胶束液相色谱分配机理及其应用的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶束独特的两亲结构以及胶束种类的多样化,使得胶束液相色谱在药物分离和模拟生物膜分配方面具有独特的优势。本文就胶束液相色谱的分配机理和在药物分离及模拟生物膜方面的应用作了初步研究。
     以SDS阴离子表面活性剂作流动相,酸性、中性及两性药物为受试药物,运用三相平衡理论考察影响阴离子型胶束液相色谱(AMLC)溶质保留行为的几个因素。保留由溶质与胶束相及修饰后固定相的综合作用决定。有机调节剂正丙醇的加入改变了溶质从水相到固定相或到胶束相的平衡,保留取决于溶质疏水性和静电性的平衡。对对羟基苯甲酸酯类同系物的亲脂性考察提示其抑菌机理主要取决于药物与生物膜的亲和性。
     首次使用混合胶束溶液(十二烷基硫酸钠(sodium dodecyl sulfate,SDS)和苄泽35(Brij35)),对六种结构相似的苦参类生物碱(MT,OMT,SC,OSC,SR,OSR)进行分离,考察了胶束种类和浓度、SDS和Brij35的比例、有机调节剂种类和浓度、流动相pH及温度等对药物分离的影响,优化了色谱条件,并成功用于苦参总碱和苦豆子总碱提取物的分析。同时,还对六种生物碱在混合胶束系统中的分配机理作了理论性的探讨,SDS/Brij35混合胶束系统提供了不同的分子作用力,能有效识别结构相似生物碱的保留,优于单纯的SDS和Brij35胶束系统。
     以非离子表面活性剂苄泽35为流动相的胶束液相色谱通常称为生物分配胶束色谱(biopartitioning micellar chromatography,BMC)。BMC可以用来评价吸收机制以被动转运为主的小分子化合物的膜通透性,本论文对生物分配胶束色谱用于预测药物吸收作了初步的探讨,并通过测定不同比例混合表面活性剂的Zeta电位对BMC体系的优化作了初步的研究。
     研究表明,胶束液相色谱由于其独特的两亲结构和带电性,能提供高的选择性,在药物分离及模拟生物膜研究领域具有广泛的应用前景。
Micellar liquid chromatography (MLC) is a reversed phase liquid chromatography by using a micellar solution as a mobile phase. With the amphipathic properties and the capability to mimic the biomembrane, surfactant with unique structure are often used in the field of drug separation and evaluation of drug membrane-transport. This paper will give the primary studies on the partition mechanisem and application of micellar liquid chromatography.
    The retention characteristics of solutes in anionic micellar liquid chromatography (AMLC) were investigated in terms of three-phase equilibrium theory, using an anionic surfactant (sodium dodecyl sulfate) solution as mobile phase. Acidic, basic and amphoteric solutes were investigated. The retention of solutes was depended on the assembled interaction of solutes with the micelles in the mobile phase and with the modified stationary phase. When adding organic modifier, the partitioning equilibria between aqueous phase and modified stationary phase, and aqueous phase and micellar phase, were significantly altered, and accordingly retention behavior of solutes was managed by the balance of hydrophobic and electrostatic interaction. Moreover, there were good correlations between lipophilicity from MLC, immobilized artificial membrane (IAM) and n-octanol/buffer, and minimal inhibitory concentration of three microbes for p-hydroxybenzoic ester analogs, suggestive of their inhibitory mechanism associated with membrane affinity.
    A novel mixed micellar liquid chromatography (MLC), the mobile phase consisting of anionic surfactant sodium dodecyl sulfate (SDS) and nonionic surfactant Brij35, was developed for the simultaneous separation of six matrine-type alkaloids, including matrine, oxymatrine, sophocarpine, oxysophocarpine, sophoridine and oxysophoridine. The factors influencing the separation resolution of the six matrine-type alkaloids were systematically investigated, including the micellar composition and concentration, the type and amount of organic modifier and pH values in the mobile phase. Under the optimal chromatographic separation conditions, the six matrine-type alkaloids could be easily isocratic eluted with the baseline separation within 21 min. Moreover, it was successfully separated the main alkaloids in two Sophora medicinal plants, S. flavescens and S. alopecuroide. The selectivity for carbonyl group and double band decreased with an increased percentage of SDS when mobile phase pH equaled 3 conditions. The results indicated that high selectivity of different kinds of drugs including stereoisomer with
引文
[1] Yarmchuk P, Weinberger R, Hirsch RF, Cline Love LJ. Selectivity in liquid chromatography with micellar mobile phases. Anal. Chem, 1982, 54: 2233-2238.
    
    [2] Armstrong DW, Terrill RQ. Anal Chem, 1979, 51: 2160.
    
    [3] Madamba-Tan LS, Strasters JK, Khaledi MG. Gradient elution in micellar liquid chromatography. I : Micelle concentration gradient. J Chromatogr A, 1994, 683: 321-334.
    [4] Carda-Broch S, Esteve-Romero J, Garc(?)a-Alvarez-Coque MC. Furosemide assay in Pharmaceuticals by Micellar liquid chromatography: study of the stability of the drug. Journal of Pharmaceutical and Biomedical Analysis, 2000,23: 803-817.
    [5] Capella-Peiro ME, Gil-Agusti M, Martinavarro-Dominguez A, Esteve-Romeroa J. Determination in serum of some barbiturates using micellar liquid chromatography with direct injection. Anal Biochem, 2002,309:261-268.
    [6] Breyer ED, Strasters JK, Khaledi MG. Quantitative retention-biological activity relationship study by micellar liquid chromatography. Anal. Chem, 1991,63: 828-833.
    [7] Medina-Hernandez MJ, Garcia-Alvarez-Coque MC. Solute-mobile phase and solute-stationary phase interaction in micellar liquid chromatography. Analyst, 1992, 117: 831 -837.
    [8] Berthod A, Girard I, Gonnet C. Micellar liquid chromatography. Adsorption of two ionic surfactants on five stationary phases. Anal. Chem., 1986, 58: 1356-1358.
    [9] Detroyer A, Vander Heyden Y, Carda-Broch S, Garc(?)a-Alvarez-Coque MC, Massart DL. Quantitative structure-retention and retention-activity relationships of β-blocking agents by micellar liquid chromatography. J. Chromatogr. A, 2001, 912: 211 -221.
    [10] Molero-Monfort M, Escuder-Gilabert L, Villanueva-Cama(?)as RM, Sagrado S, Medina-Hernandez MJ. Biopartitioning micellar chromatography: an in vitro technique for predicting human drug adsorption. J. Chromatogr. B, 2001, 753: 225-236.
    
    [11] Kim YN, Brown PR. Micellar liquid chromatography for the analysis of nucleosides and bases. J. Chromatogr., 1987,384: 209-220.
    
    [12] Dorsey JG, Foley JP, Cooper WT, Barford RA, Barth HG. Liquid chromatography: theory and methodology. Anal Chem, 1990,62: 324-356.
    [13] Arunyanart M, Cline Love LJ. Determination of drugs in untreated body fluids by micellar chromatography with fluorescence detection. J. Chromatogr., 1985,342: 293-301.
    [14] Muramatsu H, Dicks JM, Tamiya E, Karube 1. Piezoelectric crystal biosensor modified with protein A for determination of immunoglobulins. Anal Chem, 1987 59: 2760-2763.
    [15] Poluszny JV, Weinberger R. Determination of drug substances in biological fluids by direct injection multidimensional liquid chromatography with a micellar cleanup and reversed-phase chromatography. Anal. Chem., 1988,60: 1953-1958.
    [16] Koenigbauer MJ, Ourtis MA. Use of micellar mobile phases and microbore column switching for the assay of drugs in physiological fluids. J. Chromatogr., 1988, 427: 277-285.
    [17] 毛(日口口)(日口口),孙进,李洁,高坤,何仲贵.阴离子型胶束液相色谱的溶质保留行为.分析化学,2005,33(9):1247-1251.
    [18] Cuenca-Benito M, Sagrado S, Villanueva-Camanas RM, et al. Quantitative retention-structure and retention relationships of barbiturates by micellar liquid chromatography. J Chromatogr A, 1998, 814(1-2): 121-132.
    [19] 毛(日口口)(日口口),孙进,何仲贵.生物分配胶束色谱用于评价药物膜转运及其活性,药学学报,2005,40(10):865-870.
    [20] Martinez-pla JJ, Sagrado S, Villanueva-Camanas RM, et al. Retention-property relationships of anticonvulsant drugs by biopartitioning micellar chromatography. J Chromatogr B, 2001, 757(1): 89-99.
    [21] Quinones-Torrelo C, Sagrado S, Villanueva-Camanas RM, et al. Development of predictive retention-activity relationship models of tricyclic antidepressants by micellar liquid chromatography. J Med Chem, 1999, 42(16): 3154-3162.
    [22] Quinones-Torrelo C, Sagrado S, Villanueva-Camanas RM, et al. Rention pharmacokinetic and pharmacodynamic parameter relationships of antihistamine drugs using biopartitioning micellar chromatography. J Chromatogr B, 2001, 761(1): 13-26.
    [23] Escuder-Gilabert L, Sagrado S, Villanueva-Camanas RM, et al. Quantitative retention-structure and retention-activity relationship studies of local anesthetics by micellar liquid chromatography. Anal Chem, 1998, 70(1): 28-34.
    [24] Molero-Monfort M, Sagrado S, Villanueva-Camanas RM, et al. Retention-activity relationship studies of benzodiazepines by micellar liquid chromatography. Biomed Chromatogr, 1999, 13(6): 394-400.
    [25] Borgerding MF, Quina FH, Hinze WL, Investigation of the retention mechanism in nonionic micellar liquid chromatography using an aikylbenzene homologous series, Anal Chem., 1988, 60: 2520-2527.
    [26] Escuder-Gilabert L, Martinez-Pla JJ, Sagrado S, et al. Biopartioning micellar separation methods: modeling drug absorption. J Chromatogr B, 2003, 7970-2): 21-35.
    [27] Yang S, Khaledi MG. Linear solvation energy relationships in micellar liquid chromatography and micellar electrokinetic capillary chromatography. J. Chromatogr. A, 1995, 692: 301-310.
    [28] Eros I. Surface active agents in drug forms and biological systems. Acta Pharm Hung. 2005; 75(2): 59-68.
    [29] Prediction of partitioning between complex organic mixtures and water: application of polyparameter linear free energy relationships. Environ Sci Technol, 2006, 40(2): 536-545.
    [30] Trone MD, Leonard MS, Khaledi MG. Congeneric behavior in estimations of octanol-water partition coefficients by micellar electrokinetic chromatography. Anal. Chem, 2000, 72: 1228-1235.
    [31] Torres-Lapasió JR, Baeza-Baeza JJ, García-Alvarez-Coque MC. On the measurement of dead time in micellar liquid chromatography. J liq Chromatogr, 1996, 19(8): 1205-1228.
    [32] Escuder-gilabert L, bermudez-saldana JM, Villanueva-Camanas RM, et al. Reliability of the retention factor estimations in liquid chromatography. J Chromatogr A, 2004, 1033(2): 227-255.
    [33] 孙进,王淑君,程刚等.磷脂膜色谱在生物药剂学中的应用.药学学报,2003;38(6):475-480.
    [34] 孙进,张天虹,李洁等.溶质在磷脂膜色谱与正辛醇/水系统的热力学分配行为.高等学校化学学报,2005,11:1-4.
    [35] 孙进,程刚,何仲贵等.磷脂膜色谱用于评价药物与有序磷脂膜的相互作用.药学学报,2003;38(9):702-706.
    [36] Jin Sun, Yoshiharu Deguchi, Jimin Chen et al. Evaluating interactions of amphoteric molecules with phospholipid membrane using immobilized artificial membrane chromatography. Die Pharmazie, 2002; 57(7): 497-498.
    [37] Dorsey JG, De Etchegaray MT, Landy JS. Efficiency enhancement in micellar liquid chromatography. Anal. Chem., 1983, 55: 924-928.
    [38] Arunyanart M, Cline Love LJ. Model for micellar effects on liquid chromatography capacity factors and for determination of micelle-solute equilibrium constants. Anal. Chem., 1984, 56: 1557-1561.
    [39] Rapado-Martinez I, García-Alvarez-Coque MC, Villanueva-Camanas RM. Liquid chromatographic procedure for the evalution of β-blockers in pharmaceuticals using hybrid micellar mobile phases. J. Chromatogr. A, 1997, 765: 221-231.
    [40] Armstrong DW, Stine GY. Selectivity in pseudo-phase liquid chromatography. Anal. Chem., 1983, 55: 2317-2320.
    [41] Berthod A, Girard I, Gonnet C. Micellar liquid chromatography. Retention study of solutes of various polarities. Anal. Chem., 1986, 58: 1362-1367.
    [42] Tomasella FP, Cline Love LJ. Thermodynamic properties in micellar liquid chromatography based on the three-phase equilibrium model. Anal. Chem., 1990, 62: 1315-1319.
    [43] Raymond C Rowe, Paul J Sheskey, Paul J Weller. Handbook of Pharmaceutical Excipients. 4th ed., Great Britain and USA: Pharmaceutical Press and American Pharmaceutical Association, 2003.
    [44] Kinghorn AD, Balandrin MF. in: S. W. Pelletier(Ed.), Alkaloids: Chemical and Biological Perspeetives, Vol. 2, Wiley, New York, 1984, p. 105.
    [45] Saito K, Arai N, Sekine T, Ohmiya S, Kubo H., Otomasu H, Murakoshi 1. Planta Med. 1990, 56: 487-495.
    [46] P. Xiao, H. Kubo, H. Komiya, K. Higashiyama, Y. N. Yah, J. S. Li, S. Ohmiya. Chem. Pharm. Bull. 1999, 47: 448-456.
    [47] A. Atta-Ur-Rahman, M. I. Choudhary, K. Parvez, A. Ahmed, F. Akhtar, M. Nur-E-Alam, N. M. Hassan. J. Nat. Prod. 2000, 63: 190-196.
    [48] Wu Y, Shao Q, Zhen Z, Cheng Y. Determination of quinolizidine alkaloids in Sophora flavescens and its preparation using capillary electrophoresis. Biomed Chromatogr, 2006, 20(5): 446-450.
    [49] Li Y, Min G, Xue Q, Chen L, Liu W, Chen H. High-performance liquid chromatographic method for simultaneous determination of sophoridine and matrine in rat plasma. Biomed Chromatogr, 2004 18(9): 619-624.
    [50] Li K, Wang H. Simultaneous determination of matrine, sophoridine and oxymatrine in Sophora flavescens Ait. by high performance liquid chromatography. Biomed Chromatogr, 2004, 18(3): 178-182.
    [51] Ma RL, Zhou HH, Yu XS, Sheng LS. Study on the fingerprints of the alkaloids in Sophora flavescens. Zhongguo Zhong Yao Za Zhi. 2003, 28(9): 817-819.
    [52] Mullins Frank GP, Kirkbright GF. Determination of inorganic anions by high-performance liquid chromatography using a micellar mobile phase. Analyst, 1984, 109: 1217-1221.
    [53] S. X. Gong, X. D. Su, T. Bo, X. Zhang, H. W. Liu, K. A. Li. Determination of dissociation constants of ten alkaloids by capillary zone electrophoresis. J. Sep. Sci, 2003, 26: 549-554.
    [54] Matsson P, Bergstrom CAS, Nagahara N, et al. Exploring the role of different drug transport routes in permeability screening. J Med Chem, 2005, 48: 604-613.
    [55] Yamaoka K and Nakagawa TA. Nonlinear least squares program based on differential equations MULTI(RUNGE) for microcomputer. J Pharmcobiodyn, 1983, 6: 595-606.
    [56] Tavelin S, Taipelensuu J, Soderberg L, et al. Prediction of the oral absorption of low permeability drugs using small intestine like 2/4/Al cell monolavers, Pharm Res, 2003, 20: 397-405.
    [57] Stenberg P, et al. Experimental and computational screening models for the prediction of intestinal drug absorption. J Med Chem, 2001, 44: 1927-1937.
    [58] Zhao YH, et al. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship(QSAR) with the Abraham descriptors. J Pharm Sci, 2001, 90: 749-784.
    [59] Palm K, et al. Correlation of drug absorption with molecular surface properties. J Pharm Sci, 1996, 85: 32-39.
    [60] 魏树礼,张强主编.生物药剂学与药物动力学.第二版.北京:北京大学医学出版社,2004:12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700