. Phys. Chem., 1973,77:2300-2308
    [210] W.E. Ran, W.R.Jr. Marshall. Chem. Aerosol processing of solid particle[J]. Eng. Progr., 1952,48(3):141-162
    [211] W.E. Ran, W.R.Jr. Marshall. Aerosol processing of solid particle[J].Chem. Eng. Progr., 1952,48(4): 173-180
    [212] T.T. Kodas, M.J. Hampden-Smith. The chemistry of metal CVD[M]. New York: VCH, 1994:216
    [213]S.Stopic,I.Iic,D.Uskokovic.Structural and morphological transformations during NiO and Ni particles generation from chloride precursor by ultrasonic spray pyrolysis[J].Materials Letter,1995,24:369-376.
    [214]K.H.Leong.Morphology of aerosol particles generated from the evaporation of solution droplets[J].J.Aerosol Sci.,1981,12(5):417-435
    [215]K.H.Leong.Morphology of aerosol particles generated from the evaporation of solution droplets:Theoretical considerations[J].J.Aerosol Sci.,1987,18(5):511-524
    [216]K.H.Leong.Morphology of Aerosol Particles Generated from the Evaporation of Solution Droplets:Experiment[J].J.Aerosol Sci.,1987,18(5):525-552
    [217]S.C.Zhang,G.L.Messing,W.Huebner.YBa_2Cu_3O_(7-x) Superconductor powder synthesis by spray pyrolysis of organic acid solutions[J].J.Aerosol Sci.,1991,22:585-599
    [218]金宗莲,徐华蕊,朱孟钦,古宏晨.喷雾反应法制备电子陶瓷用钛酸钡[J].中国粉体技术,2001,(2):18-20
    [219]E.J.Kim,Y.C.Kang,H.D.Park,et al.UV and VUV characteristics of (YGd)_2O_3-Eu phosphor particles prepared by spray pyrolysis from polymeric precursors[J].Materials Research Bulletin,2003,38:515-524
    [220]H.S.Roh,Y.C.Kang,H.D.Park,et al.Y_2O_3:Eu phosphor particles prepared by spray pyrolysis from a solution containing citric acid and polyethylene glycol[J].Appl.Phys.A,2003,76:241-245
    [221]P.P.Ahonen,U.Tapper,E.I.Kauppinen,et al.Aerosol synthesis of Ti-O powders via in-droplet hydrolysis of titanium alkoxide[J].Materials Science and Engineering,2001,315:113-121
    [222]Y.Gao,M.V.Yakovleva,W.B.Ebner.Novel LiNi_(1-x)Ti_(x/2)Mg_(x/2)O_2compounds as cathode materials for safer Lithium-Ion Batteries[J].Electrochem.Solid State Lett.,1998,1:117-119
    [223]J.Cho,G.Kim,H.S.Lim.Effect of preparation methods of LiNi_(1-x)Co_xO_2cathode materials on their chemical structure and electrode performance[J].J.Electroehem Soc.,1999,146:3571-3576
    [224]S.Levasseur,M.Menetrier,C.Delmas.Combined effects of Ni and Li doping on the phase transitions in Li_xCoO_2[J].J.Electrochem Soc.,2002, 149:A1533-A1540
    [225]S.Levasseur,M.Menetrier,E.Suard,et al.Evidence for structural defects in non-stoichiometric HT-LiCoO_2:electrochemical,electronic properties and 7Li NMR studies[J].Solid State Ionics,2000,128:11-24
    [226]N.Tran,L.Croguennec,C.Jordy,et al.Structure and electrochemical performances of the Li_(1+x)(Ni_(0.425)Mn_(0.425)Co_(0.15))_(1-x)O_2[C].12th International meeting on lithium batteries,Nara,Japan,June,2004:Abstract#314
    [227]Y.M.Todorov,K.Numata.Effects of the Li:(Mn + Co + Ni) molar ratio on the electrochemical properties of LiMn_(1/3)Co_(1/3)Ni_(1/3)O_2 cathode material [J].Electroehim.Acta,2004,50:495-499
    [228]J.Choi,A.Manthiram.Comparison of the electrochemical behaviors of stoichiometric LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 and lithium excess Li_(1.03)(Ni_(1/3)Co_(1/3)Mn_(1/3))_(0.97)O_2[J].Electrochem.Solid State Lett.,2004,7:A365-A368
    [229]S.Choi,O.A.Shlyakhtin,J.Kim,et al.Structural and electrochemical properties of Li_(1+x)Ni_(0.5)Mn_(0.5)O_(2+δ)(0 ≤ x ≤0.7) cathode materials for lithium-ion batteries[J].J.Power Sources,2005,140:355-360
    [230]A.E.Nielsen.Kinetics of precipitation[M].Oxford:Pergamon Press,1964:350-355
    [231]E.B哈姆斯基.化学工业中的结晶(古涛,叶铁林译)[M].北京:化学工业出版社,1984,2-10:87-89
    [232]T.H.Cho,S.M.Park,M.Yoshio.Preparation of layered Li[Ni_(1/3)Mn_(1/3)CO_(1/3)]O_2 as a cathode for lithium secondary battery by carbonate eoprecipitation method[J].Chem.Lett.,2004,33:704-705
    [233]G.Henriksen,K.Amine,J.Liu,et al.Battery-Level Material Cost Model Facilitates High-Power Li-Ion Battery Cost Reductions[C].204th Meeting of The Electrochemical Society,Orlando,12-16 October,2003:Abstract 255
    [234]S.Jouanneau,K.W.Eberman,L.J.Krause,et al.Synthesis,characterization,and electrochemical behavior of improved LiNi_xCo_(1.2x)Mn_xO_2(0.1<x<0.5)[J].J.Eleetrochem Sot.,2003,150(12):A1637-A1642
    [235]J.K.Ngala,N.A.Chernova,M.Ma,et al.The synthesis,characterization and electrochemical behavior of the layered LiNi_(0.4)Mn_(0.4)Co_(0.2)O_2compound[J].J.Mater.Chem.,2004,14:214-220
    [236] A. Ueda, T. Ohzuku. Solid-State redox reactions of LiNi_(1/2)Co_(1/2)O_2 (R3m) for 4 volt secondary lithium cells[J]. J. Electrochem Soc., 1994,141:2010-2014
    [237] J. Choi, A. Manthiram. Structural and electrochemical characterization of the layered LiNi_(0.5-y)Mn_(0.5-y)Co_(2y)O_2 (0≤2y≤1) cathodes[J]. Solid State Ionics, 2005,176:2251-2256
    [238] S. Venkatraman, J. Choi, A. Manthiram. Factors influencing the chemical lithium extraction rate from layered LiNi_(1-y-z)Co_yMn_zO_2 cathodes[J]. Electrochemistry Communications, 2004,6:832-837
    [239] N. Tran, L. Croguennec, C. Jordy, et al. Influence of the synthesis route on the electrochemical properties of LiNi_(0.425)Mn_(0.425)Co_(0.15)O_2[J]. Solid State Ionics, 2005,176:1539-1547
    [240] Y.C. Sun, CO. Yang, X. Zhao, et al. Effect of Co content on rate performance of LiMn_(0.5-x)Co_(2x)Ni_(0.5-x)O_2 cathode materials for lithium-ion batteries[J]. J. Electrochem Soc, 2004,151(4):A504-A508
    [241] Y. Jang, N. Dudney, D.A. Blom, et al. High-Voltage cycling behavior of thin-film LiCoO_2 cathodes[J]. J. Electrochem Soc.,2002,149 :A1442-1447
    [242] G.G. Amatucci, J.M. Tarascon, L.C. Klein. Cobalt dissolution in LiCoO_2-based non-aqueous rechargeable batteries[J]. Solid State Ionics,1996, 83:167-173
    [243] J. Cho, J. Lee, B. Kim, et al. Control of AlPO_4-nanoparticle coating on LiCoO_2 by using water or ethanol[J]. Electrochim. Acta, 2005, 50:4182-4187
    [244] J.M. Kim, H.T. Chung. The first cycle characteristics of Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 charged up to 4.7 V[J]. Electrochimica Acta,2004, 49:937-944
    [245] G. Nagasubramanian. Comparison of the thermal and electrochemical properties of LiPF_6 and LiN(SO_2C_2F_5)_2 salts in organic electrolytes[J]. J. Power Sources ,2003,119-121:811-814
    [246] Y.J. Shin, W.J. Choi, Y.S. Hong. Investigation on the microscopic features of layered oxide Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 and their influences on the cathode properties[J]. Solid State Ionics,2006, 177:515-521
    [247] D. Aurbach, M. Levi, E. Levi, et al. Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides[J]. J. Electrochem Soc, 1998, 145:3024-3034
    [248] M. D. Levi, G. Salitra, B. Markovsky, et al. Solid-state electrochemical kinetics of Li-ion intercalation into Li_(1-x)CoO_2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS[J]. J. Electrochem Soc., 1999, 146: 1279-1289
    [249] M.G. Kim, H.J. Shin, J.H. Kim, et al. XAS investigation of inhomogeneous metal-oxygen bond covalency in bulk and surface for charge compensation in Li-ion battery cathode Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 material[J]. J. Electrochem Soc, 2005,152:A1320-A1328
    [250] S.H. Park, S.W. Oh, Y.K. Sun. Synthesis and structural characterization of layered Li[Ni_(1/3+x)Co_(1/3)Mn_(1/3-2x)Mo_x]O_2 cathode materials by ultrasonic spray pyrolysis[J]. J. Power Sources, 2005,146:622-625
    [251] S.H. Na, H.S. Kim, S.I. Kim. The effect of Si doping on the electrochemical characteristics of LiNi_xMn_yCo_((1-x-y))O_2[J]. Solid State Ionics,2005,176:313-317
    [252] S. Jouanneau, J.R. Dahn. Influence of LiF additions on Li[Ni_xCo_(1-2x)Mn_x]O_2 materials [J]. J. Electrochem Soc, 2004,151: A1749-A1754
    [253] M. Kageyama, D. Li, K. Kobayakawa, et al. Structural and electrochemical properties of LiNi_(1/3)Mn_(1/3)Co_(1/3)O_(2-x)F_x prepared by solid state reaction. J. Power Sources, 2006,157:494-500
    [254] A.R. Naghash, J.Y. Lee. Lithium nickel oxyfluoride (Li_(1-z)Ni_(1+z)F_yO_(2-y)) and lithium magnesium nickel oxide (Li_(1-z)(Mg_xNi_(1-x))_(1+z)O_2) cathodes for lithium rechargeable batteries: Ⅱ. Electrochemical investigations[J]. Electrochim. Acta, 2001,46:2293-2304

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700