钇铝石榴石纳米粉体及YAG透明陶瓷的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钇铝石榴石(Y_3Al_5O_(12), YAG)具有良好的光学性能,是一种重要的激光基质材料。与YAG单晶相比,YAG多晶陶瓷的优势在于可制备出满足大功率激光器所需的大尺寸样品并实现高浓度的掺杂。1995年日本Krosaki公司首次制备出了高质量的Nd:YAG透明陶瓷并实现了激光输出,这充分证明了采用合适的工艺制备透明陶瓷,并以之取代单晶的可行性。目前美国已经开发出激光输出功率达67kW的固体激光器,我国对固体激光器的研究与国外存在巨大差距。面对全球的竞争,我们必须以创新的思维和技术推动国内透明陶瓷的快速发展,使Nd:YAG陶瓷激光器逐步实现kW级激光输出,并实现大尺寸和大规模的生产,进而使我国在工业应用激光材料上占有一席之地。
     要实现以上目标,必须对YAG粉体制备技术和透明陶瓷材料的烧结制备技术进行深入的研究和开发。本文重点研究利用改进的共沉淀法制备YAG纳米粉体的工艺,并以制备的YAG纳米粉体为原料制备高透过率的YAG透明陶瓷。改进的共沉淀法制备YAG纳米粉体的研究表明,以正戊醇为脱水剂,用减压蒸馏沉淀法可以避免颗粒间的硬团聚,合成分散均匀的YAG纳米粉体。1100℃煅烧2 h后YAG的平均粒径为50nm。通过研究YAG纳米粉体的真空烧结致密化行为和晶粒生长行为,得到了YAG坯体密度与烧结温度的烧结回归方程以及YAG的等温烧结动力学方程。动力学方程结果表明:YAG的烧结和晶粒生长动力学受晶界扩散控制。在1750℃真空烧结5~18小时制备的YAG透明陶瓷,经过1450℃流动空气氛下热处理2小时后,对800nm波长的中波红外光的透过率为54~79.7%。热处理可以使YAG样品的透过率较热处理前提高19~32%。
     首次采用两步真空烧结工艺制备了YAG透明陶瓷。两步烧结工艺的技术思路:以工艺手段促进晶界扩散,抑制晶界迁移。本文采用的具体工艺条件是将试样首先加热到1750℃~1800℃的高温,然后,不经保温即快速降温至第二阶段的烧结温度1550℃~1600℃,在第二烧结温度下继续保温10小时。用这种两步真空烧结制备的YAG透明陶瓷在可见光下透过率最高可达到74%。当两步烧结的最高温度为1800℃,保温温度为1550℃时可有效抑制晶界迁移,避免晶粒异常长大,致密YAG陶瓷的平均晶粒度为6μm,对可见光的透过率达到71%。
     采用热压烧结工艺在1650℃制备了可见光下半透明的YAG陶瓷。该部分工作的意义在于:发现了以微米级的Al2O3和Y2O3为原料,采用固相反应热压烧结工艺同样可以制备YAG透明陶瓷,而且平均晶粒度仅为2.2μm,较之以纳米级YAG粉体为原料以真空烧结工艺所制得的透明YAG陶瓷的晶粒尺寸降低约1~2倍。这表明透明多晶YAG陶瓷的制备并非必须以纳米粉末为原料。而最终获得的YAG陶瓷的微观结构特征是决定其透光性的根本因素。
Yttrium aluminum garnet (Y3Al5O12, YAG) is an important laser material due to its excellent optical properties. Comparing with single crystal YAG, polycrystalline YAG ceramic exhibits many advantages. The ability of polycrystalline YAG ceramic incorporated with very high concentrations of Nd provides the possibility of high power laser. The first transparent Nd: YAG ceramic with nearly equivalent refractive index and thermal conductivity with that of a YAG single crystal was reported in 1995 by Ikesue et al, who demonstrated the potential of substituting YAG single crystal with polycrystalline YAG ceramic if proper synthesis methods are adopted. Although polycrystalline Nd:YAG laser ceramic has been produced and 67kW continuous wave laser operation was obtained in America, the fundamental relationship among the sintering process, microstructure and the optical properties of transparent laser ceramics has not been systematically studied yet.
     In this dissertation, YAG nanopowders were synthesized by a modified co-precipitation technique, and the fabrication of transparent YAG ceramics using the as synthesized nanopowders was investigated. A hydrate precursor of yttrium aluminum garnet (YAG) was synthesized by the co-precipitation method, in which a distillation process was used with n-amyl alcohol as dehydration solvent. By preventing the connection among particles, hard agglomerates were avoided and well dispersed nanopowders were obtained. The average particle size of the nanocrystalline YAG powders calcined at 1100℃was about 50nm. The sintering regression equation and the kinetic equation for the densification of YAG ceramic were obtained by manipulate the densification behavior and the grain growth behavior of YAG compacts during the sintering process. The kinetic equation revealed that both the sintering mechanism and the grain growth of YAG ceramic were dominated by grain boundary diffusion. Transparent YAG ceramics were prepared by vacuum sintering at 1750℃for 5~18hours. The transmittance of the YAG ceramics heated at 1450℃for 2 hours under flowing air reached 54~79.7% at a wavelength of 800nm, which was 19~32% higher than that without the heat-treatment.
     A two-step sintering method was used to fabricate transparent YAG ceramics, the YAG pellets were rapidly heated to a peak temperature (1750℃or 1800℃) without holding time, and then immediately cooled down to a lower temperature (1550℃or 1600℃) and held for 10 hours. The maximum transmittance of the YAG ceramics by the two step sintering method can reach 74%. When the sample was sintered at 1800℃as the first sintering step and held at 1550℃for 10 hours as the second step, the grain-boundary migration was effectively suppressed while the grain-boundary diffusion was enhanced. The mean grain size of the densified YAG ceramic was 6μm and the transmittance was 71%.
     Translucent YAG ceramics were fabricated by reactive hot pressure sintering at 1650℃for 90 minutes using micro-sized Al2O3 and Y2O3 powders as reactants. The grain size of the hot- pressed YAG ceramic is much smaller than that of the samples prepared by vacuum sintering. This work reveals that YAG nanopowder is at least not the exclusive starting material for preparing transparent YAG ceramic. In contrast, the final microstructure is the most important factor to determine the transmittance of the YAG ceramic.
引文
1. L. I. Kazakova, G. M. Kuzmicheva, E. M. Suchkova. Inorg. Mater. 2003, 39(9): 959~970
    2. M. M. Kuklja, J. Phys.: Condensate Materials. 2000(12): 2953~2967
    3. M. M. Kuklja, R.Pandey. J. Am. Ceram. Soc. 1999,82 (10): 2881~2886
    4. 陆学善 激光基质钇铝石榴石的发展 北京:科学出版社,1972
    5. R. S. Roth. Phase Diagrams for Ceramists Volume XI. Compiled at the National Institute of Standards and Technology, Edited and Published by The American Ceramic Society.Fig.9265, 1995
    6. A. F. Wells, in "Structural inorganic chemistry", (Clarendon Press, Oxford, 1975) p.1095
    7. 张玉龙 唐磊 人工晶体-生长技术、性能与应用 北京:化学工业出版社,第一版 2005 95~99
    8. K. Ohno, T. Abe, J. Electrochem. Soc. 1986,133 (3): 638~643
    9. X. Guo, K. SKURAL. Japan. J. Apply. Phys. 2000(39): 1230~1234
    10. Q. Zhang, F. Saito. Powder Technology 2003 (129): 86~91
    11. 卢铁城 陈丰波 张颖等 改进的溶胶-凝胶法制备 YAG 纳米粉体 功能材料 2005(36): 610~612
    12. S. Saxena. Mater. Lett. 2006 (60): 1315~1318
    13. H. M. Wang, M. C. Simmonds, Y. Z. Huang, et al. Chem. Mater. 2003 (15): 3474~3480
    14. T. Tachiwaki, M. Yoshinaka. Solid State Commun. 2001 (119): 603~606
    15. M. Veith, S. Mathur, A. Kareiva, et al. J.Mater. Chem. 1999 (9): 3069.
    16. E. De la Rosa. Opt. Mater. 2005 (27):1793~1799
    17. 朱顺官 孟庆江 牟景艳 溶液燃烧法制备纳米 Al2O3 中国粉体技术 2005,11(2):21
    18. 夏国栋 周圣明 张俊计等 凝胶-燃烧法合成 YAG:Eu3+纳米荧光材料的结构和发光性能 无机化学学报 2005 (21): 1203~1207
    19. Z. Sun, D. Yuan, H. Li. J. Alloy. Compd. 2004(379): L1~L3
    20. 张华山 苏春辉 韩辉等 柠檬酸-凝胶燃烧法制备钇铝石榴石(Y3Al5O12)纳米粉体的研究材料开发与应用 2005 (20): 5~13
    21. 薛军民 李承恩 倪焕尧等 柠檬酸盐法低温合成 BaTiO3 微粉的研究 功能材料 1995, 26(5): 424
    22. S. Roy, L.Wang, W. Sigmund, et al. Mater. Lett.1999(39): 138~141
    23. 苏言杰 张德 徐建梅等 柠檬酸盐凝胶自燃烧法合成超细粉体 材料导报 2006 (5):142~144
    24. 李霞 刘宏 王继扬等 醇-水热法制备钇铝石榴石(YAG)纳米粉体 无机材料学报 2004(5):1168~1172
    25. M. Inoue, H. Otsu et a1. J. Am. Ceram. Soc. 1991, 74(6): 1452~1454
    26. G. Xu, X. Zhang, W. He Mater. Lett. 2006(60): 962~965
    27. J. Su, Q. L. Zhang, C. J. Gu, Mater. Res. Bull. 2005(40): 1279~1285
    28. 苏静 张庆礼 谷长江等 共沉淀法 YAG、Nd:YAG 纳米粉体的制备、结构与光谱性能研究 功能材料 2005(36): 717~719
    29. 丁志立 韩杰才 陈嵩 以碳酸氢铵为沉淀剂制备纳米钇铝石榴石粉体 材料工程 2005(2): 48~50
    30. X. Li, H. Liu Opt. Mater. 2004(25): 407~412
    31. J.G. Li, T. Ikegami, J.H. Lee, et al J. Europ. Ceram. Soc. 2000(20): 2395~2405
    32. J. G. Li, T. Ikegami, J. H. Lee, et al. J. Am. Ceram. Soc. 2000, 83(4): 961~963
    33. Y. T. Nien, Y. L. Chen, I.G. Chen, et al. Mater. Chem. Phys. 2005, 93 (1): 79~83
    34. 宋琼 苏春辉 张洪波等 均相沉淀法制备 Nd:YAG 透明激光陶瓷材料研究 激光与红外 2006(31): 44~46
    35. H. Zhang, M.Jing, C. Su. J. RARE EARTHS 2006(24): 538~542
    36. M. Nyman, J. Caruso, H. Smith., et al. J. Am. Ceram. Soc. 1997, 80(5): 1231~1238
    37. 戚发鑫 王海波 朱宪忠 喷雾热解法制备球形 YAG:Ce3+荧光粉研究中国稀土学报 2005(25): 568~571
    38. X. Li, H. Liu, J. Wang et al. Mater. Lett. 2004(58): 2377~2380
    39. 高瑞平 李晓光等 先进陶瓷物理与化学原理及技术 科学出版社 2001, 1:
    266
    40. X. Zhang, H. Liu, W. He, J. Alloy. Compd. 2004(372): 300~303
    41. 李红 张旭东 何文等 溶剂热法制备 YAG 微粉及其机理分析 功能材料 2006 (37):25~27
    42. V.K.Lamer, R.H.Dinegar, J .Am. Chem. Soc. 1950(72): 4847
    43. 李懋强 胡敦忠 迟卓男 氧化锆粉料中团聚体的结构与强度 硅酸盐学报1994(1): 85~91
    44. 周祖康等 化学反应法 胶体化学基础,北京大学出版社,1987, 5:13
    45. 陈宗淇等 溶胶的形成 胶体化学,高等教育出版社,1984, 3:188
    46. 周英彦 于欣伟 均分散胶粒析出相变理论研究.化学通报,1997(3): 35
    47. 仇海波 高濂 纳米氧化锆粉体的共沸蒸馏法制备及研究 无机材料学报.1994, 9(3): 365~370
    48. N. Kuramoto et al. IEEE Transactions of Components, 1989, 9(4): 386
    49. 徐政 倪宏伟编著,现代功能陶瓷,国防工业出版社,1998 年 9 月第一版
    50. T. Misawa, Y. Moriyoshi, Y.Yajima. J. Ceram. Soc. Japan, 1999, 104(4): 343~348
    51. 王零森. 特种陶瓷 中南工业大学出版社, 1994. 154~157
    52. C. Greskovich, K N. Woods Am. Ceram. Soc. Bull. 1973(52): 473~447
    53. C. Greskovich, J. P.Chernoch J. Appl. Phys. 1974, 45 (10): 4495~4502
    54. 刘军芳 傅正义 张东明等 透明陶瓷的研究现状与发展展望 陶瓷学报2002(63): 246~250
    55. N. J. Hess, G. J. Exarhos. J. Non-Crystalline Solids.1994, 178 (9):197
    56. 任卫 红外陶瓷 武汉工业大学出版社,1999: 8~9
    57. M. L .Paterson, J. E.Caiazza. Proceedings of SPIE. 2000(4102): 59~68
    58. J. Lu, K.Ueda, H.Yagi, et al. J. Alloy. Compd. 2002(341): 220~225
    59. M. L. Patterson, A. A. Digiovanni, L. Fehrenbacher, et al. Proceedings of SPIE.2003(5078): 71~79
    60. A. Ikesue. J. Am. Ceram. Soc. 1997,80(60): 1517~22
    61. A. Ikesue. J. Am. Ceram. Soc. 1998,81(8): 2194~96
    62. J. Lu. Appl. Phys. Lett. 2000,77(23): 3707~09
    63. J. Lu. Appl. Phys. 2001,78 (23): 3586~3588
    64. 闻雷 孙旭东 马伟民 固相反应法制备 YAG 透明陶瓷 硅酸盐学报 2003,31(9): 819~822
    65. 刘军芳 傅正义 张东明等 透明陶瓷的发展 陶瓷科学与艺术 2002(1): 22~26
    66. 卢斌 赵桂杰 透明陶瓷研究现状及展望 材料导报 2005,19(8): 20~24
    67. 吉亚明 蒋丹宇 冯涛 透明陶瓷材料现状与发展 无机材料学报 2004(19): 275~282
    68. 雷鸣 张礼杰 王英伟等 透明陶瓷的研究现状与发展 中国陶瓷工业 2005(12): 45~48
    69. H. Zhang, H. Han, C. Su. Mater. Sci. & Eng. A 2007(445~446 ): 180~185
    70. X. Li, Q. Li, J. Wang. Opt. Mater. 2007(29): 528~531
    71. 苏春辉 宋琼 张华山等 共沉淀法制备掺钕钇铝石榴石透明激光陶瓷的研究 中国稀土学报 2006( 24): 56~60
    72. 刘景和 朴贤卿 卢利平等碳酸盐共沉淀法制备 Er:YAG 透明激光陶瓷粉体 人工晶体学报 2004, 33(3): 407~410
    73. 张旭东 刘宏 王继扬等 掺钕钇铝石榴石陶瓷的制备与性能 人工晶体学报 2004,33(3): 292~295
    74. 潘裕柏 徐军 吴玉松等 Nd:YAG 透明陶瓷的制备与激光输出 无机材料学报 2006(21): 1278~1280
    75. A. K. Pradhan, K. Zhang, G. B. Loutts. Mater. Res. Bull. 2004(39): 1291~1298
    76. G. De With, H. J. A. van Dijk. Mater. Res. Bull. 1984(19): 1669~1674
    77. L. Wen, X. Sun, Z. Xiu, et al. J. Eur. Ceram. Soc. 2004(24): 2681~2688
    78. Y. Wu, J. Li, F. Piu, et al. Ceram. Inter. 2006(32): 785~788
    79. L. Dong,et al. USA Patent 20040109808 2004.06.10
    80. R. L.Coble. U.S. Pat. No.302610, 1962
    81. K. Dutta, G.E. Gazza. Mater. Res. Bull., 1969(4): 791~796
    82. N. Kuramoto, H. Taniguchi. J. Mater. Sci. Lett., 1984(3): 471~474
    83. A. Lempicki, C. Brecher, P. Szupryczynski, et al. Nucl. Instrum. Meth. A, 2002 (488): 579~590
    84. M. W. Benecke, N. E. Olson, J. A. Pask. J. Am. Ceram. Soc. 1967, 50(7): 365 ~368
    85. E. Zych, C. Brecher, H. Lingertat. Spectrochmica Acta Partr A 1998(54): 1771~1777
    86. E. Zych, C. Brecher. J.Alloys. Comp. 2000(300~301): 495~499
    87. 王宏志 高濂, H. Kawaoka et.al 多晶 YAG 陶瓷的制备及力学性能 硅酸盐学报 2001(29): 35~38
    88. R. Chaim, R.Marder Jaeckel, J.Z. Shen. Mater. Sci. & Eng. A 2006(429): 74~78
    89. Y. Fang, D.Agrawal, D. M. Roy, et al. Mater. Lett. 1995(23): 147~151
    90. J. Cheng, D. Agrawal, Y. Fang et al. Bull.Am. Ceram.Soc. 2000, 79(9) : 71~74
    91. J. Cheng, D. Agrawal, Y. Zhang, et al. Mater. Lett. 2002(56): 587~590
    1. 高瑞平 李晓光等 先进陶瓷物理与化学原理及技术 科学出版社 2001, 1:268
    2. 郑昌琼 新型无机材料 科学出版社 2003:336~337
    3. 肖锋 叶建东 王秀鹏等 干燥方法对化学沉淀法合成HA粉体团聚的影响 硅酸盐通报 2006(1):3~5
    4. 仇海波 高濂 纳米氧化锆粉体的共沸蒸馏法制备及研究.无机材料学报 1994, 9(3):365~370
    5. 陈学泽 无机及分析化学 中国林业出版社 2000, 7
    6. A. Roosen, H. Hausner. Adv. Ceram. Mater. 1988, 3(2): 131~137
    7. Z. Sun, D.Yuan, H. Li, et al. J. Alloy. Compd. 2004(379): 1~3
    8. P. Vaqueiro, M. Lopez-Quintela. Chem. Mater. 1997(9): 2836~2841
    9. Y. T. Nien, Y. L. Chen, I. Chen, et al. Mater. Chem. Phys., 2005(93): 79~81
    10. W. S. Peng, G. K. Liu. Infrared Spectra of Minerals, Science Press, Beijing, 1982, in Chinese
    11. I. Muliuoliene, S. Mathur, D. Jasaitis, et al. Opt. Mater. 2003(22): 241~250
    12. P. Apte, H. Burke, H. Pickup. J. Mater. Res. 1992(7): 706~711
    13. 王开明 温传庚 周英彦等 纳米钛酸锶粉体的特殊液相沉淀法制备 电子元件与材料 2005, 24 (4): 9~11
    1. A. Ikesue, T. Kinshita, K. Kamata. J. Am. Ceram. Soc, 1995, 78 (4):1033~1040
    2. Z. Sun, D. Yuan, H. Li. J. Alloy. Compd. 2004 (379): L1~L3
    3. Y. T. Nien, Y. L. Chen, I. G. Chen. Mater. Chem. Phys. 2005,93 (1): 79~83
    4. G. Xu, X. Zhang, W. He Mater. Lett. 2006 (60): 962~965
    5. J. Lu. Appl. Phys. 2001, 78 (23): 3586~3588
    6. 黄培云 金展鹏 陈振华 粉末冶金基础理论与新技术 长沙中南工业大学出版社,1997
    7. 黄培云 粉末冶金原理 第二版 北京冶金工业出版社 1997, 276~282
    8. 尹邦跃 王零森 方寅初 纯 B4C 和掺碳 B4C 的烧结机制 硅酸盐学报 2001, 29(1): 68~71
    9. R. L. Coble. J. App. Phys., 1961(32): 787
    10. M. J. Melendo, H. Haneda. J. Am. Ceram. Soc. 2001,84 (10): 2356~2360
    11. H. Haneda. Appl. Surf. Sci. 2003, 203~204(62): 5629
    12. I. Sakaguchi, H. Haneda. J. Am. Ceram. Soc. 1996, 79(6): 1627~1632
    13. I. Sakaguchi, S. Hishita, H. Haneda, et al. Mater. Sci. Eng.1995(B33): L10~L12
    14. T. A. Parthasarathy, T. Mah, K. Keller. J. Am. Ceram. Soc. 1992, 75 (7): 1756 ~1759
    15. S. Sameshima, K. Higashi, Y Hirata. J. Ceram. Proc. Res. 2000, 1 (1): 27~33
    16. W. D. Kingery, B. Francois. in “Sintering and Related Phenomena” (G. C. Kuczynski, N. A. Hooton, C. F. G.ibbon, eds.)Golden Breach, New York, 1976 471
    17. 果世驹编著 粉末烧结理论 北京 冶金工业出版社 1998,133~137
    18. T. A. Ring Salt Lake City, Utah “Fundamentals of Ceramic Powder Processing and Synthesis” Academic Press San Diego New York Boston London Sydney Tokyo Toronto
    19. 李继光 孙旭东 王雅蓉等 α-Al2O3纳米粉的烧结初期机理研究 硅酸盐学报 1998, 26(4): 471~475
    20. 孟国文 陈大明 陶瓷材料中裂纹起因及消除方法 材料导报 1995(2): 40~41
    21. I. W. Chen, X. H. Wang. Nature.2000,40(4): 168~171
    1. H. Zhang, H. Han, C. Su. Mater. Sci. & Eng. A 2007(445~446): 180~185
    2. L. H. Dong. USA Patent 20040109808 2004.06.10
    3. E. Zych, C. Brecher, J.Alloy. Compd. 2000(300~301): 495~499
    4. R. Chaim, R. M. Jaeckel, J.Z. Shen. Mater. Sci & Eng. A 2006(429): 74~78
    5. G. De With, H. J. A. van Dijk. Mater. Res. Bull. 1984(19): 1669~1674
    6. L. Wen, X. Sun, Z. Xiu, etc. J. Eur. Ceram. Soc. 2004(24): 2681~2688
    7. 闻雷 孙旭东 马伟民 固相反应法制备 YAG 透明陶瓷 硅酸盐学报 2003, 31(9): 819~822
    8. Y. Wu, J. Li, F. Qiu, et al. Ceram. Inter. 2006(32): 785~788
    9. A.K. Pradhan, Kai Zhang, G.B.Loutts. Materials Research Bulletin 2004, 39: 1291~1298
    10. X. Li, Q. Li, J. Wang. Opt. Mater. 2007(29): 528~531
    11. T. Tachiwaki, M. Yoshinaka Solid state commun. 2001(119): 603~606
    12. J. G. Li, T. Ikegami, J. H. Lee, et al. J. Am. Ceram. Soc., 2000, 83 (4): 961~ 963
    13. A. Ikesue, T. Kinshita, K. Kamata. J.Am.Ceram.Soc., 1995, 78 (1): 225~228
    14. T. A. Ring Salt Lake City, Utah “Fundamentals of Ceramic Powder Processing and Synthesis” San Diego New York Boston London Sydney Tokyo Toronto
    15. 李长青 张明福 左洪波等 影响透明陶瓷透光性能的因素 兵器材料科学与工程 2006, 29(2): 26~30
    16. 徐晓东 赵志伟 宋平新等 高温 H2退火对 Yb:YAG 晶体光谱性能的影响 中国激光 2003, 30(8): 709~713
    17. 邱宏伟 杨培志 钟鹤裕等 Yb:YAG 激光晶体的高温退火和高浓度掺杂效应中国激光 2002, 29(5): 438~442
    18. M.M .Kuklja. J. Phys. Condensate Materials. 2000(12): 2953~2967
    1. A. Ikesue, I. Furusato, K.Kamata. J. Am.Ceram. Soc. 1995, 78(1): 225~228
    2. A. Ikesue, T. Kinoshita, K. Kamata et al. J. Am. Ceram. Soc. 1995, 78(4): 1033~ 1040
    3. Y. Wu, J. Li, F. Qiu et al. Ceram. Inter. 2006(32): 785~788
    4. H. Zhang, H. Han, C. Su, et al. Mater. Sci. & Eng. A 2007(445~446): 180~185
    5. X. Li, Q. Li, J. Wang et al. Opt. Mater. 2007(29): 528~531
    6. M. Liu, S. Wang, J. Zhang. J. RARE EARTHS 2006(24): 732~735
    7. S. H. Lee, S. Kochawattana, G. L. Messing, et al. J. Am. Ceram. Soc. 2006, 89 (6): 1945~1950
    8. A. Ikesue, Y. L. Aung, T.Yoda, et al. Opt. Mater. (2006), doi:10.1016/ j.optmat. 2005.12.013
    9. L. Wen, X. Sun J. Europ. Ceram. Soc. 2004(24): 2681~2688
    10. I. W. Chen, X. H. Wang. Nature 2000, 404(9): 167~171
    11. H. D. Kim, Y. J. Park, B. D. Han, et al. Scripta Materialia 2006(54): 615~619
    12. J. Li, Y. Ye. J. Am. Ceram. Soc. 2006, 89(1): 139~143
    13. P. L. Chen, I. W. Chen. J. Am. Ceram. Soc. 1997, 80(3): 637~645
    1. 邓华 隋锦 真空热压烧结工艺及设备在超硬材料制品生产中的应用 金刚石与磨料磨具工程 2004, 141(3): 62~65
    2. H. Zhang, M. Jing, C. Su, et al. J RARE EARTHS 2006(24): 538~542
    3. X. Li, Q. Li, J. Wang, et al. Opt. Mater. 2007(29): 528~531
    4. A. Ikesue, T. Kinoghita, K. Kamata, et al. J. Am. Ceram. Soc. 1995(78): 1033~ 1040
    5. A. Ikesue , Y. L. Aung, T. Yoda,et al., Opt. Mater. 2007, 29(10): 1289-1294
    6. Y. Wu, J. Li, F. Qiu et al. Ceram. Inter. 2006(32): 785~788
    7. 王宏志 高濂 H. Kawaoka. 多晶YAG陶瓷的制备及力学性能 硅酸盐学报 2001, 29(1): 35~38
    8. 高濂 李炜群 王宏志 YAG-Al2O3 纳米复合材料的制备和力学性能 无机材料学报 2000, 15(6): 1107~1110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700