纳米复合Ti(C,N)基金属陶瓷材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用热分析(TG)、X 射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、场发射扫描电镜(FESEM)、X 射线能谱(EDS)、O/N 测定仪等实验手段系统地研究了纳米复合Ti(C,N)基金属陶瓷材料的成分、制备工艺、组织结构与性能等之间的关系。
    论文首先综述了Ti(C,N)基金属陶瓷的发展概况和研究进展,总结了Ti(C,N)基金属陶瓷的晶粒细化、成分及添加剂对Ti(C,N)基金属陶瓷组织和性能的影响,并对相关材料-硬质合金的晶粒细化研究现状进行了简述; 总结了纳米粉末的压制成型技术、压制特性及相关压制理论、纳米烧结技术和纳米烧结特性。在此基础上指出了本文研究的目的和意义。
    首先研究了化学成分、粉末粒度及压制工艺参数对Ti(C,N)基金属陶瓷混合粉末可压制性的影响,建立了组分压制特性与金属陶瓷混合粉末压制特性之间的计算公式,且计算值与实验结果相吻合,并且,还从理论上分析了金属-陶瓷混合粉末压制过程的微观力学作用机制。
    研究了以聚乙烯醇为基,分别添加甘油、聚乙二醇与石蜡的多组元有机物成形剂对纳米复合Ti(C,N)基金属陶瓷混合粉末可压制性、素坯强度、烧结试样机械性能和孔隙率的影响。试验结果表明:在四种有机物成形剂中,聚乙烯醇+石蜡的有机物组成热分解特性对于脱脂过程的进行最为有利,且添加了该成形剂的金属陶瓷孔隙率较低,综合机械性能最好。
    对纳米复合Ti(C,N)基金属陶瓷热压烧结工艺、及材料在热压烧结过程中的致密化过程、相变特点和组织特征进行了系统的研究。研究结果表明:金属陶瓷致密性主要受热压压力影响,物相之间的相变反应程度主要受烧结温度影响; 1400oC 下保温20min 所获得的金属陶瓷综合机械性能最好。
    纳米复合Ti(C,N)基金属陶瓷热压烧结过程中VC 添加剂对晶粒长大的抑制作用规律为:纳米硬质相颗粒在从纳米尺寸长大到接近1μm 的过程中,VC 未起到抑制晶粒长大的作用,随着烧结过程的继续进行,VC 对晶粒的细化作用明显,但是当晶粒
In this dissertation, the relationship among composition, manufacturing process, microstructure and properties of nano-composite Ti(C,N)-based cermets has been systematically investigated by thermal analysis (TG), X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), Field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis, and Nitrogen/Oxygen determinator.
    In the first part of the dissertation, the influence of composition, additive, grain refinement on the microstructures and properties of Ti(C,N)-based cermets has been critically overviewed, which includes the research development on grain refinement of WC-Co cemented carbides; Briquettability of nano-powder, pressing techniques, the relevant pressing theories, and nano-sintering characteristics and nano-sintering techniques have been summarized. Based on above work, the purpose and significance of the dissertation have been pointed out.
    The influence of chemical composition, particle size and pressing process parameters on briquettability of Ti(C,N) mixed powders has been studied. The calculation relation representing briquettability of component powder and Ti(C,N) mixed powders was established, and the calculated values was consistent with experiment results. Micro-mechanics mechanism on pressing process of metal-ceramic mixed powders was analysed theoretically.
    Four organic plasticizers of (PVA), PVA+glycerine, PVA+paraffin, PVA+polyethylene glycol (PEG) was designed and used in the die pressing process of Ti(C,N) mixed powders. The influence of the four organic plasticizers on powder briquettability, green strength, mechanical properties and porosity of sintered cermets has been investigated. The conclusions were obtained as follows: compared with other plasticizers, the thermal decomposition characteristic of plasticizer PVA+paraffin was much more in favor of
    dewaxing process of Ti(C,N)-based cermets, and sintered cermets behaved lower porosity and the best mechanical properties. The preparation of nano-composite Ti(C,N)-based cermets by hot-press sintering (HP) was attempted and the densification process, phase transformation and microstructure characteristics conferred by HP were systemically investigated. It was found that cermet density was decided by hot pressure and phase transformation of cermet was mainly determined by sintering temperature.Cermet sintered at 1400oC for 20min behaved the best mechanical properties. The influence of VC addition on grain growth inhibition of nano-composite Ti(C,N)-based cermets during HP sintering process has been studied. In the earlier stage of sintering, VC didn't inhibit hard phase grain growth. When grain size was over 1μm, as sintering process continued, VC restrained grain growth obviously. However, the area proportion of abnormally growth grain in cermets increased due to VC addition after grain growed up obviously and grain size was over 5μm. The relation of porosity and grain size of nano-composite Ti(C,N)-base cermets during sintering process has been studies. The experiment results showed that pore, especially for open pores, could inhibit grain growth effectively. The change of oxygen content of nano-composite Ti(C,N)-based cermets during sintering process has been studied. Some conclusions were drawn as follows: when nano-composite Ti(C,N)-based cermets sintered at 1200oC for 30min, 2.68wt% oxygen was wiped off; after holding in 720min at 1200oC, there were still 0.21wt% oxygen keeping in nano-composite Ti(C,N)-based cermets. The preparation of nano-composite Ti(C,N)-based cermets by two-stage vacuum sintering has been attempted. It was found that grain growth of nano-composite Ti(C,N)-based cermets could be inhibited effectively by using two-stage sintering and that 400nm grain size of cermets fabricated by the technique could be obtained, and TRS got 1913MPa, and the hardness reached the level of HRA89. The influence of nano-hard phase powder addition on nano-composite Ti(C,N)-based
    cermets has been investigated. As the amount of nano TiC、TiN addition increased, linear shrinkage ratio of cermets increased, and mechanical properties also increased. Sintered cermets containing ball milled nano-hard phase powder addition showed better mechanical properties of that TRS was 2016MPa and hardness was HRA89.2. The addition of nano-WC powder inhibited grain growth of nano-composite Ti(C,N)-based cermets during sintering process.
引文
[1] K. J. A. Brookes. 世界硬质合金指南与手册. 株洲硬质合金厂情报科译,1982. 3~35
    [2] 铃木寿, 林宏尔, 松原秀彰. TiC 基-〤ットの进步と现状. 日本金属学会会报, 1983, 22(4): 312~319
    [3] 曾德麟主编. 粉末冶金材料. 第1 版. 北京:冶金工业出版社,1989. 190
    [4] 张琳. 改善碳化钛基合金韧性的研究. 硬质合金,1980,(2): 10~19
    [5] M. J. Humenik, N. M. Parikh. Cermets Ⅰ, Fundamental concepts related to microstructure and physical properties of cermet systems. J. Am. Ceram. Soc, 1995, 39(2): 60~63
    [6] N. M. Parikh, M. J. Humenik. CermetsⅡ, Wettability and microstructure studies in liquid phase sintering. J. Am. Ceram. Soc, 1957, 40(9): 315~320
    [7] D. Moskowitz, M. J. Humenik. Modern development in P/M. vol.3. Ed. by H. H. Hausner. Plenum N. Y. Pless , 1966. 83
    [8] 《国外硬质合金》编写组编. 国外硬质合金. 第1 版. 北京:冶金工业出版社. 1976. 168~519
    [9] 铃木寿, 松原秀彰, 浅野正也. TiC0.5N0.5-Mo2C-Ni 合金的机械的性质とMo2C 量との关系. 粉体ねび粉末冶金, 1985, 32(8): 301~304
    [10] 钱中良. Ti(C, N)基金属陶瓷拉伸模具材料的应用技术研究:[硕士学位论文]。武汉:华中科技大学图书馆,1996
    [11] S. Zhang. Solid solution extent of WC and TaC in Ti(C, N) as revealed by parameter increase. RM&HM, 1993~1994, 12: 329~333
    [12] 李沐山. 八十年代世界硬质合金技术进展. 第1 版, 《硬质合金》编辑部出版社,1992. 390
    [13] H. Yoshimura. N/C之比对Ti和CxNY15%Mo2C-15%Ni金属陶瓷的机械性能和磨削性能的影响. 第11 届国际普兰西难熔金属硬质合金会议译文集. 中南工业大学粉冶研究所译. 长沙:中南工业大学出版社,1987. 426~435
    [14] 西垣贤一, 土井英和, 新行内隆, 大尸雄三. Ti(C,N)-30Mo2C-13Ni 合金の诸特性に及ほよN/(C+N)比の影响. 粉体ねび粉末冶金, 1980, 27(5): 160~165
    [15] 福原干夫, 三谷裕康. Ti(C,N)-30wt%Ni系ねよび系混合压粉体の烧结特性, 粉体ねよび与粉 末冶金, 1980, 27(4): 125~129
    [16] 福原干夫, 三谷裕康. TiN-TiC-Ni 系混合压粉体の烧结特性につぃて. 粉体ねよび粉末冶金, 1980, 27(4): 119~124
    [17] 三谷裕泰, 永井宏, 福原干夫. TiN-Ni 系混合压粉体の烧结特性につぃて. 日本金属学会志, 1978, 42(6): 582~588
    [18] 福原干夫, 三谷裕康. TiN-Ni 系混合压粉体の烧结过程につぃて相关系よ脱窒. 日本金属学会志, 1979, 43(3): 169~174
    [19] 福原干夫, 石见纯一, 三谷裕康. TiN-Ni-Ti 系混合压粉体の烧结特性につぃて, 粉体ねよび与粉末冶金, 1980, 27(4): 23~27
    [20] 福原干夫, 三谷裕康. TiNx-Ni系混合压粉体の烧结特性につぃて. 粉体ねよび粉末冶金, 1979, 26(4): 143~148
    [21] D. Mari, S. Bolognini, T. Viatte, et al. Study of the mechanical properties of TiCN-WC-Co hardmetals by the interpretation of internal friction spectra. Int. J. of Metals & Hard materials, 2001, 19: 257~265
    [22] S. Bologini, G. Feusier, D. Mari, et al. High temperature mechanical behaviour of TiCN -Mo-Co cermets , Int..J .of. Metals & Hard materials, 1998, (16): 257~268
    [23] P. Lindahl, U. Rolander, H. O. Andren. Atom-probe analysis of the binder phase in TiC-TiN-Mo2C-(Ni,Co) cermets. Int. J. of Metals & Hard materials, 1994, 12: 115~119
    [24] 郑勇. 细晶粒Ti(C,N)基金属陶瓷复合材料的研究: [博士学位论文]。武汉:华中科技大学图书馆,2003
    [25] 李鹏. Ti(C,N)基金属陶瓷制备工艺及液相烧结组织的研究:[硕士学位论文]。武汉:华中科技大学图书馆,2000
    [26] K. R. Kinsman, H. I. Aaronson. Structure of crystalline interfaces, Mater. Char., 1997, 39(2~5): 209~233
    [27] E. King Waayne. Interface science of controlled metal/metal and metal/ceramic interfaces prepared using ultrahigh vacuum diffusion bonding, Mater. Res. Soc. Symp. Proc., 1993, 31: 461~67
    [28] 植木先生, 齐藤豪, 齐藤武等. TiC-TiN-Mo2C-Ni 合金の诸性质に及ほよ主として炭化タニタ ル, タステ炭化タニタル添加の影响. 粉体ねよび粉末冶金, 1988, 35(1): 27~32
    [29] 赵兴中,郑勇,胡镇华等. 含氮金属陶瓷的发现现状与展望. 材料导报,1994,1: 17~21
    [30] 铃木寿, 松原秀彰, 齐藤武志. Ti(C,N)-Mo2C-Ni サ-メトの主として组织及にすWC 添加の影响. 粉体ねよび粉末冶金, 1984, 31(7): 236~240
    [31] 刘宁. Ti(C,N)基金属陶瓷成分、组织与性能:[博士学位论文]。武汉:华中科技大学图书馆,1994
    [32] 刘宁,周凤云. TiN 及WC 加入量对Ti(C,N)基金属陶瓷组织与性能的影响. 硬质合金,1994, 11(1): 3~17
    [33] F. Qi, S. Kang. A study on microstructural changes in Ti(C,N)-NbC-Ni cermets. Materials Science and Engineering A, 1998, 251(1~2): 276~285
    [34] 植木光生, 北村幸三, 铃木寿. TiC-TiN-Mo2C-Ni 合金の性质に及ほよ炭化タニタル添加的影响. 粉体ねよび粉末冶金, 1990, 27(4): 462~465
    [35] S. Kang. Some issues in Ti(CN)-WC-TaC cermets. Materials Science and Engineering A, 1996, 209(1~2): 306~312
    [36] 贾佐乘. 超细晶硬质合金的发展. 硬质合金,2000,17(1): 58~63
    [37] Charles Wick. Cermet cutting tools. Manufacturing Engineering, 1987, 99(6): 35~40
    [38] 西桓贤一, 吉村宽范, 土井英和等. TiC0.7C0.3-15Ni-8Mo 合金の机械的すよび切削特性に及ほすAlN 添加の影响. 粉体ねよび粉末冶金, 1980, 27(2): 50~55
    [39] 刘宁. 添加AlN 对Ti(C,N)基金属陶瓷力学性能和显微组织的影响. 理化检验-物理分册, 1997, 33(1): 15~17
    [40] 姚萱,黄培云,吕海波. 稀土氧化物对Co 的马氏体相变及机械性能的影响. 粉末冶金技术,1987,5(4): 200~203
    [41] Z. l. Luo. Microstructure of WC-TiC-Co cemented carbide with rare earth. RM&HM, 1995, 13: 297~303
    [42] 孙景,王波,李宝银. 添加稀土的WC-20(Fe/Co/Ni)硬质合金的组织、性能及发展. 硬质合金,1993,10(1): 50~53
    [43] 刘宁,胡镇华,崔昆. 加稀土元属的硬质合金的组织、性能及发展. 硬质合金,1993,10(1): 50~ 53
    [44] 胡耀波. Ti(C,N)基金属陶瓷的制备工艺与组织变化:[博士学位论文]。武汉:华中科技大学图书馆,2002
    [45] P. Ettmayer, H. Kolaska, W. lengauer, et al. Ti(C,N) cermets-metallurgy and properties. Int. J. of Refractory Metals & Hard Materials, 1995, 13: 343~351
    [46] Microstructural-property relationships for ultrafine grained materials. Metallurgia, 2001, 8: 7~9
    [47] V. Richter, M. V. Ruthendorf. On hardness and toughness of ultrafine and nanocrystalline hard materials. Int.. J. of Refractory Metal & Hard Materials, 1999, 17: 141~152
    [48] L. J. Prakash. Application of fine grained Tungsten Carbide based Carbides. Int. J. of Refractory Metal & Hard Materials, 1995, 13: 257~264
    [49] Z. Fang, J. W. Eason. Study of nanostructured WC-Co composites. Int. J. of Refractory Metal & Hard Materials, 1995, 13(5): 297
    [50] C. L. Cynthia. Dow finds cost effective route to fine WC powders. Metal Powder Report, 1997, 52(12): 27
    [51] 王社全. 影响超细硬质合金性能的几个因素. 硬质合金,2000,(3): 9~12
    [52] W. D. Schubert, A. Bock, B. Lux. General aspects and limits of conventional ultrafine WC powder manufacture and hard metal production. Int. J. Refractory Metals & Hard Materials, 1995, 13: 281~296
    [53] M. Leiderman, O. Botstein, A. Rosen. Sintering, microstructure, and properties of submicrometre cemented carbides. Powder Metallurgy, 1997, 40(3): 219~225
    [54] B. K. Kim, G. H. Ha, D. W. Lee, et al. Chemical processing of nanostructured cemented carbide. Advanced Performance Materials, 1998, 5: 341~352
    [55] G. Gille, B. Szesny, K. Dreyer, et al. Submicron and ultrafine grained hardmetals for microdrills and metal cutting insert, Int..J. Refractory Metals & Hard Materials, 2002, 20: 3~22
    [56] M. Ehira & A. Egami. Mechanical properties and microstructures of submicron cermets, Int. J. of Refractory Metals & Hard Metals, 1995, 13: 313~310
    [57] S. Nakamura. Cutting performance of submicro-grained TiCN cermet. Proceeding of International Plansee Seminar, 1997.34
    [58] E. T. Jeon, J. Joardar, S. Kang. Microstructure and tribo-mechanical properties of ultrafine Ti(CN) cermets. Int. J. of Refractory Metals & Hard Metals, 2002, 20: 207~211
    [59] 丰平. 超细晶粒Ti(C,N)基金属陶的研究:[博士学位论文]。武汉: 华中科技大学图书馆,2004
    [60] 熊计,沈保罗. 超细TiC0.7N0.3 金属陶瓷的烧结工艺研究. 粉末冶金技术,2004,22(3): 164~167
    [61] N. Liu, Y. D. Xu, H. Li, et al. Effect of nano-micro TiN addition on the microstructure and mechanical properties of TiC based cermets. Journal of the European Ceramic Society, 2002, 22: 2409~2414
    [62] 李风生,杨毅等编著. 纳米/微米复合技术及应用. 北京:国防工业出版社. 2002. 1~5
    [63] T. C. Patton. Paint flow and pigment dispersion. New York, Wiley. 1979: 266
    [64] D. Train, R. B. Runk. In Treatise on materials science and technology. New York, Academic Press. 1976. 71~93
    [65] G. Skandan, H. Hahn, J. C. Parker. Ultrafine-grained dense monoclinic and tetragonal zirconia. J. Am. Ceram.Soc, 1994, 77: 1706~1710
    [66] W. Chang, F. Cosandey, H. Hahn. Electron microscopy studies of phase transformations in nanostructured yttrium oxide. Nanostructured Mater, 1993, 2(1): 29-35
    [67] A. Pecheni, G. J. Permarini, S. C. Danforth. Fabrication of transparent silicon nitride From Nanosize Particles. J. Am. Ceram. Soc, 1992, 75(12): 3283~3288
    [68] M. J. Mayo, D. C. Hague, D. J. Chen, Nanostructured materials: Synthesis, properties and uses. Bristol: The institute of Physics. 1996. 165~197
    [69] R. A. Andrievski. Compaction and sintering of ultrafine powders. Int. J. Powder Metall., 1994, 30(1): 59~99
    [70] R. W. Siegil, S. Ramasamy, H. Hahn, et al, Synthesis, characterization, and properties of nanophase TiO2. Mater Res, 1988, 3: 1367
    [71] H. Hahn, J. Logas, R. S. Averrback. Low temperature sintering and deformation of nanocrystalline TiO/sub 2/. J. Mater. Res, 1990, 5: 609~614
    [72] Anon. Prog. A study of the brittle fracture characteristics of CoSi2 using laser beam reflections. Mater. Sci, 1991, 35: 66~70
    [73] 李蔚,王宏志,高廉等. 分散剂在醇-水溶液加热法制备球形ZrO2 粉体过程中的作用. 硅酸盐学报. 2000, 28(6): 582~584
    [74] V. Ivanov, Y. A. Kotov, O. H. Samatov, et al. Fractal fracture mechanics--a review. Nanostructed Materials. 1995, 6: 287~290
    [75] L. Gao, W. Li, H. Z. Wang, et al. Fabrication of nano Y–TZP materials by superhigh pressure compaction. J. Europ. Ceram. Soc, 2001, 21(2): 135~138
    [76] 高连,李蔚. 纳米陶瓷. 第1 版. 北京:化学工业出版社. 2002. 69~72
    [77] D. Gethin, A. Ariffin, D. Tran, et al. Compaction and ejection of green powder compacts. Powder Metallurgy, 1994, 37(1): 42~52
    [78] H. F. Fischmeister, E. Arzt. Densification of powders by particles deformation. Powder Metallurgy, 1983, 26(2): 82~83
    [79] H. A. Kuhn. Deformation characteristics and plasticity theory of sintered powder materials. Int. J. of Powder Metallurgy, 1971, 7(1): 15~25
    [80] S. Shima, M. Oyane. Plasticity theory for porous metallurgy. Int. J. of Mech. Sci., 1976, 18(6): 286~291
    [81] S. M. Doraivelu, H. L. Gegel, J. S.Gunasekera, et al. A new yield function for compressible P/M materials. Int. J. of Mech.Sci., 1984, 26(9~10): 527~585
    [82] D. N Lee, H. S. Kim. Plastic yield behavior of porous metals. Powder metallurgy, 1992, 36(4): 275~279
    [83] 龚晓南. 岩土塑性力学原理. 第1 版. 杭州:浙江大学出版社,1990. 150~156
    [84] P. Vergnon. Fine Particles. The Electrichemical Society, 1974. 299~307
    [85] I. W. Chen, X. H. Wang. Sintering dense nanocrysatlline ceramics without final~stage grain growth. Nature, 2000, (404)9: 168~171
    [86] J. Karch, R. Blrringer. Nanocrystalline Ceramics: Possible Candidates for Net-Shape forming. Ceram. Int., 1990, 16(5): 291~294
    [87] D. L. Bourell, W. Parimal, J. Kaysser. Sol-gel synthesis of nanophase yitria-stabilised tetragonal zirconia and densification behaviour below 1600K. J. Am. Ceram. Soc, 1993, 76(3): 705~711
    [88] 余晓华,劭刚勤,段兴龙等. 纳米复合WC-Co 粉末的热压烧结. 硅酸盐通报,2004,2: 8~10
    [89] K. Kondo, S. Sawai. Fabricating Nanocrystalline Diamond Ceramics by a Shock Compaction Method. J. Am. Ceram. Soc, 1990, 73 (7): 1983~1991
    [90] R. S. Averback, H. J. Hofler, R. Tao. Processing of nano-grained materials. Mater. Sci. Eng, 1993, A166: 169~177
    [91] M. Uchic. Primary creep of Ni3(Al, Ta) in the anomalous flow regime. Scr. Metall. Mater, 1992, 26: 791~796
    [92] D. C. Hague, M. J. Mayo. The effect of crystallization and a phase transformation on the grain growth of nanocrystalline titania. Nanostructured Mater, 1993, 3 (1-6): 61~67
    [93] O. H. Kwon, C. S. Nordahl, G. L. Messing. Submicrometer transparent alumina by sinter forging seeded gamma -Al sub 2 O sub 3 powders. J Am Ceram Soc, 1995, 78 (2): 491~494
    [94] M. R. Boutz, L. Winnubst, A. J. Burggraaf. Low-temperature sinter forging of nanostructured Y-TZP and YCe-TZP. J. Am. Ceram. Soc, 1995, 78 (1):121~128
    [95] D. C. Hague, M. J. Mayo. Modeling densification during sinter-forging of yttria-partially-stabilized zirconia. Mater Sci Eng, 1995, A204: 83~89
    [96] H. l. Zhu, R. S. Averback. Interfacial effects during ion beam processing of metals. Philos Mag Lett, 1996, (73): 27~33
    [97] M. Yeadon. Nanophase and nanocomposite MaterialsⅡ. MRS. Pittsburgh, PA, 1997. 179
    [98] J. Rankin. In situ TEM sintering of nano-sized ZrO2 particles. Mater. Sci. Eng., 1995, A204: 48
    [99] M. I. Alymov, O. N. Leontieva. Synthesis of nanoscale Ni and Fe powders and properties of their Nanostructured Materials, 1992, (4): 737~741
    [100] C. J. Herring. Quantitative analysis of the EEG in the intracarotid amobarbital procedure Amplitude analysis. Appl. Phys., 1950, (21): 301
    [101] G. L. Messinget . First measurements with a diamond microstrip detector. Am. Ceram. Bull, 1994, (73): 88~91
    [102] R. A. Andrievski. Properties of Multilayer and Alloyed PVD Films on the Base of TiN. Inter. Powder Metall, 1994, (30): 59
    [103] G. S. A. M. Theunissen. Bridging Stress Relations for Ceramic Materials. Eur. Ceram. Soc, 1993, (11): 315~324
    [104] A. H. Carim. Nanophase Matreials: Synthesis-Properties Applications. Dordrecht. The Netherlands, 1994. 283~286
    [105] J. E. Bonevich. Nanophase and nanocomposite materials. Mater. Res. Soc. Symp. Proc Vol. 286. Pittsurgh, 1993. 3~8
    [106] 张立德. 牟季美. 纳米材料和纳米结构. 第1 版. 北京:科学出版社. 2001
    [107] M. Mayo. Search for additional neutral gauge bosons. Int Mater Rev, 1996, (41): 85
    [108] H. Svoboda, Riedel. The specific heat of single crystal NdCu2. Acta. Metall. Mater., 1993, (40): 2829~2840
    [109] K. J. Gupta. Mechanical alloying of Fe-B powders. J. Am. Ceram. Soc., 1972, (55): 276
    [110] Y. Liu, B. R. Patterson. Electroless copper metallisation of titanium nitride. Acta Met. Mater, 1993, (41): 2651
    [111] F. Qi, S. Kang. A study on Microstructural Changes in Ti(C,N)-Nb-Ni cermets. Materials Science and Engineering, 1998, A251: 276~285
    [112] Sun-Yong Ahn, Shinhoo Kang. Formation of Core/Rim Structures in Ti(C,N)-WC-Ni cermets via a Dissolution and Reprecipition Process. J. Am. Ceram. Soc., 2000, 83(6): 1489~1494
    [113] Zheng Yong, Xiong Weihao. Effect of powder particle size on the properties and microstructure of Ti(C,N)-based cermet. Rare Metals, 2001, 20(1): 47~51
    [114] N. Liu, C. L. Hana, Y. D. Xu, et al. Microstructures and mechanical properties of nano TiN modified TiC-based cermets for the milling tools. Materials Science and Engineering, 2004, A382: 122~131
    [115] 许育东,刘宁,李华等. 纳米改性金属陶瓷刀具切削参数优化.合肥工大学学报, 2001,24(4): 98~503
    [116] Xue-Kun Sun, Ki-Tae Kim, Guo-Dong Wang. Simulation of cold compaction densification behavior of silicon nitride ceramic powder. J. Am. Ceram. Soc., 1998, 81(12): 3318~3320
    [117] C. L. Martin, D. Bouvard. Isostatic compaction of bimodal powder mixtures and composites. International Journal of Mechanical Sciences, 2004, 46: 907~927
    [118] Ali. Osman Kurt, T. J. Davies. A Study of Compaction of Metal Powders. Ulusal Toz Metalurjisi Konferans?, 1996: 493~506
    [119] Hyoung Seop Kim, Sung-Tag Oh, Jai-Sung Lee. Constitutive model for cold compaction of ceramic. Journal of American Ceramic Society, 2002, 85(8): 2137~38
    [120] K. T. Kim, J. H. Cho. A densification model for mixed metal powder under cold compaction. International Journal of Mechanical Science, 2001, 43: 2929~2946
    [121] M. M. Chaudhri. The plastic deformation of single asperities by hard flats. Inst. Mech. Eng. Conference Publications , 1987, C158: 1003~1012
    [122] S. Biwa., B. Storakers. An analysis of fully plastic Brinell indentation. J. Mech. Phys. Solids, 1995, 43: 1303~1334
    [123] N. A. Fleck, L. T. Kuhn, R. M. McMeeking. Yielding of metal powder bonded by isolated contacts. J. Mech. Phys. Solids, 1992, 40: 1139~1163
    [124] A. F. Bower, N. A. Fleck. Needleman. Indentation of powder law creeping solids. Proc. Royal Soc. London, 1993, A441: 97~124
    [125] B. Storakers, N. A. Fleck, R. M. McMeeking. The viscoplastic compaction of composite powders. J. Mech. Phys. Solids, 1999, 47: 785~815
    [126] J. H. Song, J. R. G. Evans. Hydrogen and fatigue behaviour in a near alpha titanium alloy. J.Am.Ceram.Soc, 1994, 77: 806
    [127] D. C. Hague, M. J Mayo. Modeling densification during sinter forging of yttria-partially-stabilized zirconia. Mater. Sci. Eng., 1995, A204: 83~89
    [128] Sun Jianfei. Characterizations of ball-milled nanocrystal-line WC-Co composite powders and subsequently rapid hot pressing sintered cermets. Materials Letters, 2003, 57: 3140
    [129] A.G.P. da. Silva, W. D. Schuber, B. Lux. The Role of the Binder Phase in the WC-Co Sintering. Mat. Res., 2001, 4 (2): 20~23
    [130] J. Zackrisson, U. Rolander, H. O. Anderen. Development of microstructure during sintering. Metallurgical and Materials Transactions A, 2001, 86(32A): 85~94
    [131] Y. J. Park, N. M. Hang, D. N. Yoon, et al. The effect of carbon content on the hall-petch parameter in the cold drawn hypereutectoid steels. Metal. Mater. Trans, 1996, 27A: 2809~2819
    [132] M. K. Kang, Y. S. Yoo, D. Y. Kim, et al. A micromechanical solidification heat transfer in one dimensional Al-Al2O3 composite and its consequence on microstructure evolution. J. Am. Ceram. Soc, 1983, 83: 385~390
    [133] 果世驹. 粉末烧结理论. 第1 版. 北京:冶金工业出版社,1998. 189~190
    [134] Limin Chen,Walter Lengauer, Peter Ettmayer, et al. Fundamentals of liquid phase sintering for modern cermets and functionally graded cemented carbonitredes (FGCC). RM&HM, 2000, 18: 307~322
    [135] 高家化,沈志坚,丁子上. 陶瓷基纳米复合材料. 复合材料学报,1994,11(1): 1~7
    [136] 金正爱,丘向东. 纳米陶瓷复合材料的制备及特性. 中国有色金属学报,1998,8(2): 124~128
    [137] 熊惟皓. 颗粒型复合硬质材料微观组织与界面结构的研究:[博士学位论文]。武汉:华中科技大学图书馆,1994
    [138] 廖为鑫,解子章. 粉末冶金过程热力学分析. 北京:冶金工业出版社,1984. 256~260
    [139] 刘文俊. 热等静压在细晶粒金属陶瓷制备中的应用:[硕士学位论文]。武汉:华中科技大学图书馆,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700