GRAPES模式有效地形生成方法的影响试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动能谱分析表明,给定数值预报模式存在对实际大气运动的最高有效分辨尺度的问题。同样地,给定数值预报模式也存在对实际地形的最高有效分辨尺度的问题,也即模式有效地形问题。模式地形中若包含有模式无法正确“分辨”的次网格地形,不但对数值模式预报无益处,而且还会激发出“噪音”,对模式预报结果造成“有害”的影响。通常地,采用某种滤波平滑的方法对高分辨率的地形资料进行平滑,构造模式的有效地形。针对GRAPES模式来说,何种尺度的模式地形是最有效的?模式有效地形与模式格距存在何种关系?采用何种地形平滑的方法最有效?这些都是在GRAPES模式设计和实际应用中需要回答的基本问题。
     本文通过大量的数值对比试验,采用理想数值试验与实际个例敏感性试验相结合的方法,系统的研究分析了以下几个方面的问题:GRAPES模式最高可分辨地形尺度;五点平滑滤波方案和隐式切变滤波器的对比试验研究;GRAPES模式最有效模式地形的构造;模式有效地形应用对实际个例预报的改进等。并取得了如下主要结论:
     模式预报结果对模式地形尺度非常敏感。不同分辨率的数值预报模式需要选择恰当尺度的模式地形,才能减少地形“噪音”引起的虚假地形降雨,进而有效地提高模式的预报性能。
     理想数值试验结果表明,GRAPES模式使用10倍格距尺度的模式地形可以成功地获得过山气流的模拟试验结果,所模拟出的过山气流场的演变与采用大尺度模式地形所模拟出的结果一致,两者模拟出的地形地表拖曳力之比高达80%左右,两者几乎完全一致;若采用6倍格距尺度的模式地形,也能模拟出大尺度地形60%-80%的地表拖曳力,两者差异较小。可以近似地认为6倍格距的模式地形对GRAPES模式是有效的。当继续降低模式地形尺度时,结果差异很大,模拟结果急剧变差,所以,可以认为6倍格距是GRAPES模式的最高可分辨地形尺度。6倍以下格距的小尺度地形则需要过滤平滑去除,其影响作用需要通过次地形参数化技术加以考虑。
     对平滑滤波方案的研究结果显示,高阶低通隐式切变滤波器的滤波效果非常好,可以根据不同的需要,调节滤波参数,进而滤除模式无法辨别的小尺度地形。针对GRAPES模式,高阶低通隐式切变滤波器的滤波参数设置为p=5、ε=10时,就可以有效地滤除GRAPES模式无法分辨的小尺度地形(5Δx及其以下尺度的地形)。并利用高阶低通隐式切变滤波器对业务模式地形进行平滑滤波处理,将得到的高阶低通滤波地形与业务模式地形和五点平滑方案处理的模式地形(以下简称“五点平滑地形”)对比发现,高阶低通滤波平滑方案可以有效地滤除模式无法辨别的小尺度地形,对于模式能够分辨的地形尺度影响较小,而且较大程度的保存了业务模式地形复杂的地形变化特征。所以,高阶低通滤波方案可作为模式有效地形构造的通用方法,高阶低通滤波地形可以作为GRAPES模式的有效地形。
     对于这种构造GRAPES模式有效地形的通用方法也进行了连续一个月实际连续的试验。采用高阶低通滤波地形(即模式的有效地形)相对于业务模式地形预报的月平均降水将一些零星的降水区域滤除,预报结果更符合实况的降水分布。TS和BS评分也显示,高阶低通滤波地形预报结果的TS评分和BS评分均优于业务模式地形预报结果。高阶低通滤波地形使GRAPES中尺度区域模式对降水的预报能力得到了明显的改善。同时,对其他主要气象要素的预报结果也有了不同程度的改进。
For a given numerical model, the kinetic energy spectra analysis shows that the model is limited to effectively simulate the atmospheric motion in certain scales. Similarly, a numerical model is limited to effectively represent the topography. If an inappropriate topography is used in a numerical model, it would cause the noises to harm the model predictions. Generally, some filter could be used to smooth the high resolution topography, in order to generate the model effective topography. For GRAPES, which scale of topography is effective? What is the relationship between the model effective topography and the model resolution? What is the good method to generate the effective topography for GRAPES_Meso model? Those are the basic questions to be answered for the scientific design and application of GRAPES model.
     By intercomparing a series of numerical simulation tests with ideal data sets and real data sets, this paper is mainly focused on the issues of the highest effective scale of topography for GRAPES and the methods to generate the model effective topography. The five points smoothing or high-order low-pass implicit tangent filters have been tested. The following main remarks were concluded:
     The model prediction is very sensitive to the scale of model topography. The numerical prediction models, which have different resolutions, need to choose suitable model topography. It is important to reduce the noises, which often cause false terrain rainfall, for improving the prediction performances of the models.
     The ideal data sets show that GRAPES can reproduce the airflow across the hill effectively using ten times grid scale of the model topography. This result is consistent with the best resolved runs. The GRAPES can still simulate the airflow motion by using six times grid scale of the model topography. Simulations with six times grid scale of the model topography capture about 60-80% of the drag in the best resolved runs. When GRAPES uses smaller scale of the model topography than six times grid scale, the result is very poor. Therefore, the six times grid scale of the model topography is the highest effective scale for GRAPES. The scales, which are smaller than the six times scale, need to be filtered. These influences are considered to be reduced by sub-grid topography parameterizations.
     By intercomparing the results of the different smoothing methods, the high-order low-pass implicit tangent filter was a better smoothing to deal with model topographies. We can adjust filter parameters to filter off the scale of model topographies for GRAPES according the different needs. The ideal tests show that the six times grid scale of the model topography (6Δx) is the highest effective scales. And we configure the filter parameters (p=5,ε=10) to smooth the five times grid scale and smaller than that scales off. We have made the model effective topography for GRAPES in this way to deal with the original topography.
     In the numerical simulation experiments, we get the smoother results by using the smoothed topography. Comparing the results with the observation, the prediction by using high-order low-pass filtered topography is more consistent with the observation. The impacts of different model topographies on the results of precipitation forecast are very significant. The precipitation forecast by model topography has stronger rainfall and extended rainfall areas. And the precipitation forecast is the best by using high-order low-pass filtered topography, which is most consistent with the observed precipitation. The whole rainfall reduces and the majority of sporadic rainfall completely disappears. TS and BS score also show the same result .At the same time, other major elements of weather forecasting has been the result of varying degrees of improvement.
引文
[1]叶笃正,顾震潮.西藏高原对于东亚大气环流及中国天气的影响.科学通报,1955,6:28~33
    [2]叶笃正.西藏高原对于大气环流影响的季节变化.气象学报,1952,23(1):33~47
    [3]叶笃正.小地形对于气流的影响.气象学报.1956,27(3):243~265
    [4]钱永甫,颜宏,王谦谦等.行星大气中地形效应的数值模拟.北京:科学出版社,1988,217pp
    [5]吴池胜.地形对中立惯性波发展的影响.大气科学,1994,18(1):81~88
    [6] Tian W S,Parker D J.Two-dimensional simulation of orographic effects on mesoscale boundary-layer convection.Q J R Meteorol. Soc,2002,128:1929~1952
    [7] Tian W S,Parker D J.A modeling study and scaling analysis of orographic effects on boundary layer shallow convection.J Atmos Sci,2003,60:1981~1991
    [8]卢敬华,陈刚毅.中小地形对局地天气气候的影响.成都气象学院学报,1989,(8):1~9
    [9]吴洪,林锦瑞.垂直切变和地形影响下惯性重力波的发展,气象科学,1997,55(4):499~505
    [10]黄倩,田文寿,王文等.复杂山区上空垂直速度场和热力对流活动的理想数值模拟.气象学报,2007,65(3):341~352
    [11]陈潜,赵鸣.地形对降水影响的数值试验.气象科学,2006,26(5):484~493
    [12]廖菲,洪延超,郑国光.地形对降水的影响研究概述.气象科技,2007,35(3):309~316
    [13]冯强,叶汝杰,王昂生等.中尺度地形对暴雨降水影响的数值模拟研究.中国农业气象,2004,25(4):1~4
    [14]高学杰,徐影,赵宗慈等.数值模式不同分辨率和地形对东亚降水模拟影响的试验.大气科学,2006,30(2):186~192
    [15]刘纬,不同分辨率地形数据对黑河流域模拟结果的对比分析.高原气象,2007,26(3):525~531
    [16] Davies L A,Brown A R.Assessment of which scales of orography can be credibly resolved in a numerical model.Q. J. R. Meteorol. Soc.,2001,127:1225~1237
    [17] Clark, T. L. and Miller, M. J. Pressure drag and momentum fluxes due to the Alps.Ⅱ:Representation in large-scale atmospheric models. 1991, Q. J. R. Meteorol. Soc., 117:527-552.
    [18] Salvador, R., Calbo, J. and Millan, M. M. Horizontal grid size selection and its influence on mesoscale model simulations. 1999, J. Appl. Meteoral., 38: 1311-1329.
    [19] Almut Gassmann Consortium for Small-Scale Modelling.2001, 1: 71-77.
    [20]吕世华和钱永甫.有地形数值模始中水平分变率对预报质量的影响.高原气象, 1984, 4 (1):23-33.
    [21]周天军和钱永甫.地形效应影响数值预报结果的试验研究.大气科学, 1996, 20 (4): 452-462.
    [22]潘在桃.中尺度数值模式中初始场和地形的不同处理对降水预报的影响及相对比较.气象学报, 1990, 48 (4):
    [23] Rivest, C., and A. Staniforth. Modifying the conventional three-time-level semi-implicit semi-Lagrangian scheme to eliminate orographically-induced spurious resonance. 1995, Atmos. Ocean., 33: 109-119.
    [24] Harold Ritchie and Monique Tanguay. A comparison of spatially averaged eulerian and semi_lagrangian treatments of mountains. 1996, Mon. Wea. Rev., 124(1): 167-181.
    [25] William H.Raymond and Arthur Garder A Spatial Filter for use in finite area calculations. 1988, Mon. Wea. Rev. 116(1): 209-222.
    [26] Navarra, A., Stern, W. F. and Miyakoda, K. Reduction of the Gibbs oscillation in spectral model simulations. 1994, J. Clim., 7,1169-1183.
    [27] Lanczos, C., Applied Analysis. Prentice-Hall, 1956, 539
    [28] Jenkins, G. M., and D. G. Watts, Spectral Analysis and its Applications., 1968, 525.
    [29]薛纪善,陈德辉等.数值预报系统GRAPES的科学设计与应用.北京:科学出版社,2008
    [30] Chen D H,Xue J S,Yang X S,et al.New generation of multi-scale NWP system (GRAPES): general scientific design.Chinese Science Bulletin,2008,53(22):3433~3445
    [31]陈德辉,薛纪善,杨学胜,等.GRAPES新一代全球/区域多尺度统一数值预报模式总体设计研究.科学通报,2008,53(20):2396~2407
    [32] Xue J S,Liu Y.Numerical Weather Prediction in China in the New Century-Progress, Problems and Prospects.Adv. Atmos. Sci.,2007,24(6):1099~1108
    [33]陈德辉,沈学顺.新一代数值预报系统GRAPES研究进展.应用气象学报,2006,17(6):773~777
    [34]王光辉,陈峰峰,沈学顺等.数值模式中地形滤波处理及水平扩散对降雨预报的影响.地球物理学报,2008,51(6):1642~1650
    [35] William H. Raymond High-Order Low-Pass implicit tangent filters for use in finite area calculations. 1988, Mon. Wea. Rev. 116: 2132-2141.
    [1]薛纪善,陈德辉等.新一代数值预报系统(GRAPES)研究与应用.内部资料, 2005年12月
    [2] Cullen, M.J.P., 1990: A Test of a Semi-Implicit Integration Technique for a Fully Compressible Non-Hydrostatic Model. Quart. J. Roy. Meteor. Soc., 116, 1253~1258
    [3] Davies, H.C., 1976: A Lateral Boundary Formulation for Multi-Level Prediction Models.Quart. J. Roy. Meteor. Soc., 102, 405-418
    [4] Skamarock W.C., P.K. Wmolarkiewicz and J.B. Klemp, 1997: Preconditioned Conjugate-Residual Solvers for Helmholtz Equations in Non-Hydrostatic Models.
    [5] Staniforth, A. and J. Cote, 1991: Semi-Lagrangian integration scheme for atmosphericmodels-A review. Mon. Wea. Rev., 119, 2206~2223
    [6] Cullen, M.J.P., T. Davis, M.H. Mawson, J.A. James and S.C. Coulter, 1997: An Overview ofNumerical Methods for the Next Generation U.K. NWP and climate Model.
    [1]朱新胜,张耀存.次网格地形坡度坡向参数化及其对区域气候模拟的影响.高原气象,2005,24(2):136~142
    [2]黄丹青,钱永甫.坡地坡向短波辐射参数化对不同天气过程的影响.气象学报,2008,66(1):90~100
    [3] Wood, N., A. R. Brown and F.E. Hewer. Parametrizing the effects of orography on the boundary layer: An alternative to effective roughness lengths. 2001, Q. J. R. Meteorol. Soc., 127: 759-777.
    [1] Strum, R. D. and D. E. Kirk. Discrete systems and digital signal processing[M]. Addison-Wesley,1998
    [2] Raymond, W. H. and A. Garder. A review of recursive and implicit filter[J]. Mon. Weather Rev., 1991, 119:477-495.
    [3] Wallington, C. E. The use of smoothing or filtering operation in numerical forecasting[J]. Quart. J. Roy. Meteor. Soc., 1962, 88:470-484
    [4] Shuman, F. G., 1957: Numerical methods in weather prediction,Ⅱ, smoothing and filtering. Mon. Wea. Rev., 85, 357-361
    [5] Shapiro, R., Smoothing,fliering and boundary effects. Rev. Geophys.Space Phys., 1970, 8, 359-361.
    [6] Hamming, R.W., Digital Filters, Prentice-Hal, 1977, 266 pp.
    [7] Vichnevetsky, R., and J. B. Bowles, 1982: Fourier Analysis of Numerical Approximations of Hyperbolic Equations. SIAM Studies in Applied Mathematics, Soc. Indust. Appl Math., 140pp.
    [8] Raymond, W. H., 1988: High-order low-pass implicit tangent filters for use in finite area calculations. Mon. Wea. Rev., 116, 2132-2141.
    [1]沈学顺,孙建,黄丽萍等,新一代全球/区域多尺度通用数值分析同化与预报一体化系统(GRAPES)Ⅷ:夏季降水预报中的初步应用试验
    [2]赵思雄,张立生,张建华.2007年淮河流域致洪暴雨及其中尺度系统特征的分析.气候与环境研究,2007,12(6):713~727
    [3]陶诗言,卫捷,梁丰.2007年夏季中国大陆85°E以东地区的重要天气过程.气候与环境研究,2007,12(6):699~712
    [4]中国预测减灾司,国家气象中心,气象预报产品质量评分系统技术手册,2001.9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700