一次暖区暴雨形成机制的数值试验与诊断分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华南地形复杂多变,局地强对流天气频繁发生又难以预报。要准确模拟华南地区的降水情况必须考虑地形的影响。本文利用NCEP/NCAR全球客观分析资料,云顶亮温TBB资料以及中尺度模式WRFV3.1.1,对发生在2008年6月5日~7日的华南暖区暴雨过程进行了数值模拟及诊断研究。
     分析发现,850hPa低层低涡的形成和维持、200hPa高空急流右后方的辐散场,500hPa副热带高压西北侧的西南气流以及高原槽的东移为本次特大暴雨产生提供了天气尺度、次天气尺度的背景场。此外,来自南海的水汽为暴雨的发生提供了充足的水汽条件。
     由于本次暴雨过程发生在云雾山的东南侧,为了了解地形对本次暴雨的影响,设计了一个考虑地形重力波拖曳(GWDO)参数化方案的敏感性试验和未考虑此方案的控制试验对该次暴雨过程进行模拟,通过与实况对比分析后,得出:模式中考虑了GWDO参数化方案的敏感性试验较好地模拟出了广东阳江地区强降水的中心和强度,再现了暴雨过程中大尺度环流形势及其演变状况,成功地复制了中尺度低涡的位置及移向,而未考虑此方案的控制试验没能模拟出此次暴雨,其在中心位置和降水强度方面都与实况差别较大;GWDO参数化方案的引入有效地减少了由地形引起的对流层中层纬向风的偏差,比较合理地模拟出了地形对气流的影响;分析得出地形引起的重力波为本次暴雨提供了中尺度的触发机制,地形重力波的拖曳作用是导致暴雨在阳江附近停滞少动的主要原因。
     由地形敏感性试验得出,云雾山地形在降低和按比例缩小后,降水强度都较控制试验大大较弱,降水的中心位置都出现了北移;地形按比例升高后,雨带呈椭圆形分布,降水中心为270mm,但还是较控制试验弱,降水落区与实况较为接近。另外云雾山地形的改变对强降水期间中-γ背风坡低涡的生成与位置有重要影响。
     利用WRF模式输出的高分辨率数据,采用HYSPLITv4.9气流三维轨迹模式追踪暴雨中心高低层气流运动轨迹,发现此次暴雨过程中没有偏北冷空气的影响,暖湿气流主要来自于南海。高层辐散先于低层辐合出现,南亚高压的高层辐散可能是本次暴雨过程的一个诱发原因。从对流涡度矢量垂直分量的发展演变和地面降水的关系来看,对流涡度矢量垂直分量在时间和空间上与地面降水分布具有较好的对应关系,对流涡度矢量垂直分量对示踪暴雨系统的发生发展有一定的指示作用。
The contribution of sophisticated terrain is a key factor of the generation of strong convective weather which is difficult to forecast. In order to improve rainfall simulation of South China in the model, the impact of terrain must be taken into account. In this paper, the rainstorm in warm section occurred in South China during the period from 5-7 June 2008 is investigated by using NCEP/NCAR objective analysis data with resolution of 1°×1°four times a day, the temperature of brightness blackbody on cloud-top(TBB) data for l-hour,and the mesoscale model WRFV3.1.1.
     It is found that the formation of low-vortex at 850hPa, the divergence in the behind of the jet stream at 200hPa, the southwest airflow from the northwest of subtropical high and the short-wave trough which towards the east provide the large-scale and sub-weather-scale circulation background field of the rainstorm. In addition, the water vapor from the South China Sea provides a good condition for this rainstorm.
     In this article, in order to realize the influence of this terrain, the rainstorm in warm section occurred in the southeast of Yun Wushan will be investigated for two experiments by one using Gravity Wave Drag by Orography (GWDO) Parameterization which is additional in WRFV3.1. They have been simulated by using the analysis of NCEP (1°×1°) from 5 to 6 June 2008. With an analysis of the comparison of the two experiments, the results are as follows:Sensitivity experiment achieved a success in the simulation of the center and strength of the rainstorm. It succeeds to reappear the large-scale circulation and the evolution of state formed during heavy rain, and successfully duplicates the mesoscale low-voxtes whose temporal evolution characteristics are in accord with the movement of the precipitation center, while the control experiment failed. The using of GWDO Parameterization effectively reduces the zonal wind deviation in the middle troposphere and reasonably simulates the dynamic uplift of airflow caused by terrain. According to experiments, the energy divergence in the middle caused by orography-induced gravity wave is the main cause of rainstorm, which enhances the vertical movement and makes the precipitation strengthen and relatively concentrated.
     The results of topography experiments show that, the precipitation intensity and its position has much to do with terrain. The intensity of precipitation is much weaker than control experiment, and the rainfall center position appeared more northward whatever the terrain of Yun Wushan is flat or it is reduced in proportion. The rain belt appears Oval-shaped distribution after the terrain increased in proportion, while its precipitation at center is 270mm which is smaller than control experiment, and its area is close to real state. Furthermore, the change of terrain has evident impact on the generation and position of theγmesoscale lee vortex during the period of heavy rain.
     This paper uses HYSPLITv4.9 three-dimensional air flow trajectory model to track the trajectory of the upper and lower flow at the center of the rainstorm, by employing more reliable high-resolution data sets obtained by WRF model. The results show that the cold air has little or no effect on the rainstorm, and the warm flow is mainly from the South Sea. Upper-level divergence occurs before the low-level convergence, and the upper-level divergence of South Asian High may be one of the induced causes of the heavy rainfall. From the relationship between the vertical component of convective vorticity vector (CW) and rainfall, the vertical component of convective vorticity vector (CW) is highly correlated with rainfall in time and space, and it is a good indicator for tracing the development of rainstorm system.
引文
[1]黄士松.华南前汛期暴雨[M].广州:广东科技出社,1986.
    [2]朱乾根,洪永庭,周军.大尺度低空急流附近的水汽输送与暴雨[J].南京气象学院学报,1985(2):131-139.
    [3]薛纪善.1994年华南夏季特大暴雨研究[M].北京:气象出版社,1999:33-37.
    [4]汪永铭,苏百兴,常越.1998年试验期间华南暴雨的系统配置和环流特点[J].热带气象学报,2000,16(2):123-130.
    [5]周秀骥,薛继善,陶祖钰等.98华南暴雨科学试验研究[M].北京:气象出版社,2003:20-40.
    [6]王黎娟,管兆勇,何金海.2005年6月华南致洪暴雨的大尺度环流特征及成因探讨[J].南京气象学院学报,2007,30(2):145-152.
    [7]许晓林,徐海明,司东.华南6月持续性致洪暴雨与孟加拉湾对流异常活跃的关系[J].南京气象学院学报,2007,30(4):463-471.
    [8]Leary C A, Houze Jr R A. The structure and evolution of convection in a tropical cloud cluster [J]. J Atoms Sci,1979,36:437-457.
    [9]Ninomiya K, Murakami T. The early summer rainy season (Baiu) over Japan [M]. In Chang C P, Krishnamurti T, Eds. Monsoon meteorology. Oxford University Press,1987:93-121.
    [10]Chen Shou Jun, Kuo Ying-Hwa, Wang Wei, et al. A modeling case study of heavy rainstorms along the Mei-Yu Front [J].Mon Wea Rev,1997,126:2330-2351.
    [11]Chen S-J, Wang W, Lau K-H, et al. Mesoscale convective systems along the Mei-yu front in a numerical model [J]. Meteor Atoms Physics,2000,75:149-160.
    [12]Raymond D J, H J Jiang. A theory for long-lived mesoscale convective systems [J]. J Atoms Sci,1990,47:3067-3077.
    [13]Zhang Qinghong, Lau Kai-Hon, Wang Hongqing, et al. Numerical simulation on mesoscale convective system along Mei-yu front in Southern China [J]. Chinese Science Bulletin, 2000,45:2093-2096.
    [14]闫敬华,薛纪善.“5.24”华南中尺度暴雨系统结构的数值模拟分析[J].热带气象学报,2002,19(4):302-308.
    [15]赵思雄,贝耐芳,孙健华.亚澳中低纬度区域暴雨天气系统研究[J].气候与环境研究,2002,7(4):377-385.
    [16]蒙伟光,王安宇,李江南,等.华南前汛期一次暴雨过程中的中尺度对流系统[J].中山大学学报(自然科学版),2003,42(3):73-77.
    [17]蒙伟光,王安宇,李江南,等.华南暴雨中尺度对流系统的形成及湿位涡分析[J].大气科学,2004,28(3):330-341.
    [18]古志明,冯瑞权,吴池胜,等.一次华南暴雨过程的数值模拟及结果分析[J].热带气象学报,2000,16(2):173-179.
    [19]赵玉春,王叶红,崔春光.华南前汛期一次大暴雨过程的扰动位涡反演与数值模拟[J].暴雨灾害,2008,27(3):193-203.
    [20]蒙伟光,张艳霞,戴光丰,等.华南沿海一次暴雨中尺度对流系统的形成和发展过程[J].热带气象学报,2007,23(6):521-530.
    [21]丑纪范.数值模式中处理地形影响的方法和问题[J].高原气象,1989,8(2):114-120.
    [22]CSmith R B. The influence of mountains on the atmosphere [J]. Advances in Geophysics, 1979,21:87-230.
    [23]翟国庆,高坤,俞樟孝,等.暴雨过程中中尺度地形作用的数值试验[J].大气科学,1995,19(4):475-480.
    [24]江敦春,党人庆.地形和高层环境对爆发气旋影响的数值研究[J].南京大学学报(自然科学版),1995,31(1):154-164.
    [25]臧增亮,张铭,沈洪卫,等.江淮地区中尺度地形对一次梅雨锋暴雨的敏感性试验[J].气象科学,2004,24(1):26-34.
    [26]朱民,余志豪,陆汉城.中尺度地形背风坡的作用及其应用[J].气象学报,1999,57(6):795-804.
    [27]王春红,蒋全荣.一次华南低空急流暴雨的数值模拟[J].热带气象学报,1997,13(2):186-102.
    [28]王春红,蒋全荣.一次华南低空急流和暴雨过程的对比数值[J].高原气象,1996,15(3):318-325.
    [29]孙建,赵平,周秀骥.一次华南暴雨的中尺度结构及其复杂地形的影响[J].气象学报,2002,60(3):333-342.
    [30]景丽,陆汉城,朱民.复杂地形与锋面系统共同作用对台湾岛暴雨影响的数值分析[J].气象科学,2004,24(1):35-43.
    [31]孙建华,赵思雄.华南94'6特大暴雨的中尺度对流系统及其环境场研究Ⅱ:物理过程、环境场以及地形对中尺度对流的作用[J].大气科学,2002,26(5):633-646.
    [32]徐国强,胡欣,苏华.太行山地形对“9628”暴雨影响的数值试验研究[J].气象,1999,25 (7):3-7.
    [33]周天军,钱永甫.地形效应影响数值预报结果的试验研究[J].大气科学,1996,,20(4):452-462.
    [34]Riphagen H A, Bruyere C L, Jordaan W, et al. Experiments with the NCEP regional Eta model at the south African Weather Bureau, with emphasis on terrain representation and it effect on precipitation predictions [J]. Mon Wea Rev,2002,130:1246-1263.
    [35]鹿世瑾.华南气候[M].北京:气象出版社,1990:37-59.
    [36]Lilly, D.K. Wave moment flux-A GARP porblem[J].Bull.Amer.Meteor.Soc,1972,53,17-23.
    [37]Wallace J M, S Tibaldi, A J Simmons. Reduction of systematic forecast errors in the ECMWF model through the introduction of an envelope orography [J]. Quart J Roy Meteor Soc,1983,109:683-718
    [38]Li Long and Zhu Baozhen. The modified envelope orography and the air folw over ang around mountains[J]. AdvAtmos Sci,1990,7(3):249-260.
    [39]钱永甫,董梁.包络地形对气候模拟特征的影响[J].高原气象,1995,14(2):129-140.
    [40]刘华强,钱永甫.包络地形和重力波拖曳对区域气候模拟效果的影响[J].大气科学,2001,25(2):209-220.
    [41]Boer,G.J.,N.A.McFarlance,R.Laprise,J.D.Henderson,andJ.P.Blanchet. TheCanadian Climate Centre spectral atmospheric general circulation model[J]. Atmos Ocean,1984,22:397-429.
    [42]Palmer, T.N., G.J.Shutts, and R.Swinbank. Alleviation of a systematic westerly bias in circulation and numerical weather prediction models through an orographic gravity-wave-drag parameterization [J]. Quart J Roy Meteor Soc,1986,112:1001-1039.
    [43]Helfand, H.M. The effect of a gravity wave drag parameterization scheme on GLA fourth order GCM forecast[J]. J Meteor soc japan,1986, special volume:729-742.
    [44]McFarlane N A. The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere[J]. J Atmos Sci,1987,44:1775-1800.
    [45]Kim Y J, Eckermann S D, Chun H Y. An overview of the past, present and future of gravity2wave drag parameterization for numerical climate and weather prediction models [J]. Atmos Ocean,2003,41:65-98
    [46]Scinocca J F, McFarlane N A. The parameterization of drag induced by stratified flow over anisotropic topography [J]. Quart J Roy Meteor,2000,126:2353-2393.
    [47]Kim.-J. and A. Arakawa. Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model[J]. J Atmos Sci,1995,52:1875-1902.
    [48]Hong.S.-Y., J.Choi, E.-C.Chang, H.Park, and Y.-J. Kim. Lower-tropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model[J]. Wea Forecasting, 2008,23:523-531.
    [49]叶笃正,曾庆存,郭裕福.当代气候研究[M].北京:气象出版社,1991.
    [50]黄倩,田文寿,王文,等.复杂山区上空垂直速度场和热力对流活动的理想数值模拟[J].气象学报,2007,65(3):341-352.
    [51]湘中中、小尺度天气系统试验基地暴雨组编,中尺度暴雨分析和预报[M].北京,气象出版社,1988.
    [52]陶诗言.中国之暴雨[M].北京,科学出版社,1980.
    [53]何立富,许爱华,陈涛.“泰利”台风低压大暴雨过程冷空气与地形的作用[J].气象科技,2009,37(4):385-391.
    [54]廖菲,洪延超,郑国光.地形对降水的影响研究概述[J].气象科技,2007,35(3):309-316.
    [55]顾欣,田楠,潘平珍.黔东南暴雨气候特征及其地形影响[J].气象科技,2006,34(4):441-445.
    [56]Laprise R. The Euler Equations of motion with hydrostatic pressure as independent variable[J]. Mon Wea Rev,1992,120:197-207.
    [57]Janjic, Z.I. Nosingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model, NCEP Office Note,2002, No.437,61 pp.
    [58]Hong, S.-Y., and Y. Noh, and J. Dudhia. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon Wea Rev,2006,134:2318-2341.
    [59]颜鹏,李兴生,罗超,等.我国地面O3、NOx、SO2背景值的观测研究[J].应用气象学报,1997,8(1):53-61.
    [60]颜鹏,房秀梅,李兴生,等.临安地区地面S02变化规律及其源地分析[J].应用气象学,1999,10(3):267-275.
    [61]Draxler R R. Description of the HYSPLIT-4 modeling system [Z].NOAA Technical Memo, 1997,ERL ARL-224.
    [62]Gao S T, Ping F, Li X, et al. A convective vorticity vector associated with tropical convection:A two-dimensional cloud-resolving modeling study[J]. Geophys Res,2004, 109:D14106,Doi:10.1029/2004J D004807.
    [63]Gao S T, Li X, Tao W, et al. Convective and moist vorticity vectors associated with tropical oceanic convection:A there-dimensional cloud-resolving model simulation[J]. Geophys. Res,2007,112:D01105, Doi:10.1029/2006J D007179.
    [64]赵宇,高守亭.对流涡度矢量在暴雨诊断分析中的应用研究[J].大气科学,2008,32(3):444-456.
    [65]Chen, S. J. and Y.-H. Kuo, et al., A modeling case study of heavy rainstorms along the Mei-Yu front [J]. Mon Wea Rev,1998,126:2330-2351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700