粉煤灰烧结制品微孔调控技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的研究工作来源于国家科技支撑计划项目“新型墙体材料绿色制造工艺技术与装备”(2006BAF02A29)的子课题《新型自保温承重高孔洞率制品的绿色制造技术与装备》。主要研究内容包括以下方面:
     1、粉煤灰烧结制品造孔基体选择及高温烧结机理
     (1)页岩和钠基膨润土等粘结剂掺量的增加,使粉煤灰试样在烧结过程中更加容易出现液相,试件的密实度提高,氧气难于进入试件内部,试件进行无氧烧成,影响试件的一致性。同样,烧成温度和烧成时间也会影响试样的烧成过程及制品性能。
     (2)使用质量比30%的页岩做粘结剂的试件(A70a30)1050℃保温2h的抗压强度为26.81MPa,明显优于使用30%钠基膨润土的试件(A70b30)的9.82MPa,气孔率为35.49%,低于A70b30试件的48.08%,体积密度为1.58g·cm~(-3)。与A70a30相比,A70b30试样1050℃最佳烧成保温时间为4h,烧成需要消耗更多时间和能量。
     (3)粉煤灰制品烧成的最佳配比及温度制度为:A70a30试样,<400℃时,2℃/min;≥400℃时,3℃/min;1000℃时,保温烧成2h;烧成结束后,试块置于高温炉中自然冷却。
     (4)页岩的加入可以有效的降低粉煤灰试样的烧成温度,提高试件的耐火度。页岩的小颗粒填充了粉煤灰颗粒间的空隙,增大了试样的堆积密度。页岩中的矿物在较低的温度下形成了可以流动的液相,使烧成的第二阶段提前结束,所以,在烧结温度点时,纯粉煤灰试样的收缩大于掺加了页岩的试样。液相量的增加也加大了试样熔融状态下的粘度,更有利于试样保持原有的形状。温度继续升高使液相表现出更好的流动性,因而掺加页岩的试样在熔融时呈近似半球状塌落,试样底角部尺寸明显增加,顶端尺寸减少,纯粉煤灰表现为竖直方向的不规则膨胀。
     (5)粉煤灰烧结制品在高温下的主要产物为莫来石与SiO_2。粉煤灰颗粒是高温后形成的玻璃态物质,XRD图谱中各种矿物的峰形都不尖锐,表现出了其玻璃态的性质。页岩中存在Na_2CO_3,可以与莫来石在高温下发生反应,使莫来石分解生成霞石。
     (6)页岩填充了粉煤灰大颗粒的孔隙,增加了堆积密度,促进了固固反应的进行,增加了高温下生成的液相的数量,降低了试件的烧成温度,使试件的强度发挥的更加充分。
     2、不同机理的造孔剂对粉煤灰烧结制品性能的影响
     (1)烧成制品中掺加造孔剂可以抑制试件基体的收缩,降低试件的烧成收缩率;由于各种造孔剂的造孔原理不同,导致了试件抗压强度损失程度的不同;试件的气孔率都有不同程度的提高,体积密度降低。
     (2)生物质造孔剂(PF、R、S),在减少试件的体积收缩的效果方面相差不大;由于各种造孔剂自身的体积密度和高温燃烧后的灰分不同,造成试件的质量损失率稍有不同。
     掺加了S造孔剂试件的抗压强度、气孔率和体积密度等性能优于其他生物质造孔剂。S10试件的强度为12.26MPa,比相同掺量的PF、R试件强度稍高;气孔率为42.43%,比其他两种生物质造孔剂试件高约2%;体积密度为1.32g·cm~(-3),低于其它两组试件。
     (3)矿物内燃型造孔剂(M)可以降低试件的抗压强度损失率,M10试件的抗压强度仍可以达到20MPa的标准;试件的气孔率为43.1%,高于掺加了生物质造孔剂烧成的试件;烧成试样的体积密度较高,为1.38 g·cm~(-3)。
     (4)热分解造孔剂(L)控制试件的体积收缩效果较好,直径收缩和高度变化率随掺量的增加降低明显,L15试件的尺寸收缩均降低至约2%;L对抗压强度的影响效果与生物质造孔剂试件相当,L10试件强度约为12MPa;试样的气孔率提高明显,可以达到45%。
     (5)各种不同造孔机理、不同掺量的造孔剂在影响试件各个区间的孔径分布的规律是一致的,掺加了造孔能力强的造孔剂的试件在每个孔径分布区间的气孔数均高于掺加了相同体积掺量造孔效果弱的试件。
     (6)类型相近的制品的导热系数与该试件的气孔率、体积密度两因素间均近似呈线性关系。在烧结制品体系中,导热系数y(W/m·k)与气孔率x(%)之间近似的线性关系近似为y=-0.0326x+1.872;y与体积密度z(g·cm~(-3))之间的线性关系近似为y=0.4999z-0.1851。
This paper is from the sub-project of the national technology support program of China(project No.2006BAF02A29,named Green Manufacturing Processing Technology and Equipment of New Style Wall Material),Green Manufacturing Technology and Equipment of New Style Self-heat Insulation and Load-bearing Product with High Porosity.Major studying content included four parts:optimal selection of the ratio and sintering system of fly-ash product,sintering mechanism of fly-ash product at high temperature,the effect of different pore former on the characteristic of fly-ash and shale sintering product,the effect of pore former on porosity and thermal conductivity.The main achievements are listed as follows:
     1.Matrix selection of fly-ash sintering product for pore former and fly-ash sintering mechanism at high temperature
     (1) With the increasing of agglutinant,shale and sodium base bentonite,there comes out more and more liquid-phase during the procedure of sintering,and the density is much higher,which resist oxygen penetrate into interior of the specimens, so the sample is sintered without enough oxygen,which affects the coherence of the sample.On the other hand,sintering temperature and time affect the properties of the sintering product.
     (2) The specimens of A70a30,which take 30%of shale(by weight) as agglutinant,sintering at 1050℃for 2h,has the compress strength of 26.81MPa, higher than the sample of A70b30(take 30%sodium base bentonite as agglutinant) 9.82MPa.The porosity of A70a30 is 35.49%,lower than A70b30's 48.08%,and its density is up to 1.58 g·cm~(-3).Comparing with A70a30,the best sintering time for A70b30 is 4h,which use up more time and energy.
     (3) The best raw material proportion and sintering system for fly-ash system is, sample A70a30,sintered by the system of:<400℃,2℃/min;≥400℃,3℃/min; holding at 1000℃for 2h;cooling down with the furnace.
     (4) Shale added into fly-ash powder can decrease the sintering temperature,and enhance the ability of fireproofness.Small particle of shale filled into the bigger gaps of fly-ash particles,which increases the bulk density.Minerals in shale turn to flowing liquid phase at a lower temperature,and make the second part of sintering procedure ended ahead of time,which make the pure fly-ash samples' shrinkage at the sintering temperature higher than those added with shale.The increasing amount of liquid phase also increases the viscosity of the sample,which has the positive effect of making samples to maintain their appearance.The fluent of the liquid phase is increasing along with temperature's elevation.So,samples added with shale melt with the shape of semi spherical,the diameter of the bottom increases obviously,and the top is decreases.Pure fly-ash expands irregularly along its vertical axis.
     (5) Mullite and SiO_2 are the main outcome of the fly-ash sintering product. Fly-ash particle is glass-state material after high temperature.In XRD pattern,the characteristic peaks of its mineral are vague,which proves its glass state.There are Na_2CO_3 in shale,which can react with mullite at high temperature and make the mullite decomposes into nepheline.
     (6) Shale particles fill the gaps among fly-ash,increase the bulk density,promote solide-solide reaction,increase the amount of liquid phase in high temperature, reduce the sintering temperature,and they benefit the samples' compressive strength.
     2.The effect of different mechanism pore former on the characteristic of fly-ash sintering product
     (1) Pore former added within the sintering product can decrease the shrinkage ratio of the specimens when sintering;because of different pore former mechanism the compress strength losing ratio is distinct from each other,so are the porosity increasement and density decreasement.
     (2) There are no differences among biological pore formers(such as PF,R,and S) in controlling the sintering shrinkage ratio;Pore formers' density and ash content after burning make the mass loss ratio different.
     Specimens added with S have the best property of compress strength,porosity and volume density than those added with other biological pore formers.The strength of specimens S10 is 12.26MPa,much higher than those added with PF10 and S10; the porosity ratio is 42.43%,2%higher than the other two samples;and the volume density is 1.32 g·cm~(-3) lower than the rest samples.
     (3) Mineral-internal-burning pore formers(such as M) can decrease the strength losing percentage,samples M10 still get the strength of above 20MPa,with the porosity of 43.1%,which is higher than those with biologic pore former,the volume density is 1.38 g·cm~(-3),higher than other specimens.
     (4) Thermal decomposition pore formers(such as L) have a better effect in controlling the sintering shrinkage,both diameter and height shrinkages decrease obviously along with the pore former volume increasement,and the shrinkage of L15 decreased to about 2%.L pore former has an equal affection on the compress strength with the biological pore former,sample L10's strength is about 12MPa,with the porosity of 45%.
     (5) Added with pore formers of different mechanism,there is a consistency of specimens' pore size distribution at each interval.Specimens,added with a better effect pore former can increase the number of pores much better at each interval.
     (6) The thermal conductivity has a nearly linear relationship between porosity and volume density in similar kind of product.In sintering products,the linear relationship between thermal conductivity y(W/m·k) and porosity x(%) is y=-0.0326x+1.872,while that between y and volume density z(g·cm~(-3)) is y=0.4999z-0.1851.
引文
[1]陶有生.烧结保温砌块与建筑节能[J].建筑节能,2009,(1):43-46
    [2]周炫.建筑节能与烧结制品的发展切入点浅谈[J].砖瓦,2006,(10):116-119
    [3]潘钟,罗津晶,薛姗姗,罗锦英.粉煤灰利用的回顾与展望[J].环境卫生工程,2008,(1):19-22
    [4]李庆繁,罗维滨,李思胜.高掺量粉煤灰烧结砖的节能与环境效益[J].新型墙材,2004,(5):19-23
    [5]田雨泽.综合利用齐大山铁矿矿业废渣生产烧结空心砖的研究[D].东北大学,2006
    [6]韩敏芳,贾屹海,杨志宾,原建民.碳酸盐尾矿——粉煤灰烧结多孔材料实验研究[J].中国非金属矿工业导刊,2006,(3):35-38
    [7]鲁晓勇,朱小燕.粉煤灰综合利用的现状与前景展望[J].辽宁工程技术大学学报,2005,(2):295-298
    [8]郭伟,徐玲玲,钟白茜.高掺量粉煤灰烧结制品可行性研究[J].硅酸盐通报,2004,2:17-20
    [9]李庆繁,王凤年.粉煤灰在烧结制品中的应用及建议[J].砖瓦,2003,(3):14-15
    [10]李庆繁,王凤年.粉煤灰在烧结制品中的应用现状及建议[J].粉煤灰,2003,(2):34-37
    [11]李兴仁.我国固体废弃物在烧结制品中的应用情况[J].建材发展导向,2007,(1):50
    [12]M.Aloisi,A.Karamanov,M.Pelino.Sintered glass-ceramic from municipal solid waste incinerator ashes[J].Journal of Non-Crystalline Solids,2004,345-346(15):192-196
    [13]Young Jun Park,Jong Heo.Conversion to glass-ceramics from glasses made by MSW incinerator fly ash for recycling[J].Ceramics International,2002,28(6):689-694
    [14]张晓霞,山玉波,李伶.多孔陶瓷的制备与应用[J].现代技术陶瓷,2005,(4):37-40
    [15]Elena Cormier,Eric Bain Wasmund,Les V.Renny,Quan Min Yang,Doug Charles.A new powder morphology for making high-porosity nickel structures[J].Power Sources,2007,171(2):999-1009
    [16]Jaworek,T.Czech,E.Rajch,M.Lackowski.Laboratory studies of back-discharge in fly ash[J].Journal of Electrostatics,2006,64(5):326-337
    [17]陈胜利,李炳炎.半干法压制烧结盲孔多孔砖的研制及应用[J].砖瓦世界,2006,(6):38-40
    [18]谢述锋.二氧化钛介电陶瓷的低温烧结研究[D].西北工业大学,2005.
    [19]杨光亮.原料组成和烧结工艺参数对烧结矿相结构及强度的影响研究[D].贵州大学,2006
    [20]殷念祖.烧结砖瓦工艺学[M].武汉,武汉工业大学出版社,1989
    [21]M.Erol,S.K(u|¨)c(u|¨)kbayrak,A.Ersoy-Mericboyu,M.L.(O|¨)vecolu.Crystallization behaviour of glasses produced from fly ash[J].Journal of the European Ceramic Society,2001,21(16):2835-2841
    [22]张学斌,刘丽华,胡晓翠,刘杏芹,孟广耀.天然沸石多孔陶瓷的烧结动力学[J].硅酸盐学报,2006,34(2):187-191
    [23]李金洪.高铝粉煤灰制备莫来石陶瓷的性能及烧结反应机理[D].中国地质大学(北京),2007
    [24]Alexander Karamanov,Mario Pelino.Crystallization phenomena in iron-rich glasses.Journal of Non-Crystalline Solids,2001,281(1-3):139-151
    [25]Alexander Karamanov,Mario Pelino,Alessandro Hreglich.Sintered glass-ceramics from Municipal Solid Waste-incinerator fly ashes—part Ⅰ:the influence of the heating rate on the sinter-crystallisation[J].Journal of the European Ceramic Society,2003,23(6):827-832
    [26]杜晶.高纯莫来石合成的研究[D].西安建筑科技大学,2006
    [27]李贺香,马鸿文.高铝粉煤灰中莫来石及硅酸盐玻璃相的热分解过程[J].硅酸盐通报,2006,25(4):1-5
    [28]李贺香,马鸿文.高铝粉煤灰中莫来石热分解过程的研究[A]..第十二届全国相图学术会议论文集[C].第十二届全国相图学术会议论文集.
    [29]昝祥.固相烧结多孔SiC的制备、结构、光致发光和电阻率[D].西安理工大学,2003
    [30]闫玉华,樊东辉,刘畅,江昕.β-TCP多孔陶瓷药物载体的制备与微观结构 [J].武汉工业大学学报,1995,17(4):106-108
    [31]杨明辉.热压烧结氧化铝/氮化硅纳米复合陶瓷的研究[D].武汉理工大学,2005
    [32]张常军.纳米多孔碳化硅的烧结制备工艺及特性研究[D].西安理工大学.2004
    [33]M.Erol,S.K(u|¨)c(u|¨)kbayrak,A.Ersoy-Mericboyu,M.L.(O|¨)vecolu.Crystallization behaviour of glasses produced from fly ash[J].Journal of the European Ceramic Society,2001,21(16):2835-2841
    [34]In-Kook Jun,Young-Hag Koh,Hyoun-Ee Kim.Fabrication of ultrahigh porosity ceramics with biaxial pore channels[J].Materials Letters,2006,60(7):878-882
    [35]J.Jakubowicz,K.Smardz,L.Smardz.Characterization of porous silicon prepared by powder technology[J].Physica E:Low-dimensional Systems and Nano structures,2007,38(1-2):139-143
    [36]C.G.Paine.Characterization of porous sinter materials as Joule-Thomson restrictors for the Planck sorption cooler[J].Cryogenics,2004,44(6-8):425-429
    [37]刘代飞.烧结过程工艺参数优化模型的研究[D].中南大学,2004
    [38]刘圣勇,刘小二,王森.不同形态生物质燃烧技术现状和展望[J].农业工程技术(新能源产业),2007,(4):23-28
    [39]刘咸德,李玉武,董树屏,Van EspenP,Adams F,Maenhaut W.生物质燃烧颗粒物的定量分析和化学形态[J].环境化学,2002,21(3):209-217
    [40]马文超,陈冠益,颜蓓蓓,胡艳军.生物质燃烧技术综述[J].生物质化学工程,2007,41(1):43-48
    [41]宋永利,杨丽华.工业锅炉生物质燃烧技术[J].节能技术,2003,21(3):44-45
    [42]李琦芬,任建兴,潘卫国,吴江,李壮林.秸秆类生物质燃烧结渣与沉积倾向分析[J].上海电力学院学报,2007,23(4):333-336
    [43]乐园,李龙生.秸秆类生物质燃烧特性的研究[J].能源工程,2006,(4):30-33
    [44]张殿军,陈之航.生物质燃烧技术的应用[J].能源研究与信息,1999,15(3):15-21
    [45]熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木质素的测定[J].粮食与饲料工业,2005,(8):40-41
    [46]闵凡飞,张明旭.生物质燃烧模式及燃烧特性的研究[J].煤炭学报,2005,30(1):104-108
    [47]周德凤,郝婕,巴晓微,任清.稻壳的开发利用[J].长春工业大学学报(自然科学版),2004,25(1):59-62
    [48]卢芳仪,卢爱军.稻壳的综合利用[J].粮食与饲料工业,1997,(12):41-42
    [49]唐晓军,张永廉.稻壳燃烧动力学特性研究[J].东南大学学报,1994,24(S1).127-129
    [50]易新玲.木质素含量测定方法[J].矿业研究与开发,1987,7(4):148-151
    [51]刘小梅,郑典模,温圣达.稻壳的资源化利用[J].山东化工,2008,37(5):35-37
    [52]林鹏,罗永浩,虞亚辉,等.生物质燃烧的气体产物及动力学分析[J].可再生能源,2008,26(1):35-39
    [53]邹玲,孙军,武俊峰.农林废弃物生物质燃烧特性的研究[J].木材加工机械,2006,(5):21-24
    [54]马文超,陈冠益,颜蓓蓓,胡艳军.生物质燃烧技术综述[J].生物质化学工程,2007,41(1):43-48
    [55]闵凡飞,张明旭.生物质燃烧模式及燃烧特性的研究[J].煤炭学报,2005,30(1):104-108
    [56]黄安民,江泽慧,李改云.杉木综纤维素和木质素的近红外光谱法测定[J].光谱学与光谱分析,2007,27(7):1328-1331
    [57]陆斌.废旧轮胎胶粉燃烧特性分析及其燃烧数值模拟[D].南京工业大学,2004
    [58]姜凡,江淑琴,潘忠刚,方建华.混合垃圾在热重分析仪中的燃烧特性分析[J].锅炉技术,2000,31(4):1-4
    [59]陆斌,张卫华,桑芝富.胶粉和煤粉混合燃烧特性的分析[J].能源研究与信息,2004,20(1):38-45
    [60]柏静儒,王擎,孙佰仲,刘向莉,孙键.煤无烟燃烧锅炉炉内燃烧特性分析[J].环境污染治理技术与设备,2006,7(8):140-144
    [61]宋自新.生活垃圾燃烧特性的分析及在工程中的应用[J].能源工程,2004,(3):19-22
    [62]严锵,张英文.无烟煤在两种不同炉型中燃烧特性分析与对比[J].科技情报开发与经济,2006,16(11):167-169
    [63]林灏,王方,阎德忠.我国动力用煤燃烧特性的研究[J].煤炭科学技术,1982,(10):12-14
    [64]陈艳林,严海标,冯晋阳.以淀粉作造孔剂制备多孔陶瓷[J].山东陶 瓷,2005,28(1):3-5
    [65]夏光华,廖润华,成岳,魏恒勇,贾勇.高孔隙率多孔陶瓷滤料的制备[J].陶瓷学报,2004,25(1):24-27
    [66]公维平,刘英义.多孔材料有效导热系数的试验研究[J].山东电力高等专科学校学报,1999,2(2)64-67
    [67]潘宏亮.多孔介质有效导热系数的计算方法[J].航空计算技术,2000,30(3):12-14
    [68]陈永平,施明恒.基于分形理论的多孔介质导热系数研究[J].工程热物理学报,1999,20(5):608-612
    [69]钱吉裕,李强,余凯,宣益民.确定复杂多孔材料有效导热系数的新方法[J].中国科学E辑,2004,34(11):1247-1255
    [70]李湘洲,刘昊宇.多孔陶瓷的研究现状与应用[J].陶瓷,2005,(5):47-49
    [71]陈永平,施明恒.应用分形理论的实际多孔介质有效导热系数的研究[J].应用科学学报,2000,18(3):265-268

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700