耐超高温陶瓷先驱体及其复合材料的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超音速飞行器速度的提高对飞行器的鼻锥、机翼前缘和发动机等热结构部件的承载和超高温抗烧蚀性能提出了严峻的挑战,因此迫切需要开发具有良好力学性能和抗烧蚀性能的耐超高温材料。针对现有耐超高温材料的不足,提出采用先驱体浸渍-裂解工艺(PIP)制备连续纤维增强耐超高温陶瓷基复合材料。采用混合-反应法制备了TiC、ZrC、ZrB_2等耐超高温陶瓷先驱体,在此基础上采用PIP工艺制备了C/ZrC、C/ZrC-SiC复合材料,研究了界面涂层对复合材料性能的影响,探讨了复合材料在氧乙炔焰和电弧风洞环境中的烧蚀机理。
     采用混合-反应法制备了TiC、ZrC、ZrB_2等耐超高温陶瓷先驱体,并研究了交联、裂解机理。首先,以钛酸丁酯和二乙烯基苯(DVB)分别为钛源和碳源,混合得到了TiC先驱体。该先驱体在120~210℃可通过DVB自身的交联而固化,283~297℃分解得到t-TiO_2,445~461℃继续分解得到裂解碳,1200℃通过碳热还原反应得到TiC陶瓷。提高先驱体中DVB的含量或提高裂解温度,可以提高裂解产物中TiC的结晶度。其次,以锆酸丁酯和DVB分别为锆源和碳源,混合得到了醇基ZrC先驱体。该先驱体在120~210℃通过DVB自身的交联而固化,交联温度达150℃时先驱体部分分解得到无定形ZrO_2,升温裂解时先驱体继续分解得到无定形ZrO_2,400℃时无定形ZrO_2结晶得到t-ZrO_2,400~500℃时DVB分解成裂解碳,1400℃以上发生碳热还原反应得到ZrC。随着先驱体中DVB含量的增加和1600℃保温时间的延长,产物中ZrC的结晶度提高。当先驱体中Zr/C比为1/3时,在1600℃裂解2h得到不含氧化物的ZrC陶瓷。第三,以ZrOCl2·8H2O和蔗糖分别为锆源和碳源,制备了水基ZrC先驱体。该先驱体在70℃浓缩干燥,400℃裂解时得到ZrO_2和裂解碳的混合物,1600℃发生碳热还原反应生成ZrC陶瓷。第四,以ZrOCl2·8H2O、硼酸及酚醛树脂为原料,制备了ZrB_2陶瓷先驱体。先驱体溶液在40℃干燥时先转化为溶胶,然后凝胶,最后变成疏松的固体。交联后的先驱体在400℃以下无机化得到ZrO_2、B_2O3和碳,在1600℃陶瓷化得到ZrB_2陶瓷。以上四种先驱体中,TiC先驱体和醇基ZrC先驱体具有较好的交联、裂解特性,能够满足PIP工艺使用要求。
     以Zr(OBu)4和DVB的混合物为先驱体,采用PIP工艺制备了C/ZrC复合材料。为了提高复合材料的致密化效率和材料性能,确定了低温无机化、高温热处理进行碳热还原的工艺。优化的工艺参数如下:150℃交联、700℃无机化、1600℃热处理、20个PIP致密化周期,制备的C/ZrC复合材料弯曲强度253.6MPa,弹性模量42.3GPa,断裂韧性14.54MPa·m1/2。氧乙炔焰烧蚀300s后,质量烧蚀率为0.0059g/s,线烧蚀率0.0040g/s。
     采用CVI和PIP工艺在碳纤维表面制备了CVI-SiC、PIP-SiC和PIP-C界面涂层,考察了界面涂层对C/ZrC复合材料性能的影响。研究表明,CVI-SiC涂层后C/ZrC复合材料的力学性能下降,PIP-SiC和PIP-C涂层后C/ZrC复合材料的力学性能提高。引入CVI-SiC和PIP-SiC涂层后,改善了复合材料的抗烧蚀性能。其中,以制备了两个周期PIP-SiC界面层的SiCPIP2-C/ZrC复合材料综合性能最优,其弯曲强度、弯曲模量和断裂韧性分别为319.2MPa、46.3GPa、18.81MPa·m1/2,氧乙炔焰质量烧蚀率和线烧蚀率分别为0.0098g/s和0.0089mm/s。
     为了提高耐超高温复合材料的抗氧化性能,制备了C/ZrC-SiC复相陶瓷基复合材料。1200℃氧化0.5h后C/ZrC-SiC复合材料的强度和模量分别达到157.5MPa和22.0GPa,静态抗氧化性能远高于C/ZrC复合材料。C/ZrC-SiC复合材料的强度为322.0MPa,模量48.3GPa,断裂韧性为11.55 MPa·m1/2,氧乙炔焰质量烧蚀率和线烧蚀率分别为0.0089g/s和0.0136mm/s。电弧风洞质量烧蚀率和线烧蚀率分别为0.0181g/s和0.0037mm/s。由于SiC氧化形成的低粘度SiO_2熔体在复合材料表面形成了连续的SiO_2保护膜,所以C/ZrC-SiC复合材料在氧乙炔焰环境下的质量烧蚀率比SiCPIP2-C/ZrC复合材料有所下降,线烧蚀率升高,但电弧风洞环境下的抗烧蚀性能下降。
     研究了C/ZrC复合材料在氧乙炔焰环境下的烧蚀机理。在氧乙炔焰烧蚀考核中,C/ZrC复合材料主要发生了热化学烧蚀,烧蚀过程中发生的主要反应是ZrC及C的氧化,生成的主要产物是ZrO_2和CO_2。烧蚀后C/ZrC复合材料沿厚度方向主要分为四层:表面熔融层、珊瑚状ZrO_2层、氧化层及未烧蚀层,表面熔融层又可分为熔融区、疏松区以及边缘区。表面熔融层各区域的微观形貌虽然存在差异,但是都有ZrO_2熔融,熔融的ZrO_2密封了烧蚀层中的部分孔隙,为内层的C/ZrC复合材料提供抗烧蚀保护。根据烧蚀过程中的温度变化,C/ZrC复合材料的烧蚀主要分为两个阶段,第一阶段温度较低,主要为ZrC和碳纤维的氧化,烧蚀由ZrC和C的氧化反应速率控制。第二阶段温度较高,ZrO_2熔融并铺展,烧蚀速率主要由氧在ZrO_2熔融层中的扩散速率控制。
     研究了PIP-SiC界面涂层的C/ZrC-SiC复合材料氧乙炔焰烧蚀机理。C/ZrC-SiC复合材料在氧乙炔焰环境下的烧蚀主要是热化学烧蚀和气流冲刷,发生的主要反应是C、ZrC、SiC的氧化,生成的主要产物是CO_2、ZrO_2、SiO_2。随着离烧蚀中心的距离增加,复合材料的烧蚀面依次为中心熔融区、SiO_2耗尽区、SiO_2富集区。沿厚度方向,C/ZrC-SiC复合材料可分为熔融泥浆层、颗粒状SiO_2耗尽层、熔融SiO_2富集层和未烧蚀复合材料层。其中SiO_2富集层连续而致密,为C/ZrC-SiC复合材料提供抗烧蚀保护。随着烧蚀温度的逐渐上升,C/ZrC-SiC复合材料烧蚀过程主要分为三个阶段:首先是较低温度下C、ZrC、SiC的氧化,形成疏松的氧化层,该阶段的烧蚀速率由C、ZrC、SiC与氧之间的反应速率控制;随后,温度达到SiO_2的熔点,SiO_2融化并在气流冲刷下铺展,在复合材料表面形成保护层,同时低粘度的SiO_2熔体在高速气流的冲刷下流失,该阶段的烧蚀由氧通过SiO_2熔融层的扩散速率以及SiO_2的冲刷流失速率控制;当温度达到SiO_2的沸点以后,SiO_2开始从表面挥发,该阶段的烧蚀由氧通过SiO_2熔融层的扩散速率、SiO_2的冲刷流失速率和SiO_2的挥发速率控制。
     研究了电弧风洞考核环境下耐超高温陶瓷基复合材料的烧蚀机理。C/ZrC复合材料在电弧风洞烧蚀过程中形成了连续而致密的ZrO_2熔融层,并粘附于烧蚀表面,保护复合材料,材料具有较好的抗烧蚀性能,其烧蚀主要是化学烧蚀。C/ZrC-SiC复合材料在电弧烧蚀过程中生成了粘度较低的SiO_2-ZrO_2混合物,从烧蚀表面流失。熔融层的消耗导致内部材料暴露在烧蚀气流中,复合材料被严重烧蚀。C/ZrC-SiC复合材料在电弧风洞考核中的烧蚀主要是化学烧蚀和机械冲刷。
Ultra high temperature materials with excellent mechanical and ablation properties were needed for the nose caps, sharp leading edges and rocket engines of hypersonic aerospace vehicles. The proposal to prepare continuous fiber reinforced ultra high temperature ceramics matrix composites by precursor infiltration and pyrolysis (PIP) process is presented to improve the properties of the existing ultra high temperature materials. TiC, ZrC and ZrB_2 precursors were firstly prepared by mixing-reaction method, then by use of these precursors C/ZrC and C/ZrC-SiC composites were fabricated, accordingly the influence of interface coatings on the properties of the composites, and the ablation mechanisms of the composites in arc-jet wind tunnel and oxyacetylene flame environments were investigated and discussed.
     TiC, ZrC and ZrB_2 precursors were prepared by mixing-reaction method, and the cross-linking and pyrolysis mechanisms were investigated. Firstly, TiC precursor was obtained by mixing titanium butoxide and divinylbenzene (DVB). The precursor cross-linked at 120~210oC via the cross-linking of DVB, and decomposed into t-TiO_2 and carbon at 283~297oC and 445~461oC, respectively. TiC was formed at 1200oC by carbo-thermal reaction. The crystalline degree of TiC increased while the content of DVB increased and/or pyrolysis temperature increased. Secondly, hydroxyl-ZrC precursor was prepared with zirconium butoxide and DVB as sources of zirconium and carbon, respectively. The precursor cross-linked at 120~210oC, and partialy decomposed into amorphous ZrO_2 at above 150oC. Amorphous ZrO_2 changed into t-ZrO_2 at 400oC. DVB decomposed into carbon at 400~500oC. ZrC was obtained by carbo-thermal reaction at temperature higher than 1400oC. The crystalline degree of ZrC increased while the content of DVB increased or the holding time at 1600oC increased. ZrC without oxide was obtained when the precursor with a Zr/C ratio of 1/3 was pyrolyzed at 1600oC for 2 hours. Thirdly, aqueous-ZrC precursor was prepared with zirconium oxychloride (ZrOCl2·8H2O) and sucrose as sources of zirconium and carbon, respectively. This precursor was dried at 70oC, and pyrolyzed at 400oC to obtain the blends of ZrO_2 and carbon, and at 1600oC to obtain ZrC by carbo-thermal reaction. Fourthly, ZrB_2 precursor was prepared with ZrOCl2·8H2O, boric acid and phenolic resin as sources of zirconium, boron and carbon, respectively. When dried at 40oC, the precursor turned into sol, then gel, and at last loose solid. The precursor decomposed into ZrO_2, B_2O3 and carbon under 400oC, and turned into ZrB_2 at 1600oC. The TiC precursor and hydroxyl-ZrC precursor had better cross-linking and pyrolysis properties, and met the requirements of PIP process.
     C/ZrC composite was fabricated by PIP process while the mixture of Zr(OBu)4 and DVB was used as ZrC precursor. A process of inorganic treatment at low temperature and carbo-thermal treatment at high temperature was established to improve the densification efficiency and the properties of the composite. The parameters were optimized as cross-linking at 150oC, inorganic treatment at 700oC, carbo-thermal treatment at 1600oC, and 20 PIP cycles. The as-obtained C/ZrC composite had a tensile strength of 253.6 MPa, elastic modulus of 42.3 GPa, and fracture toughness of 14.54 MPa·m1/2. After ablated by oxyacetylene flame for 300 seconds, the C/ZrC composite showed a mass loss rate of 0.0059 g/s and a linear recession rate of 0.0040 mm/s.
     CVI-SiC, PIP-SiC, PIP-C interface coatings were fabricated on carbon fiber by CVI and PIP processes, respectively. The mechanical properties of the C/ZrC composites with CVI-SiC interface coatings decreased, and those of the C/ZrC composites with PIP-SiC and PIP-C interface coatings increased. Furthermore, the CVI-SiC and PIP-SiC interface coatings improved the ablation properties of the C/ZrC composite. The SiCPIP2-C/ZrC composite with PIP-SiC interface coating of 2 cycles had the best properties: a tensile strength of 319.2 MPa, elastic modulus of 46.3 GPa, fracture toughness of 18.81 MPa·m1/2, mass loss rate of 0.0098 g/s and linear recession rate of 0.0089 mm/s during the oxyacetylene torch test.
     C/ZrC-SiC composite was fabricated to improve the oxidation property of the composite. After oxidized at 1200oC for 0.5 hour, the C/ZrC-SiC composite showed a tensile strength of 157.5 MPa and an elastic modulus of 22.0 GPa, which were much better than those of C/ZrC composite. The tensile strength of the C/ZrC-SiC composite was 322.0 MPa, the elastic modulus was 48.3 GPa, the fracture toughness was 11.55 MPa·m1/2. The mass loss rate and linear recession rate of the C/ZrC-SiC composite were 0.0089 g/s and 0.0136 mm/s in oxyacetylene flame environment, respectively, while these were 0.0181 g/s and 0.0037 mm/s in arc-jet wind tunnel environment, respectively. The SiO_2 melt layer on the ablation surface from the SiC oxidation increases the mass loss rate but decreases the linear recession rate of the C/ZrC-SiC composite. When ablated in arc-jet wind tunnel environment, the C/ZrC-SiC composite showed a worse ablation property than C/ZrC composite.
     The ablation mechanism of the C/ZrC composite in oxyacetylene flame environment was discussed. Thermal-chemical process was the main ablation mechanism during the oxyacetylene torch test. ZrC and carbon was oxidized into ZrO_2 and CO_2. After the ablation, the composite was divided into four layers as the melting layer, the loose tree-coral-like ZrO_2 layer, the undersurface oxidation layer and the composite layer. The melting layer was divided into melting, porous and marginal region. Though slight difficulties existed in the different regions, ZrO_2 melt existed in all regions and partially sealed the pores and protected the composite. The ablation process may be divided into two steps according to the temperature gradient. Firstly, oxidation of carbon fiber and ZrC matrix began at relative lower temperatures to form a porous structure. In this step the ablation rate was controlled by the oxidation rate of carbon and ZrC. Secondly, ZrO_2 melted and spread on the ablation surface while the temperature was raised. The ablation rate was controlled by the diffusion rate of oxygen through the ZrO_2 melting layer.
     The ablation mechanism of C/ZrC-SiC composite with PIP-SiC interface coating in oxyacetylene flame environment was investigated. The ablation of C/ZrC-SiC composite was a combination of thermal-chemical ablation and mechanical erosion. ZrC, SiC and carbon were oxidized into ZrO_2, SiO_2 and CO_2 respectively. The ablated surface was divided into a melting region, a SiO_2 depleted region and a SiO_2 enriched region. Through thickness the ablated composite was divided into a slurry layer, a grain-like SiO_2 depleted layer, a melting SiO_2 enriched layer and a composite layer. The melting SiO_2 enriched layer was dense and integral, which protected the composite. With temperature increase the ablation process of C/ZrC-SiC composite may be divided into three steps. Firstly, oxidation of carbon fiber, SiC and ZrC matrix began at relative lower temperature to form a porous structure. In this step the ablation rate was controlled by the oxidation rate. Secondly, while the temperature was raised, SiO_2 melted and spread on the ablated surface and was blown away by the gas flux. The ablation rate was controlled by the diffusion rate of oxygen through the SiO_2 melting layer and the eroding rate. Thirdly, SiO_2 evaporated after the temperature reached the boiling point of SiO_2. The ablation rate was controlled by the diffusion rate of oxygen, the evaporate rate of SiO_2 and the eroding rate.
     The ablation mechanisms of the ultra high temperature composites during arc-jet wind tunnel test were also investigated. For C/ZrC composite, dense ZrO_2 melting layer formed during the arc-jet wind tunnel test, adhered to the ablation surface firmly, and protected the composite. Thus, the C/ZrC composites showed an excellent ablation property, and chemical reaction was the main mechanism during the arc-jet wind tunnel test. When C/ZrC-SiC composite was ablated by arc-jet wind tunnel, low viscosity ZrO_2-SiO_2 melting layer formed and was blown away from the surface. The composite was exposed to the ablation flow and ablated seriously. Chemical reaction and mechanical erosion was the main mechanism of the C/ZrC-SiC composite during the arc-jet wind tunnel test.
引文
[1] SCATTEIA L, RICCIO A, RUFOLO G, et al. PRORA—USV SHS:Ultra High Temperature Ceramic Materials for Sharp Hot Structures[R].AIAA, 2005.
    [2] JACKSON T A, EKLUND D R, FINK A J. High speed propulsion:Performance advantage of advanced materials[J]. journal of materials science, 2004,39:5905-5913.
    [3] LEVINE S R, OPILA E J, HALBIG M C. Evaluation of ultra-high temperature ceramics for aeropropulsion use[J]. Journal of the European Ceramic Society, 2002,22:2757-2768.
    [4] KONTINOS D A, GEE K, PRABHU D K. Temperature Constraints at the Sharp Leading Edge of a Crew Transfer Vehicle, AIAA 2001–2886[R].AIAA 2001–2886, 2001.
    [5] WIE D M V, JR. D G D, KING D E, et al. The hypersonic environment: Required operating conditions and design challenges[J]. Journal of materials science, 2004,39:5915-5924.
    [6]王其坤.先驱体浸渍裂解工艺制备Cf/UHTCp/SiC复合材料及其性能研究[D].长沙:国防科技大学, 2008.
    [7] ZHOU Z, DU J, SONG S. Microstructural characterization of W/Cu functionally graded materials produced by a one-step resistance sintering method[J]. Journal of Alloys and Compounds, 2007,428(1-2):146-150.
    [8]陈伟,邝用庚,周武平.中国高温用钨铜复合材料的研究现状[J].稀有金属材料与工程, 2004,33(1):11-14.
    [9] DICKERSON M B, WURM P J, SCHORR J R. Near net-shape, ultra-high melting, recession-ristant ZrC/W-based rocket nozzle liners via the displacive compensatin of porosity (DCP) method[J]. j mater sci, 204,39:6005-6015.
    [10] DU S, XU L, ZHANG X, et al. Effect of sintering temperature and holding time on the microstructure and mechanical properties of ZrB_2–SiCw composites[J]. material science and engineering A, 2009,512:19-25.
    [11]宋桂明,孟庆昌,王玉金,等. TiC和ZrC颗粒增强钨基复合材料的烧蚀研究[J].固体火箭技术, 2001,24(2):48-52.
    [12] SHERMAN A J, TUFFIAS R H, FORTINI A J, et al. Impact of the mechanical properties of rhenium on structural design: TMS Annual Meeting, Rhenium and Rhenium Alloys, 1997[C].
    [13] DIAZ J J. Pure rhenium metal[J]. IEEE Potentials, 1996,15(1):37-39.
    [14] ROSENBERGQ S D, SCHOENMAN L. New generation of high performance engines for spacecraft propulsion[J]. J. Propul. And Power, 1994,10(1):40-46.
    [15] PEREPEZKO J H, PARK J S, SAKIDJA R. oxidation resistant coating for ultra high temperature transition metals and transtion metal alloys: US patent 7005191 B1[P].
    [16] MAJUMDAR S, SENGUPTA P, KALE G B, et al. Development of multilayer oxidation resistant coatings on niobium and tantalum[J]. Surface and Coating technology, 2006,200(12-13):3318-3713.
    [17] REED B D. Long life testing of oxide-coated iridium/rhenium rockets, AIAA 95-2401[R]. San Diego: 1995.
    [18] TUFFIAS R H. Protective oxide coating for iridium/rhenium chamberd, Final Report, Contract NAS3-26253[R].1995.
    [19] LI X, SHI J, ZHANG G, et al. Effect of ZrB_2 on the ablation properties of carbon composites[J]. Materials Letters, 2006,60:892-896.
    [20]周瑞发,韩雅芳,李树索.高温结构材料[M].北京:国防工业出版社, 2006.
    [21] XIN Y, QI-ZHONG H, YAN-HONG Z, et al. Anti-oxidation behavior of chemical vapor reaction SiC coatings on different carbon materials at high temperatures[J]. The Nonferrous Met. Soc. China, 2009,19:1044-1050.
    [22] CAIRO C A A, GRACA M L A, SILVA C R M, et al. Functionally gradient ceramic coating for carbon±carbon antioxidation protection[J]. Journal of the European Ceramic Society, 2001,21:325-329.
    [23] LI H, XUE H, WANG Y, et al. A MoSi2–SiC–Si oxidation protective coating for carbon/carbon composites[J]. Surface & Coatings Technology, 2007,201:9444-9447.
    [24] CORRAL E L, LOEHMAN R E. ultra-high-temperature ceramic coatings for oxidation protection of carbon-carbon composites[J]. j. Am. Ceram. Soc., 2008,91(5):1495-1502.
    [25]李国栋,熊翔,黄伯云.温度对CVD-TaC涂层的组成、形貌与结构的影响[J].中国有色金属学报, 2005,15(4):565-571.
    [26] FU Q, LI H, SHI X, et al. Double-layer oxidation protective SiC/glass coatings for carbon/carbon composites[J]. Surface & Coatings Technology, 2006(200):3473-3477.
    [27] FU Q, LI H, WANG Y, et al. Multilayer oxidation protective coating for C/C composites from room temperature to 1500°C[J]. Surface & Coatings Technology, 2010,204:1831-1835.
    [28] HUANG J, LI H, ZENG X, et al. Influence of preparation technology on the microstructure and anti-oxidation property of SiC–Al2O3–mullite multi-coatings for carbon/carbon composites[J]. Applied Surface Science, 2006,252:4244-4249.
    [29] FU Q, LI H, SHI X, et al. Microstructure and anti-oxidation property of CrSi2-SiC coating for carbon/carbon composites[J]. Applied Surface Science, 2006,252:3475-3480.
    [30] HUANG M, LI K, LI H, et al. Double-layer oxidation protective SiC/Cr–Al–Si coating for carbon–carbon composites[J]. Surface & Coatings Technology, 2007(201):7842-7846.
    [31] SMEACETTO F, SALVO M, FERRARIS M. Oxidation protective multilayer coatings for carbon–carbon composites[J]. Carbon, 2002,40:583-587.
    [32] ZHANG Y, LI H, FU Q, et al. A C/SiC gradient oxidation protective coating for carbon/carbon composites[J]. Surface & Coatings Technology, 2006,201:3491-3495.
    [33] GENG-SHENG J, HE-JUN L, KE-ZHI L, et al. Multi-composition oxidation resistant coating for SiC-coated carbon/carbon composites at high temperature[J]. Materials Science and Engineering A, 2008(486):556-561.
    [34] SUN W, XIONG X, HUANG B, et al. ZrC ablation protective coating for carbon/carbon composites[J]. carbon, 2009,47:3368-3371.
    [35] SUN W, XIONG X, HUANG B Y, et al. Preparation of ZrC nano-particles reinforced amorphous carbon composite coating by atmospheric pressure chemical vapor deposition[J]. Applied Surface Science, 2009,255:7142-7146.
    [36] TANG S, DENG J, WANG S, et al. Ablation behaviors of ultra-high temperature ceramic composites[J]. Materials Science and Engineering A, 2007,465:1-7.
    [37] XUETAO S, KEZHI L, HEJUN L, et al. Microstructure and ablation properties of zirconium carbide doped carbon/carbon composites.[J]. Carbon, 2010(48):344-351.
    [38]王俊山,李仲平,许正辉,等.难熔金属及其化合物与C/C复合材料相互作用研究[J]. 2006(2):50-55.
    [39] GAO X, LIU L, GUO U, et al. The effect of zirconium addition on the microstructure and properties of chopped carbon fiber/carbon composites[J]. Composites Science and Technology, 2007,67:525-529.
    [40]史景利,刘朗,张东卿,等.含锆沥青制备工艺条件和性能的研究[J].新型炭材料, 2003,18:296-300.
    [41] TONG Q, SHI J, SONG Y, et al. Resistance to ablation of pitch-derived ZrC/C composites[J]. Carbon, 2004,42:2495-2500.
    [42]崔红,苏君明,李瑞珍,等.添加难熔金属碳化物提高C/C复合材料抗烧蚀性能的研究[J].西北工业大学学报, 2000,18(4):671-673.
    [43] BARNIER P, BRODHAG C, THEVENOT F. hot-pressing kinetics of Zirconium carbide[J]. journal of materials science, 1986,21:2547-2552.
    [44] SHIMADA S. Microstructural observation of ZrO2 scales formed by oxidation of ZrC single crystals with formation of carbon[J]. Solid State Ionics, 1997,101-103:749-754.
    [45]闫联生,李贺军,崔红,等.超高温抗氧化复合材料研究进展[J].材料导报, 2004,18(12):41-44.
    [46] EDAMOTO K, SATO Y, SHIROTORI T. Photoemission Spectroscopy study of the oxidation of Hf (100)[J]. Applied surface science, 2005,244:174-178.
    [47] VOITOVICH R F, PUGACH E A. high-temperature oxidation of ZrC and HfC[J]. Poroshkovaya Metallurigiya, 1973,131(11):67-74.
    [48] BARGERON C B, BENSON R C. High Temperature Oxidation of Hafnium Carbide. NASA CP-3054, Part 1[M]. Washington, DC: NASA, 1989.
    [49] GOZZI D, GUZZARDI G, MONTOZZI M, et al. kinetics of high temperature oxidation of refractory carbides[J]. Solid State Ionics, 1997,101–103:1243-1250.
    [50] BARGERON C B, BENSON R C. x-ray microanalysis of a hafnium carbide film oxidized at high temperature[J]. Surf. Coat. Techn., 1988,36(1-2):111-115.
    [51] BARGERON B, BENSON R C, JETTE A N, et al. oxidation of hafnium carbide in the temperature range 1400C to 2060C[J]. Journal Of The American Ceramic Society, 1993,76(4):1040-1046.
    [52] DAS B P, PANNEERSELVAM M, RAO K J. A novel microwave route for the preparation of ZrC–SiC composites[J]. Journal of Solid State Chemistry, 2003,173:196-202.
    [53] COURTRIGHT E L, PRATER J T, HOLCOMB G R, et al. Oxidation of hafnium carbide and hafnium carbide with additions of tantalum and praseodymium[J]. Oxidation of Metals, 1991,36(5,6):423-437.
    [54] ZOU J, ZHANG G, KAN Y, et al. Pressureless densification of ZrB_2–SiC composites with vanadium carbide[J]. Scripta materialia, 2008,59:309-312.
    [55] ZHANG H, YAN Y, HUANG Z, et al. Pressureless sintering of ZrB_2-SiC ceramics: the effect of B4C content[J]. Scripta materialia, 2009,60:559-562.
    [56] YAN Y, HUANG Z, DONG S, et al. Pressureless Sintering of High-Density ZrB_2–SiC Ceramic Composites[J]. J. Am. Ceram. Soc., 2006,89:3589-3592.
    [57]周长灵,程之强,刘福田,等.硼化锆基碳化硅复相陶瓷[J].硅酸盐学报, 2006,34(8):1017-1021.
    [58]曹建岭,徐强,朱时珍,等.烧结温度对ZrB_2-SiC超高温陶瓷致密化的影响[J].稀有金属材料与工程, 2006,36(增刊2):171-173.
    [59]田庭燕,孙峰,张玉军,等. ZrB_2一SiC复合材料热压烧结工艺的研究[J].陶瓷, 2006,12:16-18.
    [60] MONTEVERDE F D R. Progress in the fabrication of ultra-high-temperature ceramics: "in situ" synthesis, microstructure and properties of a reactive hot-pressed HfB_2–SiC composite[J]. Composites Science and Technology, 2005,65:1869-1879.
    [61] ZHANG X, XU L, DU S, et al. Spark plasma sintering and hot pressing of ZrB_2–SiCW ultra-high temperature ceramics[J]. Journal of Alloys and Compounds, 2008,466:241-245.
    [62] SCITI D, GUICCIARDI S, NYGREN M. Spark plasma sintering and mechanical behaviour of ZrC-based composites[J]. Scripta materialia, 2008,59:638-641.
    [63] SCITI D, NYGREN M. Spark plasma sintering of ultra refractory compounds[J]. Journal of material Science, 2008,43:6414-6421.
    [64] LICHERI R, ORRU R, MUSA C, et al. Spark plasma sintering of UHTC powder obtained by self-propagating high-temperature synthesis[J]. j Mater Sci, 2008,43(19):6406-6413.
    [65] TSUCHIDA T, YAMAMOTO S. Spark plasma sintering of ZrB_2–ZrC powder mixtures synthesized by MA-SHS in air[J]. j Mater Sci, 2007,42:772-778.
    [66] KAUFMAN L, CLOUGHERTY E V. Investigation of Boride Compounds for High Temperature Applications, RTDTRD-N69-73497, Part XXXVII[M]. Cambridge, MA: ManLabs Inc., 1963.
    [67] CLOUGHERTY E V, KALISH D, PETERS E T. Research and Development of Refractory Oxidaton Resistant Diborides. AFML-TR-68-190 [R].1968.
    [68] IDEM. Investigation of Boride Compounds for Very High Temperature Applications, RTD-TRD-N63-4096, Part III,[M]. Cambridge, MA: ManLabs Inc., 1966.
    [69] MONTEVERDE F. Beneficial effects of an ultra-fineα-SiC incorporation on the sinterability and mechanical properties of ZrB_2[J]. Appl. Phys. A, 2006,82:329-337.
    [70] CHAMBERLAIN A L, FAHRENHOLTZ W G, HILMAS G E, et al. High-strength zirconium diboride-based ceramics[J]. J. Am. Ceram. Soc., 2004,87(6):1170-1172.
    [71] FAHRENHOLTZ W G, HILMAS G E, CHAMBERLAIN A L, et al. Processing and characterization of ZrB_2-based ultra-high temperature monolithic and fibrous monolithic ceramics[J]. journal of materials science, 2004,39:5951-5957.
    [72] GASCH M, ELLERBY D, IRBY E, et al. Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics[J]. JOURNAL OF MATERIALS SCIENCE, 2004,39:5924-5936.
    [73]翁凌,张幸红,韩文波.烧结助剂对HfB_2-SiC基超高温陶瓷组织和性能的影响研究[J].稀有金属材料与工程, 2006,36(增刊2):16-19.
    [74] MELE NDEZ-MARTI NEZ J J, DOMI NGUEZ-RODRI GUEZ A, MONTEVERDE F, et al. Characterisation and high temperature mechanical properties of zirconium boride-based materials[J]. Journal of the European Ceramic Society, 2002,22:2543-2549.
    [75] GUO S Q, KAGAWA Y, NISHIMURA T. Mechanical behavior of two-step hot-pressed ZrB_2-based composites with ZrSi2[J]. J. Eur. Ceram. Soc., 2009,29(4):787-794.
    [76] GUO S Q, KAGAWA Y, NISHIMURA T, et al. Pressureless-sintering and physical properties of ZrB_2-based composites with ZrSi2 additive[J]. Scripta Mater, 2008,58(7):579-582.
    [77] BELLOSI A, MONTEVERDE F, SCITI D. Fast densification of ultra-hightemperature ceramics by spark plasma sintering[J]. Int. J. Appl. Ceram. Technol., 2006,3(1):32-40.
    [78] MONTEVERDE F, BELLOSI A. Beneficial effects of AlN as sintering aid on microstructure and mechanical properties of hot-pressed ZrB_2[J]. Adv. Eng. Mater., 2003,5(7):508-512.
    [79] MONTEVERDE F, GUICCIARDI S, BELLOSI A. Advances in microstructure and mechanicalproperties of zirconium diboride based ceramics[J]. Mater. Sci. Eng. A, 2003,346:310-319.
    [80] CHAMBERLAIN A L, FAHRENHOLTZ W G, HILMAS G E. Pressureless sintering of zirconium diboride[J]. J. Am. Ceram. Soc., 2006,89(2):450-456.
    [81] MONTEVERDE F, BELLOSI A, GUICCIARDI S. Processing and properties of zirconium diboride-based composites[J]. J. Eur. Ceram. Soc., 2002,22:279-288.
    [82] FAHRENHOLTZ W G, HILMAS G E, ZHANG S C, et al. Pressureless sintering of zirconium diboride: particle size and additive effects[J]. J. Am. Ceram. Soc., 2008,91(5):1398-1404.
    [83] ZHU S, FAHRENHOLTZ W G, HILMAS G E, et al. Pressureless sintering of zirconium diboride using boron carbide and carbon additions[J]. J. Am. Ceram. Soc., 2007,90(11):3660-3663.
    [84] ZHU S, FAHRENHOLTZ W G, HILMAS G E. Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride-silicon carbide ceramics[J]. J. Euro. Ceram. Soc., 2007,27:2077-2083.
    [85] REZAIE A, FAHRENHOLTZ W G, HILMAS G E. Effect of hot-pressing time and temperature on the microstructure and mechanical properties of ZrB_2–SiC[J]. J. Mater. Sci., 2007,42:2735-2744.
    [86] AKIN I, HOTTA M, SAHIN F C, et al. Microstructure and densification of ZrB_2–SiC composites prepared by spark plasma sintering[J]. Journal of the European Ceramic Society, 2009,29(11):2379-2385.
    [87] GUO S Q, NISHIMURA T, MIZUGUCHI T, et al. Mechanical properties of hot-pressed ZrB_2-MoSi2-SiC composites[J]. J. Eur. Ceram. Soc., 2008,28(9):1891-1898.
    [88] SCITI D, GUICCIARDI S, BELLOSI A, et al. Properties of a pressureless-sintered ZrB_2-MoSi2 ceramic composite[J]. J. Am. Ceram. Soc., 2006,89(7):2320-2322.
    [89] BRACH M E, SCITI D. Short-term oxidation of a ternary composite in the system AlN–SiC–ZrB_2[J]. Journal of the European Ceramic Society, 2005,25:1771-1780.
    [90] ZHANG X, HU P, HAN J, et al. The addition of lanthanum hexaboride to zirconium diboride for improved oxidation resistance[J]. Scripta Materialia, 2007,57:1036-1039.
    [91] LEVINE S R, OPILA E J. Tantalum Addition to Zirconium Diboride for Improved Oxidation Resistance[R].NASA/TM-2003-212483., 2003.
    [92] BULL. J, CALIF S J, WHITE M J, et al. Ablation resistant zirconium and hafnium ceramics: US Patent 5,750,450[P].
    [93]吴世平,杨飞宇,张幸红,等.碳短纤维对ZrB_2-SiC基超高温陶瓷力学性能的影响[J].材料工程, 2007(5):15-18.
    [94] YANG F, ZHANG X, HAN J, et al. Mechanical properties of short carbon fiber reinforced ZrB_2-SiC ceramic matrix composites[J]. Materials Letters, 2008(62):2925-2927.
    [95]李金平,韩杰才,李庆芬,等. ZrB_2- SiCw超高温陶瓷材料的研究[J].兵器材料科学与工程ORDNANCE MATERIAL SCIENCE AND ENGINEERING, 2006,29:53-56.
    [96] PADMAVATHI N, KUMARI S, PRASAD V V B, et al. Processing of carbon-fiber reinforced (SiC + ZrC) mini-composites by soft-solution approach and their characterization[J]. Ceramics International, 2009,35(8):3447-3454.
    [97]刘雄亚,欧阳国恩,张华新,等.透光复合材料、碳纤维复合材料及其应用[M].北京:化学工业出版社, 2006.
    [98] RILEY R E, TAUB J M. tantalum carbide-tantalum fiber composite material: US Patent 3779716[P].
    [99]邱关明.新型陶瓷[M].北京:兵器工业出版社, 1993.
    [100] PREISS H, SCHIERHORN E, BRZEZINKA K W. Synthesis of polymeric titanium and zirconium precursors and preparation of carbide fibres and films[J]. journal of material Science, 1998,33:4697-4706.
    [101] PREISS H, MEYER B, OLSCHEWSKI C. preparation of molybdenum and tugsten carbides from solution derived precuesors[J]. journal of material Science, 1998,33:713-722.
    [102]王荣国,武卫莉,谷万里.复合材料概论[M].第三版.哈尔滨:哈尔滨工业大学出版社, 2004.
    [103] LII D F, HUANG J L, TSUI L J. Formation of BN Films on Carbon Fibers by Dip-coating[J]. Surface and Coating Technology, 2002,150(2-3):269-276.
    [104] SAYIR A. Carbon fiber reinforced hafnium carbide composite[J]. journal of materials science, 2004,39:5995-6003.
    [105]张长瑞,郝元恺.陶瓷基复合材料-原理、工艺、性能与设计[M].长沙:国防科技大学出版社, 2001.
    [106] ZHU X D, HUANG H, W. X K. Influence of the interface preparation on the properties of PECVD TiN[J]. Surface and coatings technology, 1999,116-119:1029-1032.
    [107] NYUTU E K, SUIB S L. Experiment design in the deposition of BN interface coatings on SiCfibers by chemical vapor deposition[J]. Surface & coatings technology, 2006,201:2741-2748.
    [108] KERN F, GADOW R. Deposition of ceramic layers on the carbon fibers by continuous liquid phase coating[J]. Surface & coating technology, 2004,180-181:533-537.
    [109]邓世军.高性能陶瓷涂层[M].北京:化学工业出版社, 2004.
    [110]相华.化学液相浸渗法制备CC-Tac复合材料及其烧蚀性能研究[D].西北工业大学, 2006.
    [111] PADMAVATHI N, RAY K K, SUBRAHMANYAM J, et al. New route to process uni-directional carbon fiber reinforced (SiC + ZrB_2) matrix mini-composites[J]. j Mater Sci, 2009,44:3255-3264.
    [112] GIBSON J O, GIBSON M G. Production pf carbon fiber-tantalum carbide composites: US patent 4196230[P].
    [113] TANAKA T, TAMARI N, I K. Fabrication of three-dimensional Tyranno fibre reinforced SiC composite by the polymer precursor method[J]. Ceram.International, 1998,24:365-370.
    [114] ZIEGLER G, RICHTER I, SUTTOR D. Fiber-reinforced composites with polymer-derived matrix: processing, matrix formation and properties[J]. Composites Part A, 1999,30:411-417.
    [115]王建方.碳纤维在PIP工艺制备陶瓷基复合材料过程中的损伤机理研究[D].长沙:国防科学技术大学, 2003.
    [116] XIONG X, WANG Y, CHEN Z, et al. Mechanical properties and fracture behaviors of C/C composites with PyC/TaC/PyC, PyC/SiC/TaC/PyC multi-interlayers[J]. Solid State Sciences, 2009,11(8):1386-1392.
    [117] ZOU L, WALI N, YANG J, et al. Microstructural development of a Cf/ZrC composite manufactured by reactive melt infiltration[J]. Journal of the European Ceramic Society, 2010,30:1527-1535.
    [118] TANG S, DENG J, WANG S, et al. Fabrication and Characterization of an Ultra-High-Temperature Carbon Fiber-Reinforced ZrB_2–SiC Matrix Composite[J]. J. Am. Ceram. Soc., 2007,90(10):3320-3322.
    [119] LI H, ZHANG L, CHENG L, et al. Fabrication of 2D C/ZrC–SiC composite and its structural evolution under high-temperature treatment up to 1800℃[J]. ceramics international, 2009,35:2831-2836.
    [120] LEVINE S R, OPILA E J, ROBINSON R C, et al. Characterization of an Ultra-High Temperature Ceramic Composite[R].NASA/TM-2004-213085, 2004.
    [121] HU H, WANG Q, CHEN Z, et al. Preparation and Characterization of C/SiC-ZrB_2 Composites by Precursor Infiltration and Pyrolysis Process[J]. ceramic international, 2010,36(3):1011-1016.
    [122]王其坤,胡海峰,陈朝辉,等.先驱体转化法制备2D C/SiC—ZrB_2复合材料及其性能[J].复合材料学报, 2009,26(1):108-112.
    [123]王其坤,陈朝辉,胡海峰,等.难熔金属化合物掺杂对先驱体转化2D C/SiC复合材料抗氧化性能影响[J].航空材料学报, 2008,28(5):68-72.
    [124] PAUL, P. P, SCHWAB, et al. Method for making ceramic matrix composites using precursor polymers to refractory metal carbides and metal borides: US Patent 6,120,840.[P].
    [125] SCHWAB S, STEWAT C A, DUDECK K W, et al. Presentation at AFOSR[R]. Wintergreen, VA: 2003.
    [126] PREISS H, SCHULTZE D, SCHIERHORN E. Preparation of NbC, TaC and Mo2C fibres and films from polymeric precursors[J]. JOURNAL OF MATERIALS SCIENCE, 1998,33:4687-4696.
    [127] PREISS H, SCHUDTZE D, KLOBES P. Formation of NbC and TaC from Gel-Derived Precursors[J]. Journal of the European Ceramic Society, 1997,17:1423-1435.
    [128] DOLLéM, GOSSET D, BOGICEVIC C, et al. Synthesis of nanosized zirconium carbide by a sol–gel route[J]. Journal of the European Ceramic Society, 2007,27:2061-2067.
    [129] SACKS M D, WANG C, YANG Z, et al. Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors[J]. JOURNAL OF MATERIALS SCIENCE, 2004,39:6057-6066.
    [130] YAN Y, HUANG Z, LIU X, et al. Carbothermal synthesis of ultra-fine zirconium carbide powders using inorganic precursors via sol–gel method[J]. J Sol-Gel Sci Technol, 2007,44(1):81-85.
    [131] TAO X Y, QIU W F, LI H, et al. One pot synthesis of a soluble polymer for zirconium carbide[J]. Chinese Chemical Letters, 2010,21(5):620-623.
    [132] YAN Y, HUANG Z, DONG S, et al. new route to synthesize ultra-fine zirconium diboride powders using inorganic-organic hybrid precersors[J]. J. Am. Ceram. Soc., 2006,89(11):3585-3588.
    [133] FORSTHOEFEL K M. chemical precursors to non-oxide ceramics:macro to nanoscale materials[D]., 2004.
    [134] FORSTHOEFEL K, SNEDDON L G. Precursor routes to Group 4 metal borides, and metal boride/carbide and metal boride/nitride composites[J]. JOURNAL OF MATERIALS SCIENCE, 2004,39:6043-6049.
    [135] SEYFERTH D, BRYSON N, WORKMAN D P, et al. preceramic polymers as "reagents" in the preparation of ceramics[J]. Journal Of The American Ceramic Society, 1991,74(10):2687-2689.
    [136] GURON M M, KIM M J, SNEDDON L G. A Simple Polymeric Precursor Strategy for the Syntheses of Complex Zirconium and Hafnium-Based Ultra High-Temperature Silicon-Carbide Composite Ceramics[J]. J. Am. Ceram. Soc., 2007:1-4.
    [137]尹健,熊翔,张红波,等. 3DC/C复合材料的电弧驻点烧蚀及机理分析[J].中南大学学报(自然科学版), 2007,30(1):14-18.
    [138]潘育松,徐永东,陈照峰,等. 2D C/SiC复合材料烧蚀性能分析[J].兵器材料科学与工程, 2006,29(1):17-21.
    [139] FANG D, CHEN Z, SONG Y, et al. Morphology and microstructure of 2.5 dimension C/SiC composites ablated by oxyacetylene torch[J]. Ceramics International, 2009,35:1249-1253.
    [140]陈博,张立同,成来飞,等. 3D C/SiC复合材料喷管在小型固体火箭发动机中的烧蚀规律研究[J].无机材料学报, 2008,23(5):938-944.
    [141]田庭燕,张玉军,孙峰,等. ZrB_2一SiC复合材料抗氧化性能研究[J].陶瓷, 2006(5):19-21.
    [142]王毅,徐永东,张立同,等. 3D C/SiC-TaC复合材料烧蚀性能及机理[J].宇航材料工艺, 2009,39(3):41-44.
    [143]黄海明,杜善义,施惠基. C/TaC/C复合材料的烧蚀性能研究[J].航空兵器, 2002(5):5-7, 11.
    [144]黄海明,杜善义,施惠基.含钽(Ta)C/C复合材料烧蚀机理分析[J].复合材料学报, 2003,20(3):13-16.
    [145]熊炳昆,杨新民,罗方承,等.锆铪及其化合物应用[M].北京:冶金工业出版社, 2006.
    [146]李兴华.密度、浓度测量.[M].北京:中国计量出版社, 1991.
    [147]祝桂洪.陶瓷工艺实验[M].北京:中国建筑工艺出版社, 1987.
    [148]常铁军,祁欣.材料近代分析测试方法[M].哈尔滨:哈尔滨工业大学出版社, 2003.
    [149]国家标准. GB 6569-1986工程陶瓷弯曲强度实验方法[S]. 1986.
    [150] GB75-70-03高温结构陶瓷平面应变断裂性试验方法[S].
    [151]国家标准. GJB 323A-96烧蚀材料烧蚀实验方法[S]. 1996.
    [152]周方桥,梁鸿东,陈志雄.钛酸丁酯一乙酸钡溶胶系统中的化学机制[J].华中科技大学学报(自然科学版), 2003,31:33-36.
    [153]叶大伦.实用无机热力学数据手册[M].北京:冶金工业出版社, 1981.
    [154] ZHOU G H, WANG S W, GUO J K, et al. The preparation and mechanical properties of the unidirectional carbon fiber reinforced zirconia composite[J]. Journal of the European Ceramic Society, 2008,28:787-792.
    [155]贾成长.陶瓷基复合材料导论[M].第二版.北京:冶金工艺出版社, 2002.
    [156] HU H, CHEN Z, XIAO J, et al. Synthesis and characterization of polysilazane precursor[J]. J. Mater. Sci. Lett., 1999,18(6):1271-1272.
    [157]李斌.氮化物陶瓷基耐烧蚀、透波复合材料及其天线罩的制备与性能研究[D].长沙:国防科技大学博士学位论文, 2007.
    [158] HALVERSON H G. Durability of ceramic matrix composites at elevated temperatures: experimental studies and predictive modeling[D]. Blacksburg, VA: Virginia Polytechnic Institute and State University, 2000.
    [159]郝元恺,肖加余.高性能复合材料学[M].北京:化学工艺出版社, 2004.
    [160] BUTTERMAN W C, FOSTER W R. Zircon stability and the ZrO2–SiO2 phase diagram[J]. The Am Mineral, 1967,52:880-885.
    [161] WANG Z, DONG S, ZHANG X, et al. Fabrication and Properties of Cf/SiC–ZrC Composites[J]. J. Am. Ceram. Soc., 2008,91(10):3434-3436.
    [162] LI H, ZHANG L, CHENG L, et al. Oxidation analysis of 2D C/ZrC–SiC composites with different coating structures in CH4 combustion gas environment[J]. ceramic international, 2009,35:2277-2283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700