鲁西北地区强对流天气预报关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
德州市位于北纬36°24'-38°0'、东经115°45'-117°24'之间,黄河下游北岸,山东省西北部。地势平坦,海拔高度20米左右,西距太行山脉约200km,东南部为鲁中山区。鲁西北平原地区是山东省强对流天气高发区,是省内仅次于鲁中山区的冰雹多发地,强对流天气几乎每年都会给鲁西北带来冰雹和大风灾害,造成严重损失。本文首先分析了鲁西北强对流天气气候的时空分布特征,并与省内其他地区进行了比较,鲁西北强对流天气的分布有明显的季节性和区域性特征,是省内强对流多发区之一,其季节分布与全省基本一致,但与省内其他区域强对流的月度分布上有所差异。
     以德州市1979~2006年71个冰雹天气个例为研究对象,利用1.25°×1.25°GMT 00、06、12、18四个时次日本气象厅JRA25再分析资料,对影响鲁西北强对流过程的天气系统进行了普查归类,将影响鲁西北强对流的天气系统分为四类:低涡、低槽、横槽、西北气流,低涡类降雹占总数的56.3%,低槽16.9%,西北气流15.5%,横槽11.3%。并选取样本对每种天气型式强对流过程进行了合成分析,归纳了其典型天气背景特征模型,并对中低层配置情况进行了讨论。根据强对流产生的物理机制,选取了多种强对流参数进行了诊断分析,热力对流参数K指数、抬升指数LI、沙氏指数SI、总温度指数TT、对流有效位能CAPE,动力参数0~1km、0~3km、0~6km风切变SHR、风暴相对螺旋度SRH,动力和热力综合指数强天气威胁指数SWEAT、风暴强度指数SSI、能量螺旋度EHI,以及0℃层高度ZHT与-20℃层高度ZHT20等多种对流物理参数是判定鲁西北地区大气是否处于对流性不稳定及冰雹能否生成的重要因子,部分参数与国内外其他地区使用阀值有一定区别。
     针对2006年7月5日的强对流天气过程,进行了天气背景以及多种物理因子的诊断分析,结果表明:受高空冷涡的影响,中高层冷空气的入侵,触发不稳定能量释放造成了此次强对流天气发生。由稳定度和环境风场分析可知,强对流发生前12小时,低层850hPa以下渤海西部的偏东风向本区输送水汽,造成本区附近上空低层水汽饱和度较高,中高层干冷空气入侵导致大气不稳定度逐渐增加,这种低层湿,中高层干的大气层结特点,非常有利于冰雹生成发展。计算K指数等强对流参数的分析发现,本区附近上空大气具有较明显的不稳定层结特征,对对流天气的发生区域有较好指示作用,动力参数0~3km垂直风切变SHR、风暴相对螺旋度SRH,对实际冰雹等强对流发生区域具有明显指示意义,表明风切变是决定风暴组织结构和强弱风暴的关键因子。卫星云图分析表明,鲁西北强对流发生时云顶温度TBB在-40℃至-55℃,强对流最剧烈冰雹、大风天气主要发生在雷暴云团前方亮温梯度最大区域内。多普勒雷达回波分析表明,造成此次鲁西北强对流天气的回波主要是弓状回波上的超级单体风暴和多单体风暴,中心强度均在55dbz以上,最大达65dbz,其中弓状回波顶端的超级单体风暴造成的天气最剧烈,灾害最严重,其低层存在中气旋,低层径向速度与地面风速正相关;降雹区垂直积分液态含水量VIL在50 kgm-2以上,VIL产品与降雹相关性很好,其值对冰雹的存在有较好的指示作用。
Dezhou City locates at 36°24′-38°0′N,115°45'-117°24′E, the north shore of the lower Yellow River, lying in north-west Shandong Province. The region is covered by plains with altitude 20 meters or so, about 200km apart from Taihang Mountains in the west. There is a high incidence of severe convective weather in northwest Shandong, which is second only to the central mountainous areas in Shandong Province. Severe convective weather happens frequently almost every year to bring hail and high winds disasters causing serious damage in the area. In the thesis we first analyze the temporal and spatial distribution characters of climate of severe convective weather in northwest Shandong, with compared to other regions in the province. The distribution of severe convective weather has an obvious seasonal and territorial characteristics in the northwest Shandong, which is one of the most prone areas of severe convection in the province, basically same as the province, but different in the monthly distribution of severe convection from other regions.
     Based on the 71 severe convective weather cases in Dezhou City from 1979 to 2006, using JMA JRA25 1.25°×1.25°reanalysis data on GMT 00,06,12,18, we classify the severe convective weather background according to the synoptic system leading to severe convection and get four categories:low vortex, upper-level trough, transverse trough, northwest flow, low vortex type hail accounted for 56.3% of the total, upper-level trough 16.9%, northwest flow 15.5%, transverse trough 11.3%. Synthesized analysis for each type of severe convective weather by selecting the samples is put up to summarize the background of the typical characteristics of different weather model, with the configuration between middle-level and low-level being discussed. According to the physical generating mechanism of severe convection, the diagnostic analysis of a variety of strong convection parameters are carried out, thermal convection parameter K index, uplift index LI, showalter index SI, the total temperature index TT, CAPE, dynamic parameters 0~1km、0~3km、0~6km wind shear SHR, the storm relative helicity SRH, dynamic and thermal composite index severe weather threat index SWEAT, storm intensity index SSI, energy helicity EHI, as well as the 0℃layer height ZHT and -20℃layer height ZHT20, these variety of physical parameters of convection is useful to determine instability of the atmosphere and the possibility of hail in the northwest Shandong, with some parameters having a certain difference threshold used in other parts at home and abroad.
     In this paper, aiming at the severe convective weather on July 5,2006, we had analyzed the weather background, detailed physical actors and diagnostic analysis of physical quantity. The results show that:the impact of cold vortex, high-level cold air intrusion, which may trigger instability in the energy release, is caused the main reason for the severe convective weather. By the stability and environmental wind field analysis it shows that when the severe convection occurs 12 hours before, there is the east wind under the 850hPa level, which plays a important role in transporting water vapor from the west of the Bohai Bay, resulting in increasing the humidity and tending to saturate the atmosphere in this area. The characteristics of the atmosphere stratification which structure is moist in low-level with dry in the upper-level are consistent with the conditions where hails happen often. By calculating lots of parameters of severe convection it shows that the air over this area is unstable, which can indicate well where the convective weather occurs. The high-value center of dynamic parameters 0-3 km SHR and SRH is magnificently consistent with the place where the hail and gale break out, which indicates that wind vertical shear is the key factor to determine the organizational structure and strength of thunderstorms. The analysis of Fy-2c Satellite infrared cloud-images indicates that the TBB of cloud cover reaches at-40℃to-55℃when the severe convection is occurring in northwest Shandong, while the most intense hail and gale weather mainly occur in which there is the largest brightness temperature gradient region in front of thunderstorm cloud. The analysis of CINRAD Doppler radar data shows that the severe convection in the northwestern Shandong is mainly causing by the super-cell and multi-cell storm on the "bow" echo whose center intensity are above 55dbz, the maximum reaching 65dbz. The super cell storm at the top of bow echo causes the most severe weather, with mesocyclone existence in the lower-level and the radial velocity positively correlated with the surface wind speed; VIL is above 50 kgm-2 in the zone where hail occurs, indicating that VIL products is very good correlated with hail, while its value can be a good indication to the existence of hail.
引文
[1]杨晓霞,张爱华,贺业坤.山东省4-6月冰雹气候特征分析.山东气象.1999.19(3),22~25.
    [2]丁一汇.高等天气学[M].北京,气象出版社.2005:310~315.
    [3]Thompson R. L., R. Edwards, J.A. Hart, etc. Close Proximity Soundings within Supercell Environments Obtained from the Rapid Update Cycle. Weather and Forecasting, 2003(18):1243~1260.
    [4]彭治班等.国外强对流天气的应用研究[M].北京,气象出版社2001:306~313.
    [5]Doswell Ⅲ, C.A., Brooks, H.E., Maddox, R.A.. Flash-flood forecasting:an ingredients-based methodology. Weather Forecast,1996(11),360-381.
    [6]Mills G. A., and J. R. Colquhoun, Objective prediction of severe thunderstorm environments: Preliminary results linking a decision tree with an operational regional NWP model. Wea. Forcasting,1998(13):1078~1092.
    [7]Hart,R.E.,R.S. Forbes, and R.G Soo, Using hourly model-generated soundings to forecast convection in the mid-Atlantic region.. Preprints,16th Conf. on WAF(AMS),1998:164~166.
    [8]Ostby F.P.. Improved accuracy in servere loacal storms unit during the last 25 years:then versus now. Wea. Forcasting,1999(14):526~543.
    [9]谢义炳.中国下半年几种降水天气系统的分析研究.气象学报,1956,27(1):1~24.
    [10]叶笃正.近年来我国大气科学的研究进展.大气科学,1979,3(3):95~202.
    [11]陶诗言,丁一汇,周晓平.暴雨和强对流天气的研究.大气科学,1979,(3):227~237.
    [12]曾庆存.我国大气动力学和数值预报研究工作的进展.大气科学,1979,3(3):256~269.
    [13]雷雨顺.能量天气学[M],北京,气象出版社,1986.
    [14]雷雨顺,吴宝俊,吴正华.冰雹概论[M].北京:科学出版社,1978.
    [15]雷雨顺,吴宝俊,吴正华.用不稳定能量理论分析和预报夏季强风暴的一种方法.大气科学,1979,3(3):297~306.
    [16]王笑芳,丁一汇.北京地区强对流天气短时预报方法的研究.大气科学,1994,18(2):173~183.
    [17]Ding Jincai,Dai Jianhua,Chen Yaming,et al. Helicity as a method for forcasting severe weather events. Advance in Atmospheric Science,1996,13:533~588.
    [18]杜秉玉,官莉,姚祖庆等.上海地区强对流天气短时预报系统.南京气象学院学报.2000,23(2):242~250.
    [19]李耀东,刘建文,高守亭.动力和能量参数在强对流天气预报中的应用研究.气象学报,2004,62(4):401~409.
    [20]李耀东,高守亭,刘建文.对流能量计算及强对流天气落区预报技术研究.应用气象学报,2004,15(1):10~20.
    [21]周后福,邱明燕,张爱民,等.基于稳定度和能量指标作强对流天气的短时预报指标分析.高原气象,2006,25(4):716~722.
    [22]周后福,郑媛媛,邱明燕.基于数值模式和多普勒雷达的强对流天气预报技术.气象科技,2007,35(5):637~641.
    [23]矫梅燕,龚建东,周兵等.天气预报的业务技术进展.应用气象学报,2006,17(5):594~601.
    [24]J.Rakovec. Thunderstorms and hail. Theoretical and Applied Climatology.1989, 40(4):179~186.
    [25]高留喜,杨成芳,冯桂力等.山东省雷暴时空变化特征,气候变化研究进展.1997.3(4):239~242.
    [26]龚佃利,吴增茂,傅刚.2001年8月23日华北强风暴动力机制的数值研究.气象学报,2005,63(4):504~515.
    [27]曹钢锋,张善君,朱官忠等.山东天气分析与预报[M].气象出版社,1988,180~189.
    [28]杨晓霞,张爱华,贺业坤.山东省4-6月冰雹气候特征分析.山东气象,1999,19(3):22~25.
    [29]郑玉兰,康贻美.德州市冰雹灾害分析及预报,气象,1996,22(4):55~57.
    [30]丁一汇等,暴雨和强对流天气发生条件的对比分析,大气科学,1981,5(4):388~397.
    [31]彭治班,刘建文,郭虎等,国外强对流天气的应用研究[M],气象出版社,2001,255~260.
    [32]George J J. Weather Forcasting for Aeronautics. Academic Press, New York and London, 1960:673.
    [33]Convective Season Parameters and Indices, NOAA. http://www.crh.noaa.gov/lmk/soo /docu/indices.php,2004.
    [34]Galway J G. The lifted index as a predictor of latent instablity. Bull. Amer. Meteor. Soc.,37, 528~529,1956.
    [35]Showalter A K. A stability index for thunderstorms forecasting. Bull. Amer. Meteor. Soc.,34, 250~252,1953.
    [36]Miller R C. Notes on analysis and severe-storm forecasting procedures of the air force global weather central, Technical report 200(Rev.), Air Weather Service(MAC), United States Air Force. 190,1972.
    [37]Miller R C, Maddox R A. Use of the SWEAT and SPOT indices in operational severe storm forcasting.7th AMS Conf. on Server Local Storms.1~6,1975.
    [38]Miller R C. Notes on analysis and severe-storm forecasting procedures of the Air Force Global Weather Central. AWS Tech. Rep.200(rev), Air Weather Service, Scott AFB, IL,190pp. 1972.
    [39]Newton C W. Severe Convection Storm. Adcances in Geophysics,12:257~308,1967.
    [40]丁一汇.高等天气学,气象出版社[M],2005,321~323.
    [41]Davies-Jones R P, Burgess D W, Foster M. Test of helicity as a forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canda, Amer. Meteor. Soc.,588~592, 1990.
    [42]Polston K L. Synoptic patterns and environmental conditions associated with very large hail events. Preprints,18th Conf. on Severe Local Storms,349~356,1996.
    [43]Maddox R. A., and C. A. Doswell. An examination of jet configurations,500mb vorticity advection and low-level thermal advection patterns during extended periods of intense convection. Mon. Wea. Rev,110:184~197,1985.
    [44]Turcotte V., S. Siok, and G. Deaudelin. Study of the relationship between wind shear and hydrostatic energy in summer severe weather. Quebec Region Technical Note No.85N-002,1985.
    [45]Mills G A, Colquhoun J R. Objective prediction of severe thunderstorm envirments: preliminary results linking a decision tree with an opreational regional NWP model. Wea. Forcasting,13:1079~1092,1998.
    [46]Johns R H, Doswell Ⅲ C A. Severe local storms forecasting. Wea. Forcasting, 7:588~612,1998.
    [47]刘玉玲,李耀东,张方友等.与冰雹预报有关的几个新物理参数.航空气象科技,1998,6:4~12.
    [48]Hart J A, Korotky. A skew T-hodograph analysis and research program. NOAA/NWS Forcast Office, Charleston, WV,30pp,1992.
    [49]刘健文,郭虎,李耀东等.天气分析预报物理量计算基础,气象出版社[M],2005,179~180.
    [50]俞小鼎,姚秀萍,熊延南.新一代天气雷达原理与应用讲义.北京:中国气象局培训中心,2004,117~191pp

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700