板带多道次热轧过程温度场数值模拟与温降模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热轧板带材作为铝加工的重要产品,已广泛地应用于建筑、包装和交通运输等领域。近年来,热轧板带生产得到了迅猛的发展。板带热轧过程中的温度变化是直接影响产品尺寸精度、力学性能、轧机负荷分配以及能源消耗的重要因素之一,一直是板带生产和研究中关注的重点。然而由于热轧过程中轧件的温度影响因素众多,变形和温度同时存在且相互影响,生产企业大多只能通过昂贵而且耗时的凭经验进行反复试错的方法来调控轧件温度,效果还不理想。随着计算机技术的发展,数值模拟在板带轧制领域的应用越来越广泛。因此,研究板带多道次轧制过程的热力耦合分析基础理论与关键技术,建立准确描述板带热轧过程的有限元模型,借助于先进的研发工具对产品及其制造过程进行快速设计和分析变得尤为重要。
     本文对1235铝合金热轧过程中流变行为规律进行研究,建立相应的流变应力人工神经网络预报模型,并将其成功地应用于有限元程序中,为铝合金热轧过程的工程计算和数值模拟奠定了良好的基础;开发可准确描述板带多道次热轧过程、参数化的有限元分析系统,数值模拟分析轧件在多道次热轧全流程中的横断面温度场随时间历程的变化规律,得到了可用于自动化生产控制的板带温降数学模型,为板带多道次热轧技术的发展提供一种研究方法。主要研究内容包括:
     (1)在Gleeble-1500热力模拟机上进行热模拟实验,对1235铝合金在热变形过程中的流变行为进行研究,揭示其流变行为规律,为该材料高温塑性成形工艺的设计、计算及分析提供了理论基础。
     (2)计入变形温度、应变速率和应变量对流变应力的影响,采用人工神经网络对1235铝合金的高温流变应力进行了预测,并且研究了网络的结构和数据归一化对预测结果的影响。在神经网络的学习过程中,提出将应变速率值对数化、温度值倒数化和流变应力的双曲正弦值对数化的方法,与直接把参数输入到网络相比,新方法的学习效率和预测精度大大提高。通过多次验证,找到了描述1235铝合金流变应力变化规律的最佳神经网络模型为3-15-15-1,其预测值的均方差最大值为0.94MPa,结果表明:神经网络的预测精度远远高于数学模型的回归方法。
     (3)从塑性加工过程热传导基本方程入手,将力平衡引入能量守恒方程,把温度场和应力场的求解都建立在当前构形上,推导出了基于U.L (UpdatedLagrange)的弹塑性大变形热力耦合分析有限元公式,并给出了详细的求解流程。
     (4)接触摩擦模拟是有限元分析结果正确与否的关键,也是有限元计算中的一个难题。将热轧变形区沿轧制方向划分为入口滑动区、粘着区和出口滑动区,提出了三区段混合摩擦机理的接触摩擦力计算模型,采用一个形式上和剪切摩擦理论类似的分段函数,有效地解决了剪切摩擦力在中性点不连续的问题,并使纵、横向摩擦力在进入和离开轧制变形区处均为零。
     (5)如何将人工神经网络预测出的材料流变应力方便、高效地应用于有限元程序,是有限元计算的又一个难题。在MSC.MARC平台下,定义了1235铝合金的用户材料库,实现了流变应力的人工神经网络预报结果和大型通用有限元软件的无缝连接。
     (6)通过设置与轧制道次相对应的多个载荷工况、建立多个轧辊和推动刚体并设定与轧件的接触关系,在MSC.Marc中实现轧件的顺利咬入和多道次连续轧制过程。开发了一套板带热轧过程有限元分析自动建模系统,建立了某铝厂1235铝合金板带材11道次连续轧制过程的数值仿真模型,得出轧件同一横截面上心部、中部和表面点从出炉到11道次轧制过程的温度变化曲线。计算结果与现场工业实测值吻合。
     (7)采用正交试验法,研究了轧制速度、乳化液热交换系数、出炉温度和环境温度对板带温降的影响规律。采用回归分析技术,建立了板带温降随工艺参数变化的数学模型表达式,从而为轧制工艺参数设计与分析、节能优化等提供了理论依据。
     (8)在实验轧机上进行了铝板带热轧温度测试实验,探讨了不同工艺条件对板带温度的影响规律,并将实验测试结果与仿真计算结果进行比较分析,验证了本文建立的热力耦合模型的准确性。
As an important aluminium fabrication product, hot rolled aluminum strip has been used widely in many fields including construction, packaging and transportation et al. In recent years, hot-rolled strip production has developed rapidly. The temperature variation of aluminum strip during hot rolling is one of the most important factors that will affect the size accuracy, mechanics capability of the product, the load distribution of rolling mill and energy consumption directly, which has always been the focus of strip production and research. However, there are many factors that influence the strip temperature in the process of hot rolling, and also, deformation and high temperature co-exist and interact with each other, so most manufacturers regulate rolling temperature only relying upon expensive and time-consuming trial and error approach from experience. But the effect is still not ideal. With the development of computer technology, numerical simulation is applied in strip rolling fields more and more widely. Therefore, the study of basic analysis theory and key technology of thermo-mechanical coupling analysis during multi-pass rolling process, establishing an finite element model which can represent accurately the strip rolling process, designing and analyzing the products and manufacturing process with the aid of advanced development tools have become particularly important.
     In this paper, through the research on the rules of the rheological behavior during 1235 aluminum alloy hot-rolled process, the corresponding artificial neural network prediction model of flow stress was established and applied to the finite element program successfully; a good foundation was laid to engineer calculations and numerical simulation of aluminum hot rolling process; accurate description of the strip multi-pass hot-rolling process and parameterized finite element analysis system was developed; the variation of the cross-sectional temperature field in the whole multi-pass hot-rolling process was analyzed by numerical simulation method; mathematical model of strip temperature drop, used for automated production control, was acquired. A research method was provided for the development of multi-pass hot-rolling technology. The main contents include:
     (ⅰ) A thermal simulation experiment was operated to examine the rheological behavior of 1235 aluminum alloy during hot deformation and study on the rules of rheological behavior on Gleeble-1500 thermal simulation tester. A theoretical basis was provided for designing, calculating and analyzing high-temperature-plastic forming process of 1235 aluminum alloy.
     (ⅱ) In view of deformation temperature, strain rate and strain on flow stress, the back propagation (BP) artificial neural network (ANN) was used to predict the flow stress of 1235 aluminum alloy. The input mode is X= (ε, Inε,1/T) and the output mode is Y= ln[sinh(ασ)]. A revised input parameter method and unification algorithm were proposed in this paper which enable the ANN to predict the flow stress accurately in wide range. It is found that the ANN with 3-15-15-1 is the best architecture for predicting the flow stress of aluminum alloy and the maximum mean square of its predicted value is 0.94MPa, with the research results showing that the accuracy of neural network prediction is much higher than that of the mathematical regression method.
     (ⅲ) To start with the basic equation of heat conduction of plastic processing, the force balance equation was introduced into energy conservation equation. The finite element formulation of elastic-plastic large deformation thermo-mechanical coupled analysis was deduced by building the solving of temperature and stress fields upon the current configuration, and a detailed solution procedure was included.
     (ⅳ) Contact friction simulation is the key factor to decide whether finite element analysis results are correct or not and also is a difficult problem of the finite element analysis. In the rolling direction, rolling deformation zone was divided into entrance sliding zone, sliding adhesive zone and export sliding zone. The contact friction force calculation model of three-section mixed friction mechanism was proposed using a segment which is similar to the sub-shear friction theory. The shear friction incontinuity in the neutral point was solved effectively, and the vertical and horizontal friction was made to be zero when entering and leaving the deformation zone.
     (ⅴ)How to use artificial neural network to predict the material flow stress easily and efficiently is another problem in FEM analysis. On the MSC.MARC platform, the research materials-1235 aluminum alloy user library was defined. The perfect combination of artificial neural network prediction model and large-scale finite element software of flow stress was achieved by this method.
     (ⅵ)By setting the Multiple load cases correlated with the running pass, and then by creating multiple rollers and impellent rigid-bodies, and setting the contact relation with the rolling, the trip can bite smoothly and the multi-pass continuous rolling process was simulated in the finite element software MSC.Marc. A set of automatic Modeling System of finite element analysis for hot-rolled process is developed. We established an strip rolling 11 consecutive numerical simulation model aluminum alloy 1235 strip to get temperature falling curves at center, medium and surface of the same sect of 1235 aluminum strip during the process from outlet of heating furnace to end of 11th pass rolling. The results showed that the calculate result is consistent with measured result.
     (ⅶ) Studying the law of temperature fall of strip that is influenced by the rolling speed, emulsion heat transfers coefficient, tapping temperature and environmental temperature by orthogonal test. Establishing a mathematical expression/about/under temperature falling with the change of process parameters by regression analysis, a theoretical basis for process parameters design, analysis and energy optimization was provided.
     (ⅷ) Hot temperature testing laboratories of aluminum strip were carried out on the experimental rolling mill. Discussing the law of the effects to strip temperature of different process conditions and comparing the experimental results with numerical results, the establishment of the coupled thermo-mechanical model was verified.
引文
[1]王祝堂,田荣璋.铝合金及其加工手册.长沙:中南大学出版社,2005.
    [2]中国金属学会轧钢专业学术委员会科教组.板带轧制科学与技术.第四届国际轧钢会议论文集.北京:冶金工业出版社,1990.
    [3]陆璐,王辅忠,王照旭.有限元方法在金属塑性成形中的应用.材料导报,2008,22(6):87-91.
    [4]K. Komori. Rigid-plastic finite-element method for analysis of three-dimensional rolling that requires small memory capacity. International Journal of Mechanical Sciences,1998,40(5):479-491.
    [5]K. Komori, K. Koumura. Simulation of deformation and temperature in multi-pass H-shape rolling. Journal of Materials Processing Technology,2000,105(1-2):24-31.
    [6]Z. Y. Jiang, W. P. Hu, X. M. Zhang, et al. Coupled deformation and temperature analysis of strip rolling with a local perturbation of deformation using a 3D rigid-plastic FEM. Scandinavian Journal of Metallurgy,2004,33(1):29-38.
    [7]Z. Y. Jiang, A. K. Tieu. A 3-D finite element method analysis of cold rolling of thin strip with friction variation. Tribology International,2004,37(2):185-191.
    [8]Z. Y. Jiang, A. K. Tieu. A simulation of three-dimensional metal rolling processes by rigid-plastic finite element method. Journal of Materials Processing Technology,2001,112(1):144-151.
    [9]Z. Y. Jiang, A. K. Tieu, X. M. Zhang, et al. Finite element simulation of cold rolling of thin strip. Journal of Materials Processing Technology,2003,140(1-3):542-547.
    [10]Y. Lee, H. J. Kim,S. M. Hwang. Analytic model for the prediction of mean effective strain in rod rolling process. Journal of Materials Processing Technology,2001,114(2):129-138.
    [11]C. G. Sun, H. D. Park, S. M. Hwang. Prediction of three dimensional strip temperatures through the entire finishing mill in hot strip rolling by finite element method. ISIJ International,2002,42(6):629-635.
    [12]S. Chandra,U. S. Dixit. A rigid-plastic finite element analysis of temper rolling process. Journal of Materials Processing Technology,2004,152(1):9-16.
    [13]刘相华.刚塑性有限元法及其在轧制中的应用.北京:冶金工业出版社,1994.
    [14]熊尚武,刘相华,王国栋,等.板坯稳态立轧时三维刚塑性有限元模拟.钢铁研究学报,1998,8(2):23-28.
    [15]徐建忠,熊尚武,刘相华,等.异型扁坯轧制过程的刚塑性有限元分析.东北大学学报(自然科学版),2000,21(2):199-202.
    [16]X. Shangwu, J. M. C. Rodrigues, P. A. F. Martins. Simulation of plane strain rolling through a combined element free Galerkin-boundary element approach. Journal of Materials Processing Technology,2005,159(2):214-223.
    [17]李世芸,张曙红,张代明.双金属复合带材轧制过程有限元模拟.中国有色金属学报,2001,11(6):1078-1082.
    [18]许志强.钢管减径三维热力耦合刚塑性有限元虚拟仿真集成系统:[博士学位论文].秦皇岛:燕山大学,2003.
    [19]李学通,杜风山,孙登月,等.热轧带钢粗轧区轧制宽展模型的研究.钢铁研究学报,2005,40(6):44-47.
    [20]李学通,杜风山,王敏婷,等.板材调宽轧制头部形状控制有限元分析.中国机械工程,2005,16(8):712-715.
    [21]李学通,杜凤山,王敏婷.中厚板轧制多参量耦合的数值模拟(Ⅱ).上海金属,2006,28(1):43-47.
    [22]肖宏,谢红飚,张国民.PC轧机轧制过程耦合数值模拟研究.工程力学,2005,22(3):216-219.
    [23]M. R. Forouzan, M. Salimi,M. S. Gadala, et al. Guide roll simulation in FE analysis of ring rolling. Journal of Materials Processing Technology,2003,142(1):213-223.
    [24]R. Iankov. Finite element simulation of profile rolling of wire. Journal of Materials Processing Technology,2003,142 (2):355-361.
    [25]A. B. Richelsen, V. Tvergaard.3D analysis of cold rolling using a constitutive model for interface friction. International Journal of Mechanical Sciences,2004,46(5):653-671.
    [26]H. H. Wisselink, J. Huetink.3D FEM simulation of stationary metal forming processes with applications to slitting and rolling. Journal of Materials Processing Technology,2004,148 (3):328-341.
    [27]R. Boman, J. P. Ponthot. Finite element simulation of lubricated contact in rolling using the arbitrary Lagrangian-Eulerian formulation. Computer Methods in Applied Mechanics and Engineering,2004,193(39-41):4323-4353.
    [28]朱有利,龚永平,康永林.带材异步冷轧时大变形弹塑性有限元模拟和实验.矿冶工程,1996,(5):22-25.
    [29]刘才,崔振山.板材热轧热力耦合有限元模拟.机械工程学报,1998,34(4):35-39.
    [30]刘才,杜凤山,连家创.薄板连轧过程的变形和应变场.机械工程学报,1992,28(1):104-108.
    [31]刘立忠,刘相华,王国栋.隐式静力和显示动力有限元在轧制过程模拟中的应用.塑性工程学报,2001,8(4):81-83.
    [32]刘立忠,刘相华,王国栋.轧制过程的显示动力学有限元模拟.东北大学学报(自然科学版),2001,22(3):327-330.
    [33]喻海良,矫志杰,刘相华,等.中厚板轧制过程中轧制力变化有限元模拟.材料与冶金学报,2005,28(4):70-73.
    [34]杜凤山.三维弹塑性有限元法模拟板带轧制过程:[博士学位论文].齐齐哈尔:东北重型机械学院,1990.
    [35]洪慧平,康永林,冯长桃,等.连轧大规格合金芯棒钢三维热力耦合模拟仿真.钢铁,2002,37(10):23-26.
    [36]孙建林,许宝才,康永林,等.棒材切分轧制过程中三维弹塑有限元模拟.青海大学学报(自然科学版),2004,22(1):25-27.
    [37]王艳文,康永林,任学平,等.棒材四道次连轧过程中轧件变形的三维有限元模拟.材料科学与工艺,1999,7(增刊):228-230.
    [38]许秀梅,张文志,谢红飚.波纹轨腰钢轨轧制的数值模拟与实验研究.中国机械工程,2005,16(12):1103-1105.
    [39]戴晓光.五道次孔型轧制40Cr大圆钢有限元模拟分析.重型机械,2006(1):34-38.
    [40]廖舒纶,于永泅,张立文,等.304不锈钢棒线材热连轧温度场的数值模拟.特殊钢,2005,26(3):22-24.
    [41]廖舒纶,张立文,原思宇,等.数据传递方法在GCr15棒线材连轧过程数值模拟中的应用.塑性工程学报,2005,12(增刊):159-162.
    [42]原思宇,张立文,廖舒纶,等.棒线材多道次轧制过程的静力隐式有限元模拟及模型优化.塑性工程学报,2005,12(4):54-57.
    [43]原思宇,张立文,齐民,等.推动模型在棒线材轧制过程模拟中的应用.钢铁,2005,40(12):50-54.
    [44]谢红飚.H型钢轧制过程多参数耦合模拟与实验研究:[博士学位论文].秦皇岛:燕山大学,2006.
    [45]张鹏,鹿守理,高永生,等.板带轧制过程温度场有限元模拟及影响因素分析(Ⅰ).北京科技大学学报,1998,19(1):99-101.
    [46]张鹏,鹿守理,高永生,等.板带轧制过程温度场有限元模拟及影响因素分析(Ⅱ).北京科技大学学报,1998,20(1):99-102.
    [47]周维海,臧新良,杜风山,等.板带热轧过程温度场的三维热力耦合有限元模拟.钢铁研究学报,2001,13(3):24-26.
    [48]兰勇军,陈祥永,黄成江.带钢热轧过程中温度演变的模拟和实验研究.金属学报,2002,37(1):99-103.
    [49]孙卫华,王国栋,吴国良.带钢热轧过程中轧件横断面上温度场的解析.山东冶金,1999,16(4):30-35.
    [50]周进,沈丙振,韩志强.精轧区热轧带钢温度场的数值模拟.钢铁研究学报,2003,15(2):14-17.
    [51]唐广波,刘正东,董翰,等.CSP热轧过程温度场模拟.钢铁,2003,38(8):38-42.
    [52]卫原平,阮雪榆.金属塑性成形中热力耦合分析技术的研究.塑性工程学报,1994,1(2):3-10.
    [53]K. Komori. Simulation of deformation and temperature in multi-pass caliber rolling. Journal of Materials Processing Technology,1997,71 (2):329-336.
    [54]M. Maskan, F. Gogus, A. A. Tseng, et al. Thermal expansion and crown evaluations in rolling process. Material and Design,1997,18(1):29-41.
    [55]L. Gjonnes, B. Andersson. Mechanisms of surface deformation during cold rolling of aluminium. Journal of Materials Science,1998,33(9):2469-2476.
    [56]H. Dyja, P. Korczak. The thermal-mechanical and microstructural model for the FEM simulation of hot plate rolling. Journal of Materials Processing Technology,1999,92(3):463-467.
    [57]X. Shangwu, J. M. C. Rodrigues, P. A. F. Martins. Three-dimensional simulation of flat rolling through a combined finite element-boundary element approach. Finite Elements in Analysis and Design,1999,32 (4):221-233.
    [58]许云波,郑晖,刘相华.400Mpa超级钢热连轧过程中温度及MFS的预测.东北大学学报(自然科学版),2002,23(6):569-572.
    [59]Z.-C. Lin, S.-Y. Lee. An investigation of contact problem between strip and work roll with a smooth straight surface during cold rolling. International Journal of Mechanical Sciences,1997,39(2):1385-1404.
    [60]C. M. Park, W. S. Kim, G. J. Park. Thermal analysis of the roll in the strip casting process. Mechanics Research Communications,2003,30(4):297-310.
    [61]周家林,李立新,门文清,等.热连轧带钢温度场有限元分析和平均流变应力的预测.特殊钢,2004,35(3):20-22.
    [62]A. F. M. Arif,0. Khan, A. K. Sheikh. Roll deformation and stress distribution under thermo-mechanical loading in cold rolling. Journal of Materials Processing Technology,2004,147(2):255-267.
    [63]张国民.板带热轧过程多参数耦合数值模拟:[博士学位论文].秦皇岛:燕山大学,2005.
    [64]曹鸿德.塑性变形力学基础与轧制原理.北京:机械工业出版社,1984.
    [65]谢贻权,何福保.弹性和塑性力学中的有限元法.北京:北京工业出版社,1981.
    [66]T. Hong, L. Xinmin, L. Jianshe, et al. Prediction for the forming limit of sheet metals. Transactions of the Chinese Society Of Agricultural Machinery,1997(4):100-105.
    [67]J. J. Park,S. I. Oh. Application of three-dimensional finite element analysis to shape rolling processes. Journal of Engineering for Industry-Transactions of the ASME,1990,112(2):36-46.
    [68]A. Hacquin, P. Montmitonnet, J. P. Guillerault. A steady state thermo-elastoviscoplastic finite element model of rolling with coupled thermo-elastic roll deformation. Journal of Materials Processing Technology,1996,60(1-4):109-116.
    [69]Z. Y. Jiang, A. K. Tieu. A method to analyse the rolling of strip with ribs by 3D rigid visco-plastic finite element method. Journal of Materials Processing Technology,2001,117(1-2):146-152.
    [70]Z. Y. Jiang, A. K. Tieu. Modelling of rolling of strips with longitudinal ribs by 3-d rigid visco-plastic finite element method. ISIJ International,2000,40(4):373-379.
    [71]Z. Y. Jiang, A. K. Tieu. Modelling of the rolling processes by a 3-D rigid plastic/visco-plastic finite element method with shifted ICCG method. Computers and Structures,2001,79(31):2727-2740.
    [72]Z. Y. Jiang, A. K. Tieu, C. Lu. A 3D finite element analysis of the hot rolling of strip with lubrication. Journal of Materials Processing Technology,2002, (125-126):638-644.
    [73]S. Y. Kim, Y. T. Im. Three-dimensional finite element analysis of non-isothermal shape rolling. Journal of Materials Processing Technology,2002,127(1):57-63.
    [74]S. X. Zhou. An integrated model for hot rolling of steel strip. Journal of Materials Processing Technology,2003,134(3):338-351.
    [75]许光明,崔建忠.液固相复合轧制力能参数的ANSYS软件模拟.钢铁研究学报,2001,13(1):19-21.
    [76]康永林,宋仁伯,任学平,等.变形参数对半固态轧制影响规律的有限元模拟.塑性工程学报,2002,9(3):66-70.
    [77]W. Johnson, H. Kudo. The use of upper-bound solutions for the determination of temperature distributions in fast hot rolling and axi-symmetric extrusion processes. International Journal of Mechanical Sciences,1960,1(2-3):175-191.
    [78]F. Hollander. A Model to calculate the complete temperature distribution in steel during hot rolling. Iron and Steel Inst,1970, (23):46-74.
    [79]G. D. Lahoti.S. N. Shah, T. Altan. Computer Aided Analysis of the Deformations and Temperature in Strip Rolling. Journal of Engineering for Industry-Transactions of the ASME,1978,100(2):159-166.
    [80]A. A. Tseng. A numerical heat transfer analysis of strip rolling. Journal of Heat Transfer-Transactions ASME,1984,106(3):512-517.
    [81]C. Devadas, I. V. Samarasekera. Heat Transfer During Hot Rolling of Steel Strip. Ironmaking and Steelmaking,1986,13(6):311-321.
    [82]G. Boguslaw, C. Marek. Temperature Field on Strip Cross-Section During Hot Rolling. Steel Research,1989,60(5):208-214.
    [83]0. C. Zienkiewicz, E. Onate, J. C. Heinrich. General Formulation for Coupled Thermal Flow of Metals Using Finite Elements. International Journal for Numerical Methods in Engineering,1981,17(10):1497-1514.
    [84]周筠清. 板坯在热轧过程中温降数学模型. 冶金能源,1987,6(6):28-32.
    [85]C. T. Hsu, R. W. Evans. Finite Element Analysis on Hot Rolling of Steel. Advanced Technology of Plasticity,1990, (2):587-593.
    [86]刘振宇,王国栋,张强.板带热连轧过程中横向温度分布不均匀性的计算解析.钢铁研究学报,1993,(4):25-30.
    [87]N. L. Mat, J. H. Beynon,A. R. S. Ponter. Thermomechanical modeling of aluminium alloy rolling. Journal of Materials Processing Technology,1994,45(1):631-636.
    [88]李晓谦.连续铸轧带坯在轧制区的温度场数学模型.中国有色金属学报,1997,7(4):168-170.
    [89]李长生,刘刚,刘相华,等.热带连轧过程轧件温度场有限元模拟.热加工工艺,1998,(5):17-19.
    [90]李长生,刘相华,王国栋,等.棒线材连轧过程轧件温度场的有限元解析.塑性工程学报,1998,5(2):79-84.
    [91]徐申.中厚板轧制过程中的温度模型.甘肃冶金,2000,(2):13-19.
    [92]吴铠,李文蔚.16MnL轧制温度数学模型的建立与应用.宽厚板,2003,9(1):38-39.
    [93]余驰斌,钱俊,张云祥,等.微合金热连轧带钢轧制过程温度变化的数学模型.特殊钢,2004,25(3):14-16.
    [94]余万华,张中平.热轧钢板在加速冷却时的温度模型.北京科技大学学报,2005,27(5):567-570.
    [95]李学通,杜凤山,臧新良.板带粗轧过程热、力、组织耦合三维有限元模拟.中国机械工程,2006,17(1):92-95.
    [96]薛文颖,龚殿尧,赵宪明.热连轧精轧机组温度控制数学模型研究.钢铁研究,2006,34(4):27-29.
    [97]管克智,赵海石,刘萍.热连轧层流冷却的数学模型.北京科技大学学报,1994,16(11):23-27.
    [98]谢海波,徐旭东,刘相华,等.层流冷却过程中带钢温度场数值模拟.钢铁研究学报,2005,17(4):33-35.
    [99]M. M. Prieto, T. S. Ruin, J. A. Menende. Thermal Performance of Numerical Model of Hot Strip Mill Run out Table. Ironmaking and Steelmaking,2001,28(6):474-480.
    [100]L. Henrich, R. Holz, G. Kneppe. Physically Based Cooling Line Model to Meet Growing Demands in Temperature and Flexibility. Ironmaking and Steelmaking,1996,23(1):79-81.
    [101]蔡晓辉,张殿华,张中正,等.热轧带钢层流冷却系统的数学模型.东北大学学报(自然科学版),2003,24(3):155-158.
    [102]W. J. Lawrence, A. F. MacAlister, P. J. Reever. On Line Modeling and Control of Strip Cooling. Ironmaking and Steelmaking,1996,23(1):74-78.
    [103]蔡正,王国栋,刘相华,等.神经网络结合数学模型预测带钢卷取温度.钢铁研究学报,1998,10(3):57-60.
    [104]贾春玉,李兴东,宋战.热轧带钢卷取温度高精度预报的人工神经网络方法.钢铁,2003,38(2):30-34.
    [105]范晓明,张利,苗雨阳,等.基于模糊控制技术的热轧带钢卷取温度控制.基础自动化,2000,(7):12-14.
    [106]范晓明,张利,蔡晓辉,等.小脑模型连接控制(CMAC)网络用于热轧带钢卷取温度控制.东北大学学报(自然科学版),2000,21(6):662-664.
    [107]Y. Kenji,O. Shigeru, H. Shuichi. Two-Dimensional Thermo-Mechanical Analysis of Flat Rolling Using Rigid-Plastic Finite Element Method. ISIJ International,1991,31(6):566-570.
    [108]M. Pietrzyk, J. G. Lenard. Study of Heat Transfer During Flat Rolling. International Journal for Numerical Methods in Engineering,1990,30(8):1459-1469.
    [109]F. Micari. Three-Dimensional Coupled Thermo-Mechanical Analysis of Hot Rolling Processes. Journal of Materials Processing Technology,1992,34(1-4):303-310.
    [110]S. M. Hwang, M. S. Joun, Y. H. Kang. Finite Element Analysis of Temperatures, Metal Flow, and Roll Pressure in Hot Strip Rolling. Journal of Engineering for Industry-Transactions of the ASME,1993,115(3):290-298.
    [111]孙一康.带钢热连轧的模型与控制.北京:冶金工业出版社,2002.
    [112]李慧中,张新明,陈明安,等.2519铝合金热变形流变行为.中国有色金属学报,2005,15(4):621-625.
    [113]湛利华,钟掘,李晓谦,等.连续铸轧流变行为的物理模拟及其应力-应变关系的演变.中国有色金属学报,2004,14(12):1995-2002.
    [114]王孟君,杨立斌,甘春雷,等.6063铝合金高温流变本构方程.华中科技大学学报(自然科学版),2003,31(6):20-22.
    [115]黄勇,刘心宇,曾中明.1050铝合金热轧流变应力研究.轻合金加工技术,2002,30(9):15-18.
    [116]H. J. McQueen, E. Fry, J. Belling. Comparative constitutive constants for hot working of Al-4.4 Mg-0.7 Mn(AA5083). Journal of Materials Engineering and Performance,2001,10(2):164-172.
    [117]H. Shi, A. J. McLaren, C. M. Sellars, et al. Constitutive equations for high temperature flow stress of aluminum alloys. Material Science and Engineering,1997,13(3):210-216.
    [118]张辉,彭大暑,杨立斌,等.铝合金道次热轧流变应力的研究.热加工工艺,2000,(5):6-8.
    [119]刘心宇,张继忠,程仕平,等.纯铝(L2)高温本构方程的研究.中南工业大学学报,1997,28(2):156-159.
    [120]H. J. McQueen, N. Ryum. Hot working and subsequent static recrystallization of Al and Al-Mg-Alloys. Scandinavian Journal of Metallurgy,1985, (14):183-194.
    [121]W. G. Truckner, D:E. Mikkola. Strengthening of copper by dislocation substructures. Metallurgical Transactions A(Physical Metallurgy and Materials Science),1977, (8):45-49.
    [122]A. A. Hameda,L. Blaz. Flows oftening during hot compression of Cu-3.45wt% Ti alloy. Scripta Materialia,1997,37(12):1987-1993.
    [123]T. Sheppard, H. L. Liu. Microstructure and properties of some extruded copper-phosphorus alloys. Metal Science,1984, (18):439-447.
    [124]王建华,尹付成.2618耐热铝合金的热压缩流变应力行为.机械工程材料,2004,28(10):10-12.
    [125]周计明,齐乐华,陈国定.热成形中金属本构关系建模方法综述.机械科学与技术,2005,24(2):212-216.
    [126]H. J. Frost, M. F. Ashby. Deformation mechanism maps. New York: Pergamon Press,1982.
    [127]S. B. Brown, K. H. Kim, L. Anand. An internal variable constitutive model for hot working of metals. Int J of Plast,1989, (5):95-130.
    [128]C. S. Dedai,D. R. Curran. Constitutive laws for engineering materials:theory and applications. North Holland:Elsevier Science Publishing Co.Inc,1987.
    [129]徐鹏,周道祥,王乐勤.16MnR材料应变疲劳损伤与能量的本构关系研究.压力容器,2006,23(5):22-24.
    [130]许树勤.20CrH钢热变形流动应力的研究.塑性工程学报,2003,10(1):16-19.
    [131]潘维国,曹起骧,马喜腾,等.20MnMoNiCr低合金钢恒温压缩动态软化及流变应力模型研究.塑性工程学报,1999,6(4):106-108.
    [132]李雄,张鸿冰,阮雪榆,等.40Cr钢流变应力的分析及模拟.材料工程,2004,(11):41-44.
    [133]黄光胜,汪凌云,黄光杰,等.AZ31镁合金高温本构方程.金属成形工艺,2004,22(2):41-44.
    [134]金蕾,徐有容.C-Mn钢热变形行为及其流变应力模型的研究.上海大学学报(自然科学版),1999,5(2):123-127.
    [135]张兴全.Ti-17合金本构关系的人工神经网络模型.中国有色金属学报,1999,9(3):590-595.
    [136]丰建朋,郭灵.人工神经网络在建立变形高温合金本构关系中的应用.中国机械工程,1999,10(1):49-51.
    [137]朱远志,林启权,尹志民,等.2519铝合金高温变形流变应力的人工网络模型.金属热处理,2004,29(7):20-23.
    [139]C. Zener,J. H. Hollomon Effect of strain rate upon the plastic flow of steel. Journal Application of Physics,1944,15(1):22-27.
    [140]谢建新,刘静安.金属挤压理论与技术.北京:冶金工业出版社,2001.
    [141]C. M. Sellars, W. J. McTegart. On the mechanism of hot deformation. Actal Metallurgica, 1966,14(9):1136-1138.
    [142]J. J. Jonas, C. M. Sellars, W. J. McTegart. Strength and structure under hot working conditions. International Metallurgical Reviews,1969,14 (130):1-24.
    [143]C. M. Sellars, J. A. Whiteman. Recrystallization and grain growth in hot rolling. Metal Science,1979, (13):187-194.
    [144]H. J. McQueen, S. Yue, N. D. Ryan, et al. Hot working characteristics of steels in austenitic state. Journal of Materials Processing Technology,1995,53(1):293-310.
    [145]焦李成.神经网络系统理论.西安:西安电子科技大学出版社,1990.
    [146]齐乐华,侯俊杰.金属液凝固中直接挤压工艺的神经网络.中国有色金属学报,1999,9(3):586-589.
    [147]柴天偌,杜斌.基于RBF神经网络的转炉炼钢终点预报.中国有色金属学报,1999,9(4):868-872.
    [148]R. Colas. A model for the hot deformation of low-carbonsteel. Journal of Materials Processing Technology,1996,62(1):180-184.
    [149]L. X. Kong, P. D. Hodgson, B. Wang. Development of constitutive models for metal forming with cyclic strain softening. Journal of Materials Processing Technology,1999,89-90:44-50.
    [150]许勇顺,柳建韬,聂明,等.金属热变形应力-应变曲线数学模型的研究与应用.应用科学学报,1997,15(4):379-384.
    [151]J. L. Song, A. L. Dowson, M. H. Jacobs, et al. Coupled Thermo-Mechanical Finite-element Modelling of Hot Ring rolling Process. Jounal of Materials Processing Technology,2002,121(2-3):332-340.
    [152]R. W. Moffat. Computer Control of Hot Strip Cooling Temperature with Variable Flow Laminar Spray. Iron and Steel Engineer,1985,11:21-28.
    [153]谢水生,王祖唐.金属塑性成形的有限元数值模拟.北京:冶金工业出版社,1997.
    [154]0. C. Zienkiewicz, CBE. FRS. FREng. The Finite Element Method(Fifth edition). Butterworth-Heinemann Linacre House:A division of Reed Educational and Professional Publishing Ltd,2000.
    [155]孔祥谦.有限单元法在传热学中的应用.北京:科学出版社,1998.
    [156]宋天霞,邹时智,杨文兵.非线性结构有限元计算.武汉:华中理工大学出版社,1997.
    [157]陈显勇.铝材轧制中的摩擦学问题.摩擦学第四届全国学术交流会论文集(第三册),1987:1-7.
    [158]刘建生,陈慧琴,郭晓霞.金属塑性加工有限元模拟技术与应用.北京:冶金工业出版社,2003.
    [159]梁清香,张根全.有限元与MARC实现.北京:机械工业出版社,2003.
    [160]陈火红,于均泉,席源山.MSC. Marc/Mmentat2003基础与应用实例.北京:科学出版社,2004.
    [161]陈火红.Marc有限元实例分析教程.北京:机械工业出版社,2002.
    [162]Msc. Software(中国).MSC. MARC材料非线性分析培训教程.北京:MSC中国办事处,2001.
    [163]Msc. Software(中国).MSC. MARC动力分析培训教程.北京:MSC中国办事处,2001.
    [164]Msc. Software(中国).MSC.MARC接触分析培训教程.北京:MSC中国办事处,2001.
    [165]Msc. Software(中国).MSC. MARC温度场及其耦合场分析培训教程.北京:MSC中国办事处,2001.
    [166]陈火红,尹伟奇,薛小香.MSC. Marc二次开发指南.北京:科学出版社,2004.
    [167]K. Sasaki, Y. Sugitani,M. Kawasaki. Heat Transfer in Spray Cooling on Hot Surface. Journal of the Iron and Steel Institute of Japan,1979,65(1):90-96.
    [168]日本钢铁协会编.板带轧制理论与实践.王国栋,等译.北京:中国铁道出版社,1989.
    [169]黄明辉,张云湘,胡仕成.载荷对接触热导的影响的实验研究.有色 矿冶,2003,19(6):34-36.
    [170]张涛,徐烈.接触热阻研究中理论模型的比较与分析.低温与超导,1998,26(2):21-24.
    [171]湛利华.界面接触热阻实验与建模及其在快凝铸轧参数设计中的应用:[硕士学位论文].长沙:中南大学,2001.
    [172]王学书,于希良,王国平.铝箔轧制摩擦系数的测定.轻合金加工技术,1996,10(3):19-21.
    [173]S. C. Ball,D. T. Llewellyn,N. D.Jenks. Effects of coiling temperature and continuous annealing variables on final properties of drawn and wall ironed tinplate steel. Ironmaking and Steelmaking,1998,25(1):55-62.
    [174]张殿华,刘文红,刘相华,等.热连轧层流冷却控制系统的控制模型及控制策略.钢铁,2004,39(2):43-46.
    [175]方开泰,马长兴.正交与均匀试验设计.北京:科学出版社,2001.
    [176]牛济泰.材料和热加工领域的物理模拟技术.北京:国防工业出版社,1999.
    [177]C. Wayne. Gleeble System and Application. New York, USA:Gleeble System School,1998.
    [178]陈森灿,何舒星,吴伯杰,等.GLEEBLE材料热模拟试验机高温压缩试验的数据整理与修正.唐山工程技术学院学报,1993,(4):40-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700