洋中脊玄武岩含铝矿物弹性和热力学性质计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
越来越多的地震学、矿物物理学、地球化学、地球动力学模拟等研究显示在下地幔深度的地球深部存在俯冲板块的证据,这说明俯冲板块可以穿透过渡带到达下地幔,甚至到达核幔边界,最终参与到全球尺度的地幔物质循环中去。洋中脊玄武岩(MORB)代表了俯冲海洋板块中地壳的成分。对MORB的高温高压实验研究发现,与地幔岩(pyrolite)模型中铝元素主要以杂质形式赋存于钙钛矿结构的(Mg,Fe)SiO3中不同的是,MORB在下地幔的温度压力条件下形成的矿物集合体中含有一种独立的含铝矿物,铝元素主要富集在这些独立的含铝的高压相矿物中。钙铁结构和钙钛结构的MgAl2O4(以下简称钙铁相和钙钛相)很可能是组成该富铝相矿物的重要端元组分。因此,对钙铁相和钙钛相的弹性常数、状态方程和热力学性质等的认识,是建立地幔矿物模型和研究俯冲板块在下地幔中的命运所不可或缺的基础数据。本研究采用了在平面波赝势框架下的,基于密度泛函理论的第一性原理的方法。首先用应变能密度方法对钙铁相和钙钛相的弹性常数进行了计算,给出了压力范围从0到80 GPa的弹性常数。着重考察了钙铁相和钙钛相相变压力40 GPa附近的弹性波波速变化和各向异性。计算发现了在40 GPa时钙铁相和钙钛相的剪切波波速增加达到最大值,约为1.6%。由此造成的俯冲洋壳与周围地幔的波速差约为0.4%,比地震估计所需的数值小0.6%,这说明钙铁相和钙钛相相变不足以引起中部地幔1000公里附近发现的地震波不连续。同时发现钙铁相和钙钛相都具有强烈的地震波各向异性,在40 GPa时其剪切波分裂最大值约为25%。如果下地幔上部地幔流体的运动能够使洋壳物质定向排列,则其剪切波分裂的特征很可能被地震观测发现。接下来,对钙铁相的热力学性质进行了计算。因为密度泛函理论中两种主要的交换相关泛函,即局域密度近似(LDA)和广义梯度近似(GGA)对零温度下体系状态方程都有一定的偏差影响,本文中引入了压力校正的方法,利用常温常压体积的实验值作为唯一的经验参数,对两种泛函得出的状态方程进行了校正,结果表明GGA泛函通过校正和实验吻合得更好。本研究进一步采用了密度泛函微扰理论进行声子频谱的计算,从而得到原子振动部分对于体系总能量的贡献。将体系的状态方程拓展到了有限温度的条件下,可以得出体系在任意温度下的状态方程。文中给出了钙铁相在温度分别为300、800、1200、1600、2000和2400K时的状态方程,将这些状态方程与高温高压实验的结果进行对比,两者基本吻合,将计算得到的钙铁相的状态方程和通过实验得到的其它MORB集合体中的矿物的状态方程相结合,计算了温度为2000 K时MORB矿物集合体的密度随压力的变化关系,结果发现在35-60 GPa的压力范围内,MORB的密度比PREM地震模型的地幔平均密度大2%,这个结果支持了俯冲板块可能越过过渡带进入下地幔的假说。在已知Helmholtz自由能与体积、温度的关系的情况下,根据热力学量的函数关系可以推导出在任意压力温度下的各种热力学性质的参数。本文首先用上述方法计算了刚玉的热力学性质,得到的结果与实验值吻合得非常好,验证了该计算方法的准确性。本文以列表的形式给出了压力为0-40 GPa,温度为0-2000 K条件下,包括摩尔体积、等温体模量、绝热体模量、热膨胀系数、等容热容、等压热容、Gruneisen参数、熵和焓差等在内的各种热力学量的数值。最后,本文给出的计算高温高压矿物热力学参数的方法有望推广到计算其他地幔矿物中去,具有广泛的地质应用。
More and more evidences from seismic tomography, mineral physics, geochem-istry and geodynamics modeling methods support that the presence of subducted slabs in the Earth's lower mantle. It is likely that the subducted slabs could penetrate the transition zone and reach the lower mantle, even the core-mantle boundary (CMB) and eventually be evolved in the global mantle convection. The mid-ocean ridge basalts (MORB) represent the crustal part of subducted oceanic plate. Many high pres-sure experiments have been conducted on pyrolite (a representative mantle rock) and MORB composition to lower mantle conditions. In contrast with pyrolite composi-tion, in which the aluminum mainly resides in MgSiO3 perovskite, an independent aluminous phase was discovered by high-pressure and high-temperature experiments in the basaltic composition. Two polymorphs of MgAl2O4 with calcium-ferrite (CF) and calcium-titanate (CT) structures are likely major end-members of the aluminous phase. Therefore, the elasticity, equation of state (EOS) and thermodynamic proper-ties of the CF phase and CT phase are indispensable knowledge for building a mantle mineralogical model and interpreting the fate of subducted slabs in the lower mantle. In this thesis, the main study methods are first principles computational techniques based on density functional theory (DFT) in the framework of pseudo-potentials and plane waves. First, the elastic constants of CF phase and CT phase were determined using strain energy density method from 0 to 80 GPa. Special investigation was per-formed around 40 GPa, which is the possible transition pressure from CF to CT, on the change of elastic velocities and seismic anisotropy. At 40 GPa, shear velocity contrast between the two phases reached its maximum with a value of 1.6%, corresponding a 0.4% jump of velocity between MORB and surrounding mantle. However, this is about 0.6% lower than one requires from seismic estimation. Thus, the mid-mantle discon-tinuity around 1000km seems unlikely caused by this phase transition. On the other hand, the CF phase and CT phase show great seismic anisotropy, e.g. the max value of shear wave splitting was 25% at 40 GPa. If the oceanic crustal materials could be aligned in a preferred direction by mantle flow, the big shear wave splitting characteris-tic may be detected by seismic observations. Next, the thermodynamic properties of CF phase were calculated. Both of the two main exchange-correlation functional in DFT method, the local density approximation (LDA) and generalized gradient approxima-tion (GGA), produce some deviations of athermal EOS from experiment. GGA gives better performance than LDA after introducing a pressure correction for the athermal EOS. Furthermore, the lattice vibrational frequencies, i.e. phonons, were obtained us-ing density functional perturbation theory. The vibrational energy can be calculated from phonon frequencies. The athermal EOS was extended to finite temperature under quasi-harmonic approximation. It was shown that the high pressure equation of states calculated from 300 to 2400 K agree very well with experiments. The calculated den-sity profile along 2000 K from 35 to 60 GPa for the subducted slabs are 2% higher than typical seismological model (PREM), conforming the hypothesis that subducted slabs can sink in the lower mantle. One can derive all thermodynamic potentials from Leg-endre transformations if the Helmholtz free energy, volume and temperature relations F(V,T) are known. In this thesis, the following thermodynamic properties, the molar volume, isothermal and adiabatic bulk modulus, thermal expansivity, constant volume and pressure heat capacities, Gruneisen parameter, entropy and enthalpy difference, are listed as tables in a pressure range of 0 to 40 GPa and a temperature range of 0 to 2000 K. The accuracy of the thermodynamic properties are validated by comparing calculated results with experiments for a simpler system, corundum, and showed ex-cellent agreement. Finally, the calculation method used in this study is also promising for other mantle minerals and will have great impact on other geological applications.
引文
Akaogi, M., Y. Hamada, T. Suzuki, M. Kobayashi, and M. Okada (1999), High pres-sure transitions in the system MgA12O4-CaA12O4:a new hexagonal aluminous phase with implication for the lower mantle, Physics of The Earth and Planetary Interiors, 115,67-77.
    Allen, M. P., and D. J. Tildesley (1989), Computer Simulation of Liquids, Oxford Unversity Press, USA.
    Anderson, O. L., D. L. Isaak, and H. Oda (1991), Thermoelastic parameters for six minerals at high temperature, Journal of Geophysical Research,96,18,037-18,046.
    Baroni, S., S. de Gironcoli, and A. Dal Corso (2001), Phonons and related crystal properties from density-functional perturbation theory, Reviews of Modern Physics, 73(2),515-562, doi:10.1103/RevModPhys.73.515.
    Bass, J. (2007), Theory and practice-techniques for measuring high P/T elasticity, in Treatise on Geophysics, vol.2, edited by G. Price, Elsevier, B.V.
    Bass, J., and D. Anderson (1984), Composition of the upper mantle:Geophysical tests of two petrological models, Geophysical Research Letters,11,237-240.
    Bass, J. D., and J. B. Parise (2008), Deep earth and recent developments in mineral physics, Elements,4,157-163.
    Bass, J. D., S. V. Sinogeikin, and B. Li (2008), Elastic properites of minerals:a key for understanding the composition and temperature of earth's interior, Elements,4, 165-170.
    Birch, F. (1952), Elasticity and constitution of the earth's interior, Journal of Geo-physical Research,57,227-286.
    Born, M., and K. Huang (1954), Dynamical Theory of Crystal Lattices, Oxford Un-versity Press, Oxford.
    Born, M., and J. Oppenheimer (1927), "Zur quantentheorie der molekeln", Ann. Physik,84,457.
    Boyd, F., and J. England (1960), Apparatus for phase-equilibrium measurements at pressures up to 50 kilobars and temperatures up to 1750c, Journal of Geophysical Research,65,741-748.
    Brown, J. M., and T. J. Shankland (1981), Thermodynamic parameters in the earth as determined from seismic profiles, Geophysical Journal International,66(3),579-596, doi:10.1111/j.1365-246X.1981.tb04891.x.
    Brown, R. J. (1989), Relationships between the velocities and the elastic constants of an anisotropic solid possessing orthorhombic symmetry, Tech. Rep.17, Consortium for Research in Elastic Wave Exploration Seismology, Canada.
    Catti, M. (2001), High-pressure stability, structure and compressibility of Cmcm-MgA12O4:an ab initio study, Physics and Chemistry of Minerals,28,729-736.
    Courtier, A., and J. Revenaugh (2008), Slabs and shear wave reflectors in the mid-mantle, Journal of Geophysical Research,113, B08,312.
    DeCicco, P. D., and F. A. Johnson (1969), The quantum theory of lattice dynamics. IV, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,310(1500),111-119.
    Duffy, T., and D. Anderson (1989), Seismic velocities in mantle minerals and the mineralogy of the upper mantle, Journal of Geophysical Research,94,895-1912.
    Dziewonski, A. M., and D. L. Anderson (1981), Preliminary reference earth model, Physics of the Earth and Planetary Interiors,25,297-356.
    Feynman, R. (1939), Forces in molecules, Physical Review,56,340.
    Fiquet, G., A. Dewaele, D. Andrault, M. Kunz, and T. Le Bihan (2000), Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions, Geophysical Research Letters,27,21-24.
    Fukao, Y., M. Obayashi, H. Inoue, and M. Nenbai (1992), Subducting slabs stagnant in the mantle transition zone, Journal of Geophysical Research,97,4809-4822.
    Funamori, N., R. Jeanloz, J. H. Nguyen, A. Kavner, W. A. Caldwell, K. Fu-jino, N. Miyajima, T. Shinmei, and N. Tomioka (1998), High-pressure transforma-tions in MgA12O4, Journal of Geophysical Research,103(B9),20,813-20,818, doi: 10.1029/98JB01575.
    Garnero, E., and D. Helmberger (1996), Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central-Pacific, Geophysical Research Letters,23,977-980.
    Giannozzi, P., et al. (2009), QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter,21(39),395,502, doi:10.1088/0953-8984/21/39/395502.
    Gillan, M. J., D. Alfe, J. P. Brodholt, L. Vocadlo, and G. D. Price (2006), First-principles modelling of earth and planetary materials at high pressures and tempera-tures, Reports on Progress in Physics,69,2365-2441.
    Grabowski, B., T. Hickel, and J. Neugebauer (2007), Ab initio study of the ther-modynamic properties of nonmagnetic elementary fcc metals:Exchange-correlation-related error bars and chemical trends, Physical Review B,76(2),024,309, doi: 10.1103/PhysRevB.76.024309.
    Gracia, L., A. Beltron, J. Andres, R. Franco, and J. Recio (2002), Quantum-mechanical simulation of MgA12O4 under high pressure, Physical Review B,66(22), doi:10.1103/PhysRevB.66.224114.
    Guignot, N., and D. Andrault (2004), Equations of state of Na-K-Al host phases and implications for MORB density in the lower mantle, Physics of The Earth and Plan-etary Interiors,143-144,107-128, doi:10.1016/j.pepi.2003.09.014.
    Hellmann, H. (1937), Einfuhrung in die Quantumchemie, Franz Duetsche, Leipzig.
    Hill, R. (1952), The elastic behaviour of a crystalline aggregate, Proceedings of Phys-ical Society Section A,65,349-354.
    Hirose, K., Y. Fei, Y. Ma, and H. Mao (1999), The fate of subducted basaltic crust in the earth's lower mantle, Nature,397(6714),53-56, doi:10.1038/16225.
    Hirose, K., N. Takafuji, N. Sata, and Y. Ohishi (2005), Phase transition and density of subducted MORB crust in the lower mantle, Earth and Planetary Science Letters, 237(1-2),239-251, doi:10.1016/j.epsl.2005.06.035.
    Hofmann, A., and W. White (1982), Mantle plumes from ancient oceanic crust, Earth and Planetary Science Letters,57,421-436.
    Hohenberg, P., and W. Kohn (1964), Inhomogeneous electron gas, Physical Review, 136(3B), B864-B871, doi:10.1103/PhysRev.136.B864.
    Imada, S., K. Hirose, and Y. Ohishi (2011), Stabilities of NAL and ca-ferrite-type phases on the join NaAlSiO4-MgA12O4 at high pressure, Physics and Chemistry of Minerals,38(7),557-560, doi:10.1007/s00269-011-0427-2.
    Irifune, T., and A. Ringwood (1987), Phase transformations in primitive MORB and pyrolite compositions to 25 GPa and some geophysical implications, in High-pressure Research in Geophysics, edited by Manghnani, M. and Syono, Y., pp.231-242, TER-RAPUB/AGU, Tokyo/Washington, D.C.
    Irifune, T., and A. Ringwood (1993), Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600-800 km in the mantle, Earth and Planetary Science Letters,117(1-2),101-110, doi:10.1016/0012-821X(93)90120-X.
    Irifune, T., K. Fujino, and E. Ohtani (1991), A new high-pressure form of MgA12O4, Nature,349(6308),409-411, doi:10.1038/349409a0.
    Irifune, T., H. Naka, T. Sanehira, T. Inoue, and K. Funakoshi (2002), In situ x-ray observations of phase transitions in MgA12O4 spinel to 40 GPa using multianvil ap-paratus with sintered diamond anvils, Physics and Chemistry of Minerals,29(10), 645-654, doi:10.1007/s00269-002-0275-1.
    Ito, E., and E. Takahashi (1987), Ultrahigh pressure phase tranformations and the constitution of the deep mantle, in High-pressure Research in Geophysics, edited by Manghnani, M. and Syono, Y., pp.221-229, TERRAPUB/AGU, Tokyo/Washington, D.C.
    Ito, E., D. Yamazaki, T. Yoshino, H. Fukui, S. Zhai, A. Shatzkiy, T. Katsura, Y. Tange, and K.-i. Funakoshi (2010), Pressure generation and investigation of the post-perovskite transformation in MgGeO3 by squeezing the kawai-cell equipped with sintered diamond anvils, Earth and Planetary Science Letters,293(1-2),84-89, doi: 10.1016/j.epsl.2010.02.023.
    Jackson, I., and S. Rigden (1996), Constrains on the thermoelastic properties of high-pressure minerals, Physics of the Earth and Planetary Interiors,96,85-112.
    Kaneshima, S., and G. Helffrich (1999), Dipping Low-Velocity layer in the Mid-Lower mantle:Evidence for geochemical heterogeneity, Science,283(5409),1888-1892, doi:10.1126/science.283.5409.1888.
    Karason, H., and R. van der Hilst (2000), Constraints on mantle convection from seismic tomography, in The history and dynamics of global plate motion, vol.121, edited by M. Richards, R. Gordon, and R. van der Hilst, pp.277-288, Wanshington DC:American Geophysical Union.
    Karki, B. B., L. Stixrude, and R. M. Wentzcovitch (2001), High-pressure elastic properties of major materials of earth's mantle from first principles, Reviews of Geo-physics,39(4), PP.507-534, doi:200110.1029/2000RG000088.
    Katsura, T., K. Funakoshi, A. Kubo, N. Nishiyama, Y. Tange, Y. Sueda, T. Kubo, and W. Utsumi (2004), A large-volume high-pressure and high-temperature apparatus for in situ x-ray observation,'SPEED-Mk.Ⅱ', Physics of the Earth and Planetary Interiors,143,497-506.
    Kawai, K., and T. Tsuchiya (2010), Ab initio investigation of high-pressure phase relation and elasticity in the NaAlSi2O6 system, Geophysical Research Letters,37,6 PP., doi:201010.1029/2010GL044310.
    Kesson, S. E., J. D. Fitz Gerald, and J. M. Shelly (1994), Mineral chemistry and density of subducted basaltic crust at lower mantle pressures, Nature,372,767-769.
    Kieffer, S. W. (1979), Thermodynamics and lattice vibrations of minerals:3. lattice dynamics and an approximation for minerals with application to simple substances and framework silicates, Reviews of Geophysics,17(1),35-59, doi:197910.1029/ RG017i001p00035.
    Kittel, C. (2004), Introduction to Solid State Physics,8th ed., Wiley.
    Kohn, W., and L. J. Sham (1965), Self-Consistent equations including exchange and correlation effects, Physical Review,140(4A), A1133-A1138, doi:10.1103/PhysRev. 140.A1133.
    Kojitani, H., K. Nishimura, A. Kubo, M. Sakashita, K. Aoki, and M. Akaogi (2003), Raman spectroscopy and heat capacity measurement of calcium ferrite type MgA12O4 and CaA12O4, Phys. Chem. Minerals,30,409-415, doi:10.1007/ s00269-0332-4.
    Kojitani, H., R. Hisatomi, and M. Akaogi (2007), High-pressure phase relations and crystal chemistry of calcium ferrite-type solid solutions in the system MgA12O4-Mg2SiO4, American Mineralogist,92(1),1112-1118, doi:10.2138/am.2007.2255.
    Kojitani, H., T. Iwabuchi, M. Kobayashi, H. Miura, and M. Akaogi (2011), Structure refinement of high-pressure hexagonal aluminous phases K1.00Mg2.00A14.80Si1.15O12 and Nal.04Mg1.88A14.64Si 1.32012, American Mineralogist,96,1248-1253, doi:10.2138/am.2011.3638.
    Kubo, T., E. Ohtani, T. Kondo, T. Kato, M. Toma, T. Hosoya, A. Sano, T. Kikegawa, and T. Nagase (2002), Metastalbe garnet in oceanic crust at the top of the lower man-tle, Nature,420,803-806.
    Li, L., J. P. Brodholt, S. Stackhouse, D. J. Weidner, M. Alfredsson, and G. D. Price (2005), Elasticity of (Mg,Fe)(Si,Al)O3-perovskite at high pressure, Earth and Plane-tary Science Letters,240,529-536.
    Li, L., D. J. Weidner, J. P. Brodholt, D. Alfe, G. D. Price, R. Caracas, and R. Wentz-covitch (2006), Elasticity of CaSiO3 perovskite at high pressure and high temperature, Physics of the Earth and Planetary Interiors,155,249-259.
    Li, L., D. J. Weidner, J. P. Brodholt, D. Alfe, and G. D. Price (2009), Ab initio molec-ular dynamics study of elasticity of akimotoite MgSiO3 at mantle conditions, Physics of the Earth and Planetary Interiors,173,115-120.
    Liu, L. (1975), Disproportionation of MgA12O4 spinel at high pressures and temper-atures, Geophysical Research Letters,2(1),9, doi:10.1029/GL002i001 p00009.
    Liu, L. (1978a), A new high-pressure phase of spinel, Earth and Planetary Science Letters,41(4),398-404, doi:10.1016/0012-821 X(78)90171-1.
    Liu, L. (1978b), High-pressure phase transformation of albite, jadeite and nepheline, Earth and Planetary Science Letters,37,438-444.
    Liu, W., J. Zhao, L. Liu, H. Liu, and J. Du (2010), First-principles study of the effect of water on the phase transitions in Mg2SiO4 forsterite, High Pressure Research:An International Journal,30,318-324. Mainprice, D. (1990), An efficient fortran program to calculate seismic anisotropy from the lattice preferred orientation of minerals, Computer and Geosciences,16, 385-393.
    Martin, R. M. (2004), Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press.
    Mattern, E., J. Matas, Y. Ricard, and J. Bass (2005), Lower mantle composition and temperature from mineral physics and thermodynamic modelling, Geophysical Jour-nal International,160(3),973-990, doi:10.1111/j.1365-246X.2004.02549.x.
    Michael, P. J., and E. Bonatti (1985), Peridotite composition from the north atlantic: regional and tectonic variations and implications for partial melting, Earth and Plan-etary Science Letters,73,91-104.
    Miura, H., Y. Hamada, T. Suzuki, M. Akaogi, N. Miyajima, and K. Fujino (2000), Crystal structure of CaMg2A16O12, a new al-rich high pressure form, American Min-eralogist,85,1799-1803.
    Miyajima, N., K. Fujino, N. Funamori, T. Kondo, and T. Yagi (1999), Garnet-perovskite transformation under conditions of the earth's lower mantle:an analytical transmission electron microscopy study, Physics of the Earth and Planetary Interiors, 116(1-4),117-131, doi:10.1016/S0031-9201(99)00127-2.
    Monkhorst, H. J., and J. D. Pack (1976), Special points for brillouin-zone integrations, Physical Review B,13(12),5188-5192, doi:10.1103/PhysRevB.13.5188.
    Mookherjee, M. (2011), Mid-mantle anisotropy:Elasticity of aluminous phases in subducted MORB, Geophysical Research Letters,38(14), doi:10.1029/ 2011GL047923.
    Mori, J., and D. Helmberger (1995), Localized boundary layer below the mid-Pacific velocity anomaly identified from a PcP precursor, Journal of Geophysical Research, 100,20,359-20,365.
    Murakami, M., K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi (2004), Post-Perovskite phase transition in MgSiO3, Science,304(5672),855-858. Murnaghan, F. D. (1944), The compressibility of media under extreme pressures, Pro-ceedings of the National Academy of Sciences,30(9),244-247, doi:10.1073/pnas.3(). 9.244.
    Nishihara, Y., K. Nakayama, E. Takahashi, T. Iguchi, and K.-i. Funakoshi (2005), P-V-T equation of state of stishovite to the mantle transition zone conditions,31, 660-670.
    Niu, F., and H. Kawakatsu (1997), Depth variation of the mid-mantle seismic discon-tinuity, Geophysical Research Letters,24,429-432.
    Niu, F., H. Kawakatsu, and Y. Fukao (2003), Seismic evidence for a chemical het-erogeneity in the midmantle:A slightly dipping and strong seismic reflector at mid-depth beneath the mariana subduction zone, Journal of Geophysical Research,108, JB002,384.
    Nixon, P., and F. Boyd (1973), Petrogenesis of the granular and sheared ultrabasic nodule suite in kimberlite, in Lesotho Kimberlites, edited by P. Nixon, pp.48-56, Lesotho National Development Corp.
    Nye, J. F. (1985), Physcial Properties of Crystals: Their Representation by Tensors and Matrices, Oxford Unversity Press, USA.
    Oganov, A. R., and S. Ono (2004), Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in earth's d" layer, Nature,430(6998),445-448, doi: 10.1038/nature02701.
    Oganov, A. R., J. P. Brodholt, and G. D. Price (2001), Ab initio elasticity and thermal equation of state of MgSiO3 perovskite, Earth and Planetary Science Letters,184, 555-560.
    Ohtani, E., and T. Sakai (2008), Recent advances in the study of mantle phase transi-tions, Physics of the Earth and Planetary Interiors,170,240-247.
    Okino, K., M. Ando, S. Kaneshima, and K. Hirahara (1989), The horizaon-tally lying slab, Geophysical Research Letters,16(9),1059-1062, doi:10.1029/ GL016i009p01059.
    Ono, A., M. Akaogi, H. Kojitani, K. Yamashita, and M. Kobayashi (2009), High-pressure phase relations and thermodynamic properties of hexagonal aluminous phase and calcium-ferrite phase in the systems NaAlSiO4-MgAl2O4 and CaAl2O4-MgAl2O4, Physics of the Earth and Planetary Interiors,174,39-49.
    Ono, S., E. Ito, and T. Katsura (2001), Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle, Earth and Planetary Science Letters,190(1-2),57-63, doi:10.1016/S0012-821X(01) 00375-2.
    Ono, S., Y. Ohishi, and T. Watanuki (2005), In situ x-ray observations of phase assem-blages in peridotite and basalt compositions at lower mantle conditions:Implications for density of subducted oceanic plate, Journal of Geophysical Research,110(B2), B02,208, doi:10.1029/2004JB003196.
    Ono, S., T. Kikegawa, and Y. Ohishi (2006), The stability and compressibility of MgAl2O4 high-pressure polymorphs, Physics and Chemistry of Minerals,33(3), 200-206, doi:10.1007/s00269-006-0068-z.
    Ono, S., J. P. Brodholt, and G. D. Price (2008), First-principles simulation of high-pressure polymorphs in MgAl2O4, Physics and Chemistry of Minerals,35(7),381-386, doi:10.1007/s00269-008-0231-9.
    Perdew, J., J. Chevary, S. Vosko, K. Jackson, M. Pederson, D. Singh, and C. Fiolhais (1993), Erratum:Atoms, molecules, solids, and surfaces:Applications of the general-ized gradient approximation for exchange and correlation, Physical Review B,48(1), 4978-4978, doi:10.1103/PhysRevB.48.4978.2.
    Perdew, J. P., J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais (1992), Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation, Physical Review B, 46(11),6671-6687, doi:10.1103/PhysRevB.46.6671.
    Perrillat, J., A. Ricolleau, I. Daniel, G. Fiquet, M. Mezouar, N. Guignot, and H. Cardon (2006), Phase transformations of subducted basaltic crust in the upmost lower mantle, Physics of The Earth and Planetary Interiors,157(1-2),139-149, doi: 10.1016/j.pepi.2006.04.001. Pick, R. M., M. H. Cohen, and R. M. Martin (1970), Microscopic theory of force constants in the adiabatic approximation, Physical Review B,1(2),910-920, doi:10. 1103/PhysRevB.1.910.
    Poirier, J. (2000), Introduction to the Physics of the Earth's Interior,2nd ed., Cam-bridge University Press.
    Reid, A., and A. Ringwood (1969), Newly observed high pressure transformations in Mn3O4, CaA12O4 and ZrSiO4, Earth and Planetary Science Letters,6,205-208.
    Ricard, Y., E. Mattern, and J. Matas (2005), Sythetic tomographic images of slabs from mineral physics, in Earth's Deep Mantle: Structure, Composition and Evolution, no.160 in Geophysical Monograph Series, American Geophysical Union.
    Richet, P., and G. Fiquet (1991), High-temperature heat capacity and premelting of minerals in the system MgO-CaO-A12O3-SiO2, Journal of Geophysical Research, 96,445-456.
    Ricolleau, A., et al. (2010), Phase relations and equation of state of a natural MORB:implications for the density profile of subducted oceanic crust in the earth's lower mantle, Journal of Geophysical Research,115(B8), B08,202, doi:10.1029/ 2009JB006709.
    Ringwood, A. (1962), A model of the upper mantle, Journal of Geophysical Research, 67,857-866.
    Ringwood, A. (1966), Mineralogy of the mantle, in Advances in Earth Sciences, edited by P. Hurley, pp.357-398, MIT Press, Cambridge.
    Saxena, S. K. (2010), Thermodynamic modelling of the earth's interior, Elements,6, 321-325.
    Shen, Y., C. Wolfe, and S. Solomon (2003), Seismological evidence for a mid-mantle discontinuity beneath hawaii and iceland, Earth and Planetary Science Letters,214, 143-151.
    Shim, S. H., T. S. Duffy, and G. Shen (2000), The stability and P-V-T equation of state of CaSiO3 perovskite in the earth's lower mantle, Journal of Geophysical Research, 105,25,955-25,968.
    Sin'ko, G. (2008), Ab initio calculations of the second-order elastic constants of crystals under arbitrary isotropic pressure, Physical Review B,77(10), doi:10.1103/ PhysRevB.77.104118.
    Spence, W. (1987), Slab pull and the seismotectonics of subducting lithosphere, Re-views of Geophysics,25,55-69.
    Stackhouse, S., J. P. Brodholt, J. Wookey, J. Kendall, and G. D. Price (2005), The effect of temperature on the seismic anisotropy of the perovskite and post-perovskite polymorphs of MgSiO3, Earth and Planetary Science Letters,230,1-10.
    Stackhouse, S., L. Stixrude, and B. B. Karki (2009), Determination of the high pres-sure properties of fayalite from first principles calculations, Earth and Planetary Sci-ence Letters,289,449-456.
    Stixrude, L., and C. Lithgow-Bertelloni (2005), Thermodynamics of mantle minerals i. physical properties, Geophysical Journal International,162(2),610-632, doi:10. 1111/j.1365-246X.2005.02642.x.
    Stixrude, L., and C. Lithgow-Bertelloni (2010), Thermodynamics of the earth's man-tle, Reviews in Mineralogy and Geochemistry,71,465-484.
    Sueda, Y., T. Irifune, T. Sanehira, T. Yagi, N. Nishiyama, T. Kikegawa, and K.-i. Funakoshi (2009), Thermal equation of state of CaFe2O4-type MgA12O4, Physics of the Earth and Planetary Interiors,174(1-4),78-85, doi:10.1016/j.pepi.2008.07.046.
    Sun, S. (1982), Chemical composition and origin of the earth's primitive mantle, Geochimica et Cosmochimica Acta,46,179-192.
    Sun, W., X. Ding, Y. Hu, R. E. Zartman, R. J. Arculus, V. S. Kamenetsky, and M. Chen (2011), The fate of subducted oceanic crust:a mineral segregation model, In-ternational Geology Review,53(8),879-893, doi:10.1080/00206810903211930.
    Takahashi, E. (1986), Melting of a dry peridotite KLB-1 up to 14 GPa:implications on the origin of peridotitic upper mantle, Journal of Geophysical Research,91,9367-9382.
    Trampert, J., F. Deschamps, J. Resovsky, and D. Yuen (2004), Probabilistic tomogra-phy maps chemical heterogeneities throughout the lower mantle, Science,306,853-856. Troullier, N., and J. L. Martins (1991), Efficient pseudopotentials for plane-wave cal-culations, Physical Review B,43(3),1993-2006, doi:10.1103/PhysRevB.43.1993.
    Tsuchiya, T. (2011), Elasticity of subducted basaltic crust at the lower mantle pres-sures:Insights on the nature of deep mantle heterogeneity, Physics of the Earth and Planetary Interiors,188,142-149, doi:10.1016/j.pepi.2011.06.018.
    Tutti, F., L. S. Dubrovinsky, and S. K. Saxena (2000), High pressure phase trans-formation of jadeite and stability of NaAlSiO4 with calcium-ferrite type structure in the lower mantle conditions, Geophysical Research Letters,27(14),2025, doi: 10.1029/2000GL008496.
    Uchida, T., Y. Wang, M. L. Rivers, and S. R. Sutton (2001), Stability field and ther-mal equation of state of epsilon-iron determined by synchrotron x-ray diffraction in a multianvil apparatus, Journal of Geophysical Research,106,21,799-21,810.
    van der Hilst, R., E. Engdahl, W. Spakman, and G. Nolet (1991), Tomographic imag-ing of subducted lithosphere below northwest pacific island arcs, Nature,353,37-43.
    van der Hilst, R., E. Engdahl, and W. Spakman (1993), Tomographic inversion of p and pP data for aspherical mantle structure below the northwest pacific region, Geo-physical Journal International,115,264-302.
    van der Hilst, R. D., S. Widiyantoro, and E. R. Engdahl (1997), Evidence for deep mantle circulation from global tomography, Nature,386,578-584.
    Vanacore, E., F. Niu, and H. Kawakatsu (2006), Observations of the mid-mantle dis-continuity beneath indonesia from s to p converted waveforms, Geophysical Research Letters,33, L04,302.
    Vanderbilt, D. (1990), Soft self-consistent pseudopotentials in a generalized eigen-value formalism, Physical Review B,41(11),7892-7895, doi:10.1103/PhysRevB.41. 7892.
    Vidale, J. E., and M. A. H. Hedlin (1998), Evidence for partial melt at the core-mantle boundary north of tonga from the strong scattering of seismic waves, Nature,391, 682-685.
    Vinet, P., J. H. Rose, J. Ferrante, and J. R. Smith (1989), Universal features of the equation of state of solids, Journal of Physics: Condensed Matter, 1,1941-1963. Vinnik, L., F. Niu, and H. Kawakatsu (1998), Broadband converted phases from mid-mantle discontinuities, Earth Planets Space,50,987-997.
    Vinnik, L., M. Kato, and H. Kawakatsu (2001), Search for seismic discontinuities in the lower mantle, Geophysical Journal International,147,41-56.
    Vinnik, L., S. I. Oreshin, S. Speziale, and M. Weber (2010), Mid-mantle layering from SKS receiver functions, Geophysical Research Letters,37, L24,302.
    Vocadlo, L., and D. Alfe (2002), Ab initio melting curve of the fee phase of aluminum, Physical Review B,65,214,105.
    Walker, A. M. (2012), The effect of pressure on the elastic properties and seismic anisotropy of diopside and jadeite from atomic scale simulation, Physics of the Earth and Planetary Interiors,192-193(0),81-89, doi:10.1016/j.pepi.2011.10.002.
    Walker, A. M., R. P. Tyer, R. P. Bruin, and M. T. Dove (2008), The compressibility and high pressure structure of diopside from frist principles simulation, Physics and Chemistry of Minerals,35,359-366.
    Wallace, D. C. (1998), Thermodynamics of Crystals, Dover Publications.
    Wentzcovitch, R. (1991), Invariant molecular-dynamics approach to structural phase transitions, Physical Review B,44(5),2358-2361, doi:10.1103/PhysRevB.44.2358.
    Wentzcovitch, R., and L. Stixrude (Eds.) (2010), Theoretical and Computational Methods in Mineral Physics:Geophysical Applications, Reviews in Mineralogy and Geochemistry, vol.71, The Mineralogical Society of America.
    Xu, J. A., H. K. Mao, and P. M. Bell (1986), High-pressure ruby and diamond fluo-rescence-observations at 0.21 to 0.55 terapascal, Science,232,1404-1406.
    Yin, K., H. Zhou, and S. Xu (2008), Phonon dispersion relations and thermodynamic properties of magnesium aluminum spinel:A first principle study, Journal of Nanjing University: Natural Sciences,44,653-659.
    Yutani, M., T. Yagi, H. Yusa, and T. Irifune (1997), Compressibility of calcium ferrite-type MgAl2O4, Physics and Chemistry of Minerals,24(5),340-344, doi:10.1007/ s002690050047.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700