熵界和全息原理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从Hawking于1975年发现霍金辐射以来,黑洞热力学及其背后的量子引力描述一直得到广泛的关注和研究。尤其是九十年代以后受黑洞面积熵定律的启发,由't Hooft和Susskind先后提出并发展了全息原理的概念,即一个物理系统的信息容量不超过其Planck单位下的边界面积。随后又出现了ADS/CFT对偶对全息原理的实现,这使得全息原理在量子引力的研究中逐渐成为一个中心问题。
     在本学位论文中,我们介绍了熵界和全息原理的基本知识,并以熵界研究作为出发点,考察了全息原理相关的几个问题。
     首先,我们研究了引力约束下定域场论的熵界,第一次用数微观态的方法严格证明了玻色场和费米场都遵从同样的熵界A3/4lp-3/2,其中A是体系的边界面积,lp=1.616×10-35m是Planck尺度。这支持了'tHooft借助热态所做的定性分析的结论,也纠正了以往认为定域场论可以饱和全息熵界Alp-2的错误的认识。
     随后,我们研究了由无穷大统计所描述的量子玻尔兹曼场的热力学熵界和统计熵界,发现在引力约束下,它刚好遵从全息熵界Alp-2。在一般的情况下,这个熵界正是Bekenstein熵界El/(hc),其中E和l分别是体系的能量和尺度。我们的结果增进了对从定域场论的熵界A3/4lp-3/2到全息熵界Alp-2之间的熵隙的认识,而这个熵隙对应的自由度的来源在之前一直是不清楚的。这个结果也暗示无穷大统计和量子引力之间存在深刻的联系。
     最后,我们借助量子计算的观点,结合量子和引力的效应,导出了一个新的时空不确定性关系。这个关系式可以应用于包括宇宙的计算容量和效率,宇宙热力学等问题的分析上。这个关系式看以看作是全息原理的一个拓展。全息原理一般来说只对系统的信息容量给出限制,而我们的关系式可以推出包括系统的信息处理能力在内的更多性质。
Since Hawking radiation was discovered in 1975, the thermodynamics of black holes and the quantum gravitational mechanism behind it have gained a lot of interest. Especially, illuminated by the area law of black hole entropy,'t Hooft and Susskind subsequently de-veloped the concept of holographic principle, which states that the information capacity of a system will not exceed its boundary area in Planck units. Later, the holographic principle was realized by the famous ADS/CFT dual, which soon turns holographic principle to be a central topic in the research of quantum gravity.
     In this thesis, we introduce the fundamental lore in the area of entropy bounds and holographic principle. Starting from the study of entropy bounds, we have investigated several questions related to holographic principle.
     First, we investigate the entropy bound for local quantum field theory under gravita-tional constraint. We strictly proved that bosonic and fermionic fields conform to the same entropy bound A3/4lp-3/2, where A is the boundary area of the system, lp=1.616×10-35m is Planck length. The results have supported the qualitative analysis given by't Hooft some years ago, and rectified the incorrect viewpoint that local quantum field theory could satu-rate the holographic entropy.
     Second, we investigate the thermodynamical and statistical entropy bound for quan-tum Boltzmann fields which obey infinite statistics. We find infinite statistics complies with the holographic entropy bound Alp-2 very well. In general cases, the entropy bound comes back to the Bekenstein bound El/(hc), where E and l are respectively the energy and size of the system. Our results have improved the understanding of the gap between the entropy bound of local quantum field theory and the holographic entropy, that is, from A3/4lp-3/2 to Alp-2, the corresponding degrees of freedom of which are very obscure before our work. Our results also suggest a close relationship between infinite statistics and quantum gravity.
     Finally, starting from a quantum computational perspective, combining quantum and gravitational principles, we derived a new space-time uncertainty relation, which can be used to facilitate the discussion of several profound questions, such as computational ca-pacity and thermodynamic properties of the universe. This uncertainty relation can be viewed as an extension of holographic principle. Holographic principle only limits the information of a system, while from our relation one can obtain some other important properties of the system such as its capacity of information processing.
引文
[1] J.D. Bekenstein,"Black Holes and Entropy," Phys. Rev. D 7,2333 (1973). [2] J. D. Bekenstein, "Statistical Black Hole Thermodynamics," Phys. Rev. D 12,3077 (1975). [3] J. D. Bekenstein, "Generalized second law of thermodynamics in black hole physics", Phys. Rev. D 9,3292 (1974). [4] S.W. Hawking, "Particle creation by black holes," Commun. Math. Phys.43,199 (1975). [5] A. Strominger and C. Vafa,"Microscopic Origin of the Bekenstein-Hawking En-tropy," Phys. Lett. B 379,99 (1996) [arXiv:hep-th/9601029]. [6] J. M. Maldacena, A. Strominger and E. Witten, "Black hole entropy in M-theory," JHEP 9712,002 (1997) [arXiv:hep-th/9711053]. [7] M. Guica, T. Hartman, W. Song and A. Strominger, "The Kerr/CFT Correspon-dence," arXiv:0809.4266 [hep-th]. [8] G. W. Gibbs, M. J. Perry, "Black holes and thermal green functions," Proc. R. Soc. Lond,A,358,467(1978). [9] T. Damoar and R. Ruffini "Black-hole evaporation in the Klein-Sauter-Heisenberg-Euler formalism," Phys. Rev. D,14,332 (1976).
    [10]P. K. Townsend, "Black holes," arXiv:gr-qc/970701.
    [11]J. M. Bardeen, B. Carter, S. W. Hawking, "The four laws of black hole mechanics," Commun. Math. Phys.31,161 (1973).
    [12]J.D. Bekenstein, "Universal upper bound on the entropy-to-energy ratio for bounded systems", Phys. Rev. D 23,287 (1981).
    [13]J. D. Bekenstein, "Entropy Bounds And The Second Law For Black Holes," Phys. Rev. D 27,2262 (1983). [14] J. D. Bekenstein and A. E. Mayo, "Black hole polarization and new entropy bounds," Phys. Rev. D 61,024022 (2000) [arXiv:gr-qc/9903002]. [15] S. Hod, "Universal upper bound to the entropy of a charged system," arXiv:gr-qc/9903010. [16] B. Linet, "Entropy bound for a charged object from the Kerr-Newman black hole," Gen. Rel. Grav.31,1609 (1999). [17] W. G. Qiu, B. Wang, R. K. Su, and E. Abdalla, "Entropy bound for a charged rotating system," Phys. Rev. D 64,027503 (2001). [18] R. Bousso, "A Covariant entropy conjecture," JHEP 9907,004 (1999) [arXiv:hep-th/9905177]. [19] R. Bousso, "Holography in general space-times," JHEP 9906,028 (1999) [arXiv:hep-th/9906022].
    [20]R. Bousso, "The holographic principle for general backgrounds," Class. Quant. Grav.17,997 (2000) [arXiv:hep-th/9911002].
    [21]E. E. Flanagan, D. Marolf and R. M. Wald, "Proof of classical versions of the Bousso entropy bound and of the generalized second law," Phys. Rev. D 62,084035 (2000) [arXiv:hep-th/9908070].
    [22]R. Brustein and G. Veneziano, "A Causal Entropy Bound," Phys. Rev. Lett.84, 5695 (2000) [arXiv:hep-th/9912055].
    [23]R. Brustein, D. Eichler, S. Foffa and D. H. Oaknin, "The shortest scale of quantum field theory," Phys. Rev. D 65,105013 (2002) [arXiv:hep-th/0009063].
    [24]W. Fischler and L. Susskind, "Holography and cosmology," arXiv:hep-th/9806039.
    [25]P. C. W. Davies, " Cosmological horizons and the generalized second law Of ther-modynamics," Class. Quant. Grav.4, L225 (1987).
    [26]P. C. W. Davies, "Cosmological Horizons And Entropy," Class. Quant. Grav.5, 1349(1988).
    [27]D. Bak and S. J. Rey, "Cosmic holography," Class. Quant. Grav.17, L83 (2000) [arXiv:hep-th/9902173].
    [28]T. Banks and W. Fischler, "An holographic cosmology," arXiv:hep-th/0111142.
    [29]R. Easther and D. A. Lowe, "Holography, cosmology and the second law of ther-modynamics," Phys. Rev. Lett.82,4967 (1999) [arXiv:hep-th/9902088].
    [30]R. K. Tavakol and G. Ellis, "On holography and cosmology," Phys. Lett. B 469,37 (1999) [arXiv:hep-th/9908093].
    [31]G.'t Hooft, "Dimensional reduction in quantum gravity," arXiv:gr-qc/9310026.
    [32]G.'t Hooft, "The holographic principle:Opening lecture," arXiv:hep-th/0003004.
    [33]L. Susskind, "The World As A Hologram," J. Math. Phys.36,6377 (1995) [arXiv:hep-th/9409089].
    [34]L. Susskind and E. Witten, "The holographic bound in anti-de Sitter space," arXiv:hep-th/9805114.
    [35]L. Susskind and J. Lindesay, An introduction to black holes, information and the string theory revolution:The holographic universe, World Scientific,2005.
    [36]R. Bousso, "The holographic principle," Rev. Mod. Phys.74,825 (2002) [arXiv:hep-th/0203101].
    [37]D. Bigatti and L. Susskind, "TASI lectures on the holographic principle," arXiv:hep-th/0002044.
    [38]J. M. Maldacena, "The large N limit of superconformal field theories and super-gravity," Adv. Theor. Math. Phys.2,231 (1998) [Int. J. Theor. Phys.38,1113 (1999)] [arXiv:hep-th/9711200].
    [39]E. Witten, "Anti-de Sitter space and holography," Adv. Theor. Math. Phys.2,253 (1998) [arXiv:hep-th/9802150].
    [40]S. S. Gubser, I. R. Klebanov and A. M. Polyakov, "Gauge theory correlators from non-critical string theory," Phys. Lett. B 428,105 (1998) [arXiv:hep-th/9802109]. [41] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, "Large N field theories, string theory and gravity," Phys. Rept.323,183 (2000) [arXiv:hep-th/9905111]. [42] H. Nastase,"Introduction to AdS-CFT," arXiv:0712.0689 [hep-th]. [43] J. L. Petersen, "Introduction to the Maldacena conjecture on AdS/CFT," Int. J. Mod. Phys. A 14,3597 (1999) [arXiv:hep-th/9902131]. [44] G. F. de Teramond and S. J. Brodsky, "The hadronic spectrum of a holographic dual of QCD," Phys. Rev. Lett.94,201601 (2005) [arXiv:hep-th/0501022]. [45] J. Erlich, E. Katz, D. T. Son and M. A. Stephanov, "QCD and a holographic model of hadrons," Phys. Rev. Lett.95,261602 (2005) [arXiv:hep-ph/0501128]. [46] S. A. Hartnoll, C. P. Herzog and G. T. Horowitz, "Building a holographic super-conductor," Phys. Rev. Lett.101,031601 (2008) [arXiv:0803.3295 [hep-th]].
    [47]D. T. Son, "Toward an AdS/cold atoms correspondence:a geometric real-ization of the Schroedinger symmetry," Phys. Rev. D 78,046003 (2008). [arXiv:0804.3972[hep-th]].
    [48]C. P. Herzog, M. Rangamani and S. F. Ross, "Heating up Galilean holography," JHEP 0811,080 (2008) [arXiv:0807.1099 [hep-th]].
    [49]E. Keski-Vakkuri and P. Kraus, "Quantum hall effect in AdS/CFT," JHEP 0809, 130 (2008) [arXiv:0805.4643 [hep-th]].
    [50]S. A. Hartnoll, "Lectures on holographic methods for condensed matter physics," arXiv:0903.3246 [hep-th].
    [51]M. Banados, C. Teitelboim and J. Zanelli, "The Black hole in three-dimensional space-time," Phys. Rev. Lett.69,1849 (1992) [arXiv:hep-th/9204099].
    [52]S. Carlip, "Conformal field theory, (2+1)-dimensional gravity, and the BTZ black hole," Class. Quant. Grav.22, R85 (2005) [arXiv:gr-qc/0503022].
    [53]A. Strominger, "Black hole entropy from near-horizon microstates," JHEP 9802, 009 (1998) [arXiv:hep-th/9712251].
    [54]J. D. Brown and M.Henneaux, "Central charges in the canonical realization of asymptotic symmetries," Commun. Math. Phys.104,207 (1986).
    [55]J. L. Cardy, "Operator content of two-dimensional conformally invariant theories," Nucl. Phys. B 270,186 (1986).
    [56]H. W. J. Blote, J. L. Cardy and M. P. Nightingale, Conformal invariance, the central charge, and universal finite-size amplitudes at criticality, Phys. Rev. Lett.56,742 (1986).
    [57]S. Ryu and T. Takayanagi, "Holographic derivation of entanglement entropy from AdS/CFT," Phys. Rev. Lett.96,181602 (2006) [arXiv:hep-th/0603001].
    [58]S. Ryu and T. Takayanagi, "Aspects of holographic entanglement entropy," JHEP 0608,045 (2006) [arXiv:hep-th/0605073].
    [59]P. Calabrese and J. L. Cardy, "Entanglement entropy and quantum field theory: A non-technical introduction," Int. J. Quant. Inf.4,429 (2006) [arXiv:quant-ph/0505193].
    [60]C. Holzhey, F. Larsen and F. Wilczek, "Geometric and renormalized entropy in conformal field theory," Nucl. Phys. B 424,443 (1994) [arXiv:hep-th/9403108].
    [61]P. Calabrese and J. L. Cardy, "Entanglement entropy and quantum field theory," J. Stat. Mech.0406, P002 (2004) [arXiv:hep-th/0405152].
    [62]A. G. Cohen, D. B. Kaplan and A. E. Nelson, "Effective field theory, black holes, and the cosmological constant," Phys. Rev. Lett.82,4971 (1999) [arXiv:hep-th/9803132].
    [63]J. D. Barrow, "Entropic Principles," New Astron.4,333 (1999) [arXiv:astro-ph/9903225].
    [64]R. V. Buniy and S. D. H. Hsu, "Entanglement entropy, black holes and holography," Phys. Lett. B 644,72 (2007) [arXiv:hep-th/0510021].
    [65]S. D. H. Hsu and D. Reeb, "Black hole entropy, curved space and monsters," Phys. Lett. B 658,244 (2008) [arXiv:0706.3239 [hep-th]].
    [66]U. Yurtsever, "The holographic entropy bound and local quantum field theory," Phys. Rev. Lett.91,041302 (2003) [arXiv:gr-qc/0303023]. [67] A. Aste, "Entropy bound and local quantum field theory," arXiv:hep-th/0604002.
    [68]A. Aste, "Holographic entropy bound from gravitational Fock space truncation," Europhys. Lett.69,36 (2005) [arXiv:hep-th/0409046].
    [69]R. Kannan and S. Vempala, "Sampling lattice points," Proc. of 29th STOC,696 (1997), doi:10.1145/258533.258665.
    [70]J. DeLoera, "The many aspects of counting lattice points in polytopes," Math. Semesterber.52,175 (2005).
    [71]T. A. Lambe, "Bounds on the numbers of the feasible solutions to a knapsack prob-lem," SIAM J. Appl. Math.26,302 (1974).
    [72]S. Doplicher R. Haag and J. Roberts, "Local observables and particle statistics. I," Commun. Math. Phys.23,199 (1971).
    [73]O.W. Greenberg, "Example of infinite statistics," Phys. Rev. Lett.64,705 (1990).
    [74]A. Strominger, "Black hole statistics," Phys. Rev. Lett.71,3397 (1993) [arXiv:hep-th/9307059].
    [75]I. V. Volovich, "D-branes, black holes and SU(infinity) gauge theory," arXiv:hep-th/9608137.
    [76]D. Minic, "Infinite statistics and black holes in matrix theory," arXiv:hep-th/9712202.
    [77]V. Jejjala, M. Kavic and D. Minic, "Fine Structure of Dark Energy and New Physics," Adv. High Energy Phys.2007,21586 (2007) [arXiv:0705.4581 [hep-th]].
    [78]Y. J. Ng, "Spacetime foam:from entropy and holography to infinite statistics and nonlocality," arXiv:0801.2962 [hep-th].
    [79]V. Shevchenko, "Infinite statistics, symmetry breaking and combinatorial hierar-chy," arXiv:0812.0185 [hep-th].
    [80]M. B. Halpern and C. Schwartz, "The algebras of large N matrix mechanics," Int. J. Mod. Phys. A 14,3059 (1999) [arXiv:hep-th/9809197].
    [81]M. B. Halpern and C. Schwartz, "Infinite dimensional free algebra and the forms of the master field," Int. J. Mod. Phys. A 14,4653 (1999) [arXiv:hep-th/9903131].
    [82]M. B. Halpern and C. B. Thorn, "Large N matrix mechanics on the light-cone," Int. J. Mod. Phys. A 17 (2002) 1517 [arXiv:hep-th/0111280].
    [83]M. B. Halpern, "On the large N limit of conformal field theory," Annals Phys.303, 321 (2003) [arXiv:hep-th/0208150].
    [84]T. Banks, W. Fischler, I. R. Klebanov and L. Susskind, "Schwarzschild black holes from matrix theory," Phys. Rev. Lett.80,226 (1998) [arXiv:hep-th/9709091].
    [85]T. Banks, W. Fischler, I. R. Klebanov and L. Susskind, "Schwarzschild black holes in matrix theory. Ⅱ," JHEP 9801,008 (1998) [arXiv:hep-th/9711005].
    [86]H. Liu and A. A. Tseytlin, "Statistical mechanics of DO-branes and black hole thermodynamics," JHEP 9801,010 (1998) [arXiv:hep-th/9712063].
    [87]A. W. Peet,'The Bekenstein formula and string theory (N-brane theory)," Class. Quant. Grav.15,3291 (1998) [arXiv:hep-th/9712253].
    [88]P. Horava, "M-theory as a holographic field theory," Phys. Rev. D 59,046004 (1999) [arXiv:hep-th/9712130].
    [89]I. Y. Aref'eva and I. V. Volovich, "The Master Field for QCD and q-Deformed Quantum Field Theory," Nucl. Phys. B 462,600 (1996) [arXiv:hep-th/9510210].
    [90]I. Y. Aref'eva and I. V. Volovich, "On large N conformal theories, field theories in anti-de Sitter space and singletons," [arXiv:hep-th/9803028].
    [91]N. Margolus and L. B. Levitin, "The maximum speed of dynamical evolution," Physica D 120,188 (1998) [arXiv:quant-ph/9710043].
    [92]V. Giovannetti, S. Lloyd and L. Maccone, "Quantum-enhanced measurements: beating the standard quantum limit," Science 306,1330 (2004) [arXiv:quant-ph/0412078]. [93] S. Lloyd, "Computational capacity of the universe," Phys. Rev. Lett.88,237901 (2002). [94] S. Lloyd, "Quantum limits to the measurement of spacetime geometry," arXiv:quant-ph/0505064. [95] S. Lloyd and Y.J. Ng, "Black hole computers," Sci. Am.291,52 (2004). [96] Y. J. Ng, "Holographic foam, dark energy and infinite statistics," Phys. Lett. B 657, 10 (2007) [arXiv:gr-qc/0703096]. [97] X. Calmet, M. Graesser and S. D. H. Hsu, Phys. Rev. Lett.93 (2004) 211101, hep-th/0405033. [98] S. D. H. Hsu, "Physical limits on information processing," Phys. Lett. B 641,99 (2006) [arXiv:hep-th/0607082]. [99] J. Baze, "This week's finds in mathematical physics (Week 167)," http://math.ucr.edu/home/baez/weekl67.html.
    [100]M. Maziashvili, "Space-time uncertainty relation and operational definition of di-mension," Int. J. Mod. Phys. A 23,1747 (2008) [arXiv:0709.0898 [gr-qc]].
    [101]W. A. Christiansen, Y. J. Ng and H. van Dam, "Probing spacetime foam with ex-tragalactic sources," Phys. Rev. Lett.96,051301 (2006) [arXiv:gr-qc/0508121].
    [102]J. McGreevy, L. Susskind and N. Toumbas, "Invasion of the giant gravitons from anti-de Sitter space," JHEP 0006,008 (2000) [arXiv:hep-th/0003075].
    [103]T. Jacobson, "Thermodynamics of space-time:The Einstein equation of state," Phys. Rev. Lett.75,1260 (1995) [arXiv:gr-qc/9504004].
    [104]R. G. Cai and S. P. Kim, "First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe," JHEP 0502,050 (2005) [arXiv:hep-th/0501055].
    [105]T. Padmanabhan, "Gravitational entropy of static spacetimes and microscopic den-sity of states," Class. Quant. Grav.21,4485 (2004) [arXiv:gr-qc/0308070].
    [106]T. Padmanabhan, "Gravity and the thermodynamics of horizons," Phys. Rept.406, 49 (2005) [arXiv:gr-qc/0311036].
    [107]S. D. H. Hsu, "Entropy bounds and dark energy," Phys. Lett. B 594,13 (2004) [arXiv:hep-th/0403052].
    [108]M. Li, "A model of holographic dark energy," Phys. Lett. B 603,1 (2004) [arXiv:hep-th/0403127].
    [109]M. Maziashvili, "Space-time in light of Karolyhazy uncertainty relation," Int. J. Mod. Phys. D 16,1531 (2007) [arXiv:gr-qc/0612110].
    [110]R. G. Cai, "A Dark Energy Model Characterized by the Age of the Universe," Phys. Lett. B 657,228 (2007) [arXiv:0707.4049 [hep-th]].
    [111]H. Wei and R. G. Cai, "A New Model of Agegraphic Dark Energy," Phys. Lett. B 660,113 (2008) [arXiv:0708.0884 [astro-ph]].
    [112]S. Nojiri and S. D. Odintsov, "Unifying phantom inflation with late-time acceler-ation:Scalar phantom-non-phantom transition model and generalized holographic dark energy," Gen. Rel. Grav.38,1285 (2006) [arXiv:hep-th/0506212].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700