一种实验云母玻璃陶瓷用于牙科热压铸造的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟云母微晶玻璃自上世纪诞生以来在医学、化学、电子工程学领域得到广泛应用,新的加工技术也为云母微晶玻璃在各个领域的应用提供了新的可能。但由于云母属层状硅酸盐,层间结合力十分薄弱,故易在层间面上解理,从而导致强度的下降。为此,提高微晶玻璃的强度和断裂韧性成为研究人员关注的焦点。
     热压铸造作为一种特殊的铸造成型方式改变了传统的失蜡铸造模式,玻璃陶瓷内含成核剂,在压铸及熔烧后,即可完成微晶化,而且可提高瓷的致密度和晶体的含量,从而改善瓷的强度。目前牙科热压铸造陶瓷晶体类型单一,局限于白镏石和二硅酸锂,而传统云母基铸造玻璃陶瓷还没有应用于热压铸造工艺。
     为解决以上问题,本课题组研制了一种新型低熔牙科云母玻璃陶瓷,基本消除了云母缺陷夹层,切削性能优良。前期研究表明[1-6],该材料材料表现为较高的韧性,可产生类似于金属的连续切屑,实现了脆性材料的延性切削,在一定程度上避免了在CAD/CAM的切削过程中造成的修复体表层损伤和边缘崩裂。但由于CAD/CAM的配套设备昂贵,技术要求高,推广尚待时日,目前热压铸造仍然是全瓷修复体的主要加工方式。因此,探索如何将该玻璃陶瓷使用热压铸造的方式进行加工成型具有十分重要的实用价值。由于云母的热膨胀系数在8-13×10~(-6)K~(-1)之间,而牙齿的热膨胀系数大约在9-10~(-6)K~(-1),因此通过调节内部晶体成分进而控制材料热膨胀系数是可行而且必要的。由于锂辉石晶体的热膨胀系数一般在9×10~(-6)K~(-1),根据现有成分配比,提高锂辉石晶体含量有望实现这一目标。结合前期试验结果,本研究采用SiO_2- Al_2O_3- MgO- Na_2O- K_2O- F系云母玻璃陶瓷,通过调节成分中Li+的含量控制材料内部晶体组成及宏观性能,有效控制了热膨胀系数,并制备出了不同透明度的云母玻璃陶瓷的瓷块。在此基础上,将该实验陶瓷进行了热压铸造。研究和比较了不同加工工艺对该材料的微观结构、力学性能及化学稳定性的影响。
     本研究的目的在于调整该实验陶瓷的性能使其适用于牙科领域,探讨适宜的热压铸造工艺,并研究该工艺对实验陶瓷的性能的影响,为该玻璃陶瓷应用于牙科修复提供试验依据。
     本研究共分二部分:
     第一部分氧化锂含量对实验云母微晶玻璃显微结构及性能的影响
     目的:研究Li_2O对SiO_2- Al_2O_3- MgO- Na_2O- K_2O- F云母玻璃陶瓷析晶性能、显微结构、力学强度和热膨胀系数的影响。方法:在玻璃基础成分中添加不同含量的Li2O,由差热分析(DTA)曲线确定热处理制度,采用X射线衍射分析(XRD)、扫描电子显微镜(SEM)和三点弯曲强度测试来观测和比较晶体成分、形貌、材料的力学性能及热膨胀系数。结果:该玻璃陶瓷可采用高温熔制,一步法热处理制备获取,熔制温度为1400℃;三组玻璃的核化温度为530℃,晶化温度为650℃-710℃,产生主晶相为云母的玻璃陶瓷;680℃热处理1小时后,含4%Li_2O的母体玻璃析出的云母晶体发育完全,抗弯强度最高(183.82±12.47 MPa);最适晶化温度随Li_2O含量的增加而降低;随着Li2O含量的增加,析出晶体类型有所变化,热膨胀系数逐渐降低;与原始玻璃相比,晶化后的玻璃陶瓷软化点有较大提高。结论:向SiO_2- Al_2O_3- MgO- Na_2O- K2O- F体系玻璃中添加Li2O使得该体系玻璃晶化峰值温度降低,晶体类型及比例变化,促进了玻璃晶化的同时降低了热膨胀系数。
     第二部分牙科热压铸造对实验云母玻璃陶瓷显微结构及性能的影响
     目的:评价牙科热压铸造工艺对SiO_2- Al_2O_3- MgO- Na_2O- K_2O- F系低熔点玻璃陶瓷的显微结构、力学性能及化学稳定性的影响。方法:熔制玻璃并分别切割成圆柱状和条形试件。柱状试件用于实验组的热压铸造,条形试件经历与实验组相同的热处理过程用于对照。通过DTA、XRD、SEM及三点弯曲强度的测试,比较了牙科热压铸造工艺对SiO_2- Al_2O_3- MgO- Na_2O- K_2O- F系玻璃陶瓷的微观结构及抗弯强度的影响。参照ISO6701标准配制腐蚀液,设人工唾液为对照组,将热处理组试件和热压铸试件分别放入腐蚀液和人工唾液中,80℃恒温水浴箱中静置16h。酒精冲洗干燥。SEM观测表面形貌,进行三点弯曲试验。结果:通过调整铸造参数,SiO_2- Al_2O_3- MgO- Na_2O- K_2O- F系玻璃陶瓷可以应用现有的牙科热压铸造设备进行铸造。实验组的晶体呈现一定程度的定向排列,晶体不仅沿压铸方向排列而且有平行于试件表面的趋势,而对照组的晶体是随机交错的。实验组的三点弯曲强度高于对照组。在热处理组中,腐蚀后的表面可见明显的腐蚀孔隙,力学性能与腐蚀前相比有显著性差异。与对照热处理组相比,热压铸造的试件耐化学腐蚀的能力更强,表面腐蚀不明显,力学性能与腐蚀前没有显著性差异。结论:在热压铸造试件内部实现了玻璃陶瓷的定向排列结构。与晶体随机分布的玻璃陶瓷相比,定向排列的玻璃陶瓷沿压铸方向的弯曲强度得到加强。热压铸造可以提高SiO_2- Al_2O_3- MgO- Na_2O- K2O- F系玻璃陶瓷的化学稳定性。
Mica based glass-ceramics have been widely applied in medicine, chemistry, electronic engineering for a long time since they were developed in the 19th century. The new fabricating technology also expanded their application in many fields. The mica based glass-ceramics were layered silicas, and the combining force was very weak, which caused the mechanical properties decreased. Therefore, it has been the focus for researchers to increase the strength and fracture toughness.
     As a special forming method, dental heat pressing changed the traditional lost-wax casting fashion. Nucleators are included in heat-pressing glass-ceramics, so they can be crystallized after heat pressing. The heat pressing can also improve the strength by raising the density and the percent of crystal. At present, the dental heat-pressing ceramic depends on import, and is rare in variety. The category of crystal limits in lutecium and lithium silicate. The traditional castable mica based glass-ceramics has not been fabricated with dental heat pressing until now.
     To solve these problems, our group developed a novel mica based glass-ceramic which was without interlayer and exhibited high fracture toughness and had excellent machinable property in previous study. A continuous band chips could be formed in machining at a high velocity for this kind of mica glass-ceramic, and it was helpful to avoid surface damage and edge crack. At present, the heat pressing is still the main processing manner in dentistry because of the high cost and the need for technician’s capacity in CAD/CAM. Therefore, the research of appling this experimental glass-ceramic to heat pressing is very helpful for clinic. Previous study has shown that the coefficient of thermal expansion of mica was in 8-13×10~(-6)K~(-1), and it was 9-10~(-6)K~(-1) in tooth. So it was essential to adjust the crystal content and moderate coefficient of thermal expansion. Because the coefficient of thermal expansion in spodument was 9×10~(-6)K~(-1), it was hopful to moderate coefficient of thermal expansion by raise the content of spodument. In this study, the SiO_2- Al_2O_3- MgO- Na_2O- K_2O- F glass-ceramic was used. In the first part of this study, we prepared three kinds of ceramic ingots with different transparency. On the basement of first part, we applied this experimental glass-ceramic to heat-pressing procedure. The effects of fabricating procedure on microstructure and properities of the glass-ceramics were investigated and compared. The aim of this study was to evaluate the principle of crystal and the effects of variables to the experimental glass-ceramics. We also explored the proper variable in the procedure of heat pressing to establish foundation for the dental application of the experimental glass-ceramics. Two parts were included in this study:
     Part one Effects of Li_2O addition on the crystallization of experimental mica based glass-ceramics
     Objective: To investigated the effects of Li2O on the crystallization behavior of SiO_2-Al_2O_3-MgO-Na_2O-K_2O-F system by varying the Li2O content in the glass composition. Method: Different amounts of Li2O were added into SiO_2-Al_2O_3-MgO-Na_2O-K_2O-F system. Differential thermal analysis (DTA), X-ray diffractometry (XRD) and scanning electron microscopy (SEM) were used to evaluate the crystallization behavior, crystalline phases and microstructures of the glass-ceramics. Three point bending strength was also measured. Result: The glass-ceramics used in this study could be prepared with one-step heat treatment. The temperature of fusing was 1400℃, and the main crystal was mica when it was heat treated at 650℃-710℃. In the group heat treated at 680℃for 1h, the crystal developed well in the glass containing 4% Li2O, and showed higher bending strength (183.82±12.47 MPa)than the others. Addition of Li2O decreased the temperature of crystal, and promoted the crystallization. With the increasing of Li2O, the category of crystal was changed, the coefficient of thermal expansion decreased, and the softening point raised greatly compared with parent glass. Conclusion: The composition of Li2O can improve the crystallization property of SiO_2-Al_2O_3-MgO-Na_2O-K_2O-F glass-ceramics. At same time, the coefficient of thermal expansion was decreased.
     Part two Effects of dental heat pressing on the structure and properties of experimental mica based glass-ceramic
     Objective: The purpose of this study was to evaluate the effect of dental heat pressing on the microstructure of a glass-ceramic located in SiO_2-Al_2O_3-MgO-Na_2O-K_2O-F system. Method: glass was cut into bars and ingots. Ingots were used for heat pressing, and bars served as controls. DTA, SEM, XRD techniques and mechanical testing methods were used to investigate the effects of dental heat pressing on crystal and microstructure. The erosive liquid was prepared in accordance to ISO6701 standard, and the artificial saliva served as control. Specimens were put into erosive liquid or artificial saliva at 80℃for 16h. SEM observation and three bending test were taken after complete cleaning and drying. Results: The results confirmed that the glass-ceramic could be successfully pressed with commercially available dental equipment. The SEM observation revealed crystals not only aligned along the direction of pressing, but also parallel to the surface of specimens. The results of bending test revealed that the bending strength of pressed specimens were higher than that of control ones. Erosive pores could be observed after corrosion at the surface of control specimens, and strength decreased significantly. Compared with control ones, the pressed specimens showed higher resistance of chemical corrosive capability, and the bending strength was not significantly different from that of before corrosion. Conclusion: It was concluded dental heat pressing procedure led to an anisotropic structure, which can improve the mechanical property, and dental heat pressing procedure led to higher resistance of chemical corrosion.
引文
[1] 陈吉华, 李娜, 马新沛 等. 超韧牙科氟金云母玻璃陶瓷的可加工性能初探. 中华口腔医学杂志. 2007, 42(12):750-753
    [2] 马新沛,李光新,沈莲 等. 一种新型云母玻璃陶瓷的切削行为与显微结构.无机材料学报. 2004, 19(1):48-52.
    [3] 马新沛,李光新,沈莲. 低熔点可切削微晶玻璃的组织与性能.无机材料学报.2000, 15(2):365-370.
    [4] 李娜,陈吉华,马新沛 等. 晶化热处理制度对新型牙科云母基陶瓷弯曲强度的影响. 实用口腔医学杂志. 2007, 23(2):217-219
    [5] 马新沛,李光新,沈莲. 可切削微晶玻璃的热处理与微观结构. 金属热处理. 2001, 26 (12): 5-7.
    [6] 李娜, 陈吉华, 马新沛 等. 热处理对新型牙科陶瓷可切削性及强度的影响. 口腔材料器械杂志. 2007, 16(2):61-63.
    [7] 程金树,李宏,汤李缨 等. 微晶玻璃. 北京:化学工业出版社,2006.
    [8] Mcmillan. PW 微晶玻璃. 王韧千 译. 北京:中国建筑工业出版社,1988.
    [9] Tamman G. The states of aggregation. D Van Nostrand, New York, 1925.
    [10] Wolfram H?land, George Beall. Glass-ceramic technology. Westerville: The American Ceramic Society, 2002.
    [11] 西北轻工学院. 玻璃工艺学. 北京:中国轻工业出版社,1994.
    [12] 干福熹. 现代玻璃科学技术. 上海:上海科学技术出版社,1990.
    [13] Hench LL Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp. 1971; (2):117-141.
    [14] Brown WE. A New Calcium Phosphate Water-setting Cement. In: Cements Research Progress. Westerville, Ohio, American Ceramic Society, 1986:352-379.
    [15] Tada K, Yamamuro T et al. Restoration of axial and appendicular bone volumes by h- PTH (1–34) in parathyroidectomized and osteopenic rats. Bone, 1990, 11(3):163-169.
    [16] Holand W. Bilcompatible and bioactive glass-ceramics-states of the art and new directions.J. Non-cryst Solids.1992, 219:192-197.
    [17] 李放 等. 生物微晶玻璃人工骨的制备及其在腭裂整复术中的应用.哈尔滨医科大学学报,2002, 36(3):227-228,231.
    [18] 周新华, 陈安民, 褚颖 等. 可切削生物微晶玻璃的生物学评价. 江西医学院学报,2004, 44(2):75-77.
    [19] 李延报 等.生物医用钙磷酸盐微晶玻璃. 材料科学与工程,2001,19(1):124-130.
    [20] 耿硕儒 等.羟基磷灰石微晶玻璃人工骨的研制与应用. 骨与关节损伤杂志.1995, 10(6):323-324.
    [21] 张效凯 等.人工骨用微晶玻璃体内外行为的研究. 山东师大学报(自然科学版),1994, 9(4):100-104.
    [22] 李霞, 陈令富. 生物活性玻璃及生物活性陶瓷研究进展. 山东轻工业学院学报. 2000, 14(2):42-45.
    [23] 李立华. 生物微晶玻璃研究的现状与展望. 材料导报,1994,5:39-43.
    [24] 陈建华, 杨南如. 铁钙硅铁磁体微晶玻璃—一种治癌生物材料. 玻璃与搪瓷,1998, 27(1):44-49.
    [25] Weinstein M, Kate S, Weinstein AB, Fused porcelain to metal. U.S Patent. No.30529831962.
    [26] Relly JR, Nishimural I, Campbell SD, Ceramics in dentistry: Historicaltoast and current perspectives, J. Prosthesis Dent. 1996, 75(1): 18-32.
    [27] Land CH. Porcelain Dental art. Dent Cosmos. 1903, 45(5): 437-444.
    [28] 陈吉华. 临床金属烤瓷修复学. 陕西科技出版社. 西安.1997.
    [29] 汪大林 等.牙科陶瓷材料应用研究现状. 国外医学生物医学分册.1995, 20(2),97-101.
    [30] Qualtrough AJ, Piddock V. Ceramic updates. J Dent. 1997, 25: 91-95.
    [31] McLean JW. Evaluation of dental ceramics in the twentieth century. J Prosthet Dent, 2001, 85(1):61-66.
    [32] 孙蕾. 氧化锆应用于全瓷修复的研究进展. 国外医学口腔医学分册, 2005,32(2):145-147.
    [33] Hench LL, Bioceramics. J Am Ceram Soc 1996; 79(9):1705-1728.
    [34] 章非敏. 牙科全瓷修复技术.江苏科学技术出版社. 南京. 2007.
    [35] 张飙. 白榴石对牙科玻璃陶瓷强度的影响. 北京口腔医学. 1999, 7(1):44-47.
    [36] 张飚, 钱法汤, 段兴龙 等. 白榴石微晶化增强牙科玻璃陶瓷机制的实验研究. 中华口腔医学杂志. 2003,38(2):260-265.
    [37] Cattell MJ, Chadwick TC, Knowles JC, et al, Flexural strength optimisation of a leucite reinforced glass ceramic, Dental Materials. 2001, 17:21-33.
    [38] 卢冬梅, 万乾炳, 晋勇. 牙科全瓷材料的微波烧结研究.四川大学学报(自然科学版). 2003, 40(6): 1114-1118.
    [39] 陆永键.氧化锆陶瓷在口腔修复中的应用.口腔材料器械杂志. 2005, 14(2): 91.
    [40] 陈德勇, 黎俊初, 杨刚 等. ZrO2-A12O3 两相陶瓷复合材料力学性能与增韧机制的研究. 南昌航空工业学院学报(自然科学版). 2005, 19(1): 45-48.
    [41] 夏傲, 苗鸿雁, 姚勇刚 等.牙科用氧化锆/氧化铝/玻璃复合材料的研制.云南大学学报(自然科学版), 2005,27(5A): 421-424.
    [42] 余明清, 范仕刚, 孙淑珍 等. A12O3 增强ZrO2 陶瓷的制备及性能研究. 硅酸盐通报, 2001, 2: 7-10.
    [43] 周玉. 陶瓷材料学. 哈尔滨: 哈尔滨工业大学出版社, 1995: 336
    [44] Steven O, Hondrum. A review of the strength properties of dental ceramics. J Prosthet Dent, 1992, 67:859-65.
    [45] 铁征骑. 新型陶瓷材料手册. 南京: 江苏科学技术出版社, 1996 : 601
    [46] 张国军, 金宗哲. 颗粒增韧陶瓷的增韧机理. 硅酸盐学报, 1994 , 22 : 259-68
    [47] Seghi RR, Denry IL, Rosenstiel SF. Relative fracture toughness 47 and hardness of new dental ceramics. J Prosthet Dent, 1995, 74: 145-150.
    [48] Tyszblat M. Process of the preparation of a sental prothesis by slight solid phase fritting of a metal oxide based infrastructure. U S Patent, 4772436, 1987.
    [49] Levy H. Working with the In-ceram porcelain system. Protheses Dent, 1990; 44(1): 1-11.
    [50] Duret F. CAD/CAM in dentistry. J Amer Dent Assoc. 1988; 117(7): 715-720.
    [51] 秦燕军, 牙科用 CAD/CAM 加工用可切削微晶玻璃的研究. 第四军医大学博士学位论文,2001, 5.
    [52] Grossman DG, Johnson Janet LM, Glass-ceramic compositions for dental constructs, US Pat. No. 4,652,312 (1987) 3.
    [53] Guazzato M, Albakry M, Swain MV, et al. Properties of In-Ceram Alumina and In-Ceram Zirconia. Int J Prosthodont, 2002,15(3):339-346.
    [54] 马轩祥. 口腔修复学.辽宁科学技术出版社. 1999:327.
    [55] Dong JK, Luthy H, Wohlwend A, et al. Heat pressed Ceramics: technology and strength. Int J Prosthodont, 1992, 5: 9-16.
    [56] Tyszblat M. Process of the preparation of a dental prosthesis by slight solid phase fritting of a metal oxide based infrastructure, US Patent, No. 4772436, 1987
    [57] 梁晓峰, 杨世源, 尹光福, 等. 陶瓷冠桥修复材料的研究进展.西南科技大学学报, 2005, 20 (3): 34-35.
    [58] 万乾炳, 杜传诗, 巢永烈 等. GI-I 型粉浆涂塑铝瓷核冠底层抗弯强度的测定.华西口腔医学杂志.1995; 13(4): 272-274.
    [59] 巢永烈, 孟玉坤, 廖运茂 等. GI-II 型粉浆涂塑渗透陶瓷试件的弯曲强度测试. 口腔材料器械杂志. 1998; 7(2): 63-65.
    [60] 李江, 王忠义. 陶瓷在口腔修复学领域中的应用.第四军医大学学报. 1998,19: 94-96.
    [61] Mormann WH, Bindl A. The new creativity in ceramic restorations: Dental CAD/CAM. Quintessence Int. 1996; 27(12): 821-828.
    [62] 刘洪臣. 口腔修复的发展趋势. 口腔颌面修复学杂志. 2002,3(1): 1-2.
    [63] El Zohairy, Ahmed A De Gee, et al. Microtensile bond strength testing of luting cements to prefabricated CAD/CAM ceramic and composite blocks. Dental Materials. 2003, 19 (7): 575 – 583.
    [64] Rosenblum MA, Schulman A. A review of all-ceramic restorations. J Amer Dent Assoc, 1997, 128:297-307.
    [65] Stephen F. Rosenstiel, Stephan S. Porter. Apparent fracture toughness of all-ceramic crown systems. J Prosthet Dent, 1989, 62: 529-532.
    [66] Seghi RR, Denry IL, Rosenstiel S. F. Relative fracture toughness and hardness of new dental ceramics. J Prosthet Dent, 1995, 74: 145-150.
    [67] Siegward D. Heintze. Bridges made of all-ceramic materials (IPS Empress II) Indications, clinical aspects, prognosis. Ivoclar- Vivadent Report, 1998, No.12: 11-31.
    [68] Wolfram Holand. Materials science fundamentals of the IPS Empress glass- ceramic. Ivoclar- Vivadent Report, 1998, 12:3-10.
    [69] Gorman CM, McDevitt WE, Hill RG. Comparison of two heat-pressed all-ceramic dental materials. Dent Mater, 2000, 16: 389-95.
    [70] Wagner WC, Chu TM. Biaxial flexural strength and indentation fracture toughness of three new dental core ceramics. J Prosthet Dent, 1996, 76: 140-44.
    [71] Sjogren G, Lantto R, Tillberg A. Clinical evaluation of all ceramic crowns (Dicor) in general practice. J Prost het Dent, 1999, 81: 277-284.
    [72] Probster L, Diehl J. Slip-casting alumina ceramics for crown and bridge restorations. Quintessence Int, 1992, 23: 25-31.
    [73] Bieniek KW, Marx R. The mechanical loading capacity of new all-ceramic crown and bridge materials Schweiz- Monatsschr- Zahnmed, 1994, 104(3): 284-289.
    [74] Ohyama T, Yoshinari M, Oda Y. Effects of cyclic loading on the strength of all-ceramic materials. Int. J .Prosthodont, 1999, 12(1): 28-37.
    [75] 陈小冬, 杜传诗, 巢永烈. 粘固对金瓷冠边缘适合性的影响. 口腔颌面修复学杂志. 2002, 3(3):155-157.
    [76] Alkumru HN, Wilson HJ, Bor S. The fit of all-ceramic crowns cemented with different luting agents. J Marmara Univ Dent Fac, 1992,1(3): 198-202.
    [77] Beschnidt SM, Strub JR. Evaluation of the marginal accuracy of different all-ceramic crown systems after simulation in the artificial mouth. J Oral Rehabil, 1999, 26(7): 582-593.
    [78] McLaren EA, White SN. Glass-infiltrated zirconia/alumina-based ceramic for crowns and fixed partialdentures. Pract- Periodontics- Aesthet- Dent, 1999, 11(8):985-994,996.
    [79] Probster L, Weber H, Diehl J, et al. First clinical and materials experience with full porcelain crowns and In- Ceram bridge system. ZWR, 1990, 99(10): 816-817.819.
    [80] Burke FJ. Maximising the fracture resistance of dentinebonded all-ceramic crowns. J Dent, 1999, 27(3): 169-173.
    [81] Gormana CM, McDevitta WE, Hillb RG. Comparison of two heat-pressed all-ceramic dental materials. Dental Materials 2000,16:389–395.
    [82] Marc Ar, Allan S, A review of all-ceramic restration. J Am Dent Assoc, 1997, 128(3):297-307.
    [83] Cemlamaz D, Eagin S. Clinical evaluation of all- ceramic crowns. J Prosthet Dent, 2002, 87(2): 189-196.
    [84] Esquivel JF, Anusavice KJ, Young H, et al. Clinical per for - mance of Lithia disilicate based core ceramic for three- unit poster ior FPDs. Int J Prosthodont, 2004, 17: 469- 475.
    [85] Holand W, Schweiger M, Frank M. A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics. J Biomed Mater Res, 2000, 53(4):297-303.
    [86] Josephine F, Kenneth J, Megan R. et al, Fracture resistance ofall-ceramic inalysInt J Prosthodont, 2001,14(2): 109-114.
    [87] Tinschert J, Natt G, Mautsch W, et al. Fracture resistance of lithium disilicate-, alumina-, and zirconia-based three-unit fixed partial dentures: A laboratory study. Int J Prosthodent, 2001, 14(3):231-238.
    [88] Drummond JL, King TJ, Bapna MS, et al. Mechanical property evaluation of. pressable restorative ceramics. Dent Mater, 2000, 16(3):226-233.
    [89] Oh Sc, Dong JK, Luthy H, et al. Strength and microstructure of IPS Empress 2 glass-ceramic after different treatments. Int J Prothodont, 2000, 13(6): 468-472.
    [90] Sorensen JA, Sultan E, Condon JR. Three-body in vitro wear of enamel against dental ceramics. J Dent Res, 1999, 78(2):219-225.
    [91] 张克从,张乐德. 晶体生长科学与技术. 北京:科学出版社,1997.144.
    [92] 程慷果, 万菊林, 梁开明. 云母微晶玻璃析晶动力学的研究. 硅酸盐学报. 1997, 25(5):567-572.
    [93] Eftekhari Yekta B, Hashemi Nia S, Alizadeh P. The effect of B2O3, PbO and P2O5 on the sintering and machinability of fluormica glass–ceramics. J European Ceram Soc, 2005, 25: 899-902.
    [94] 胡安民, 梁开明, 周锋 等. 添加CeO2的Li2O-Al2O3-SiO2系微晶玻璃的晶化和性能研究. 硅酸盐学报. 2004, 32(6): 772-776.
    [95] 刘明丽, 吕培军. 切削陶瓷在 CAD/CAM 中的应用与发展. 口腔颌面修复学杂志. 2003, 4: 197-200.
    [96] Heffeman M J,Aquilino S A,Diza-Arnold AM,et a1.Relative translucency of six all-ceramic systems.Part I:Core materiaIs. J. Prosthet. Dent. 2002, 88(1):4-9.
    [97] GB/T16534-1996. 工程陶瓷维氏硬度试验方法.
    [98] Eftekhari Yekta B, Hashemi Nia S, Alizadeh P. The effect of B2O3, PbO and P2O5 on the sintering and machinability of fluormica glass–ceramics. J European Ceram Soc, 2005, 25: 899-902.
    [99] Chung K, Duh J. Properties of glass-ceramic materials for fixed partial denture construction. J Oral Rehabil. 1996, 23(9): 590-598.
    [100] Denry I, Lejus A, Thery J, et al. Preparation and characterization of a new lithium-containing glass–ceramic, Mat. Res. Bull. 1999, 34(10-11): 1615-1627.
    [101] Saraswati V, Additive induced crystallization of mica phase in K2O-SiO2-MgO-F glass-ceramic. J. Non-Cryst. Solids. 1990; 124(2-3); 254-257.
    [102] Grossman DG, Glass-ceramic articles with oriented mica crystals and method. U.S. Patent No. 3,905,824, 1975.
    [103] Habelitz S, Carl G, Russel C, et al. Mechanical Properties of oriented mica glass ceramic. J. Non-cryst Sol, 1997. 220:291-298.
    [104] H?che T, Habelitz S, Khodos II. Origin of unusual fluorophlogopite morphology in micaglass-ceramics of the system SiO2-Al2O3-MgO- K2O-Na2O-F. J. Cryst. Grow, 1998, 192:185-195.
    [105] Hoche T, et al. Crystal morphology engineering in SiO2- Al2O3- MgO- K2O- Na2O- F mica glass- ceramics. Acta Mater, 1999. 47 (3):735-744.
    [106] Habelitz S, H?che T, Hergt R, Carl G, Rüssel C. Microstructural design through epitaxial growth in extruded mica glass-ceramics. J. Mater. Sci, 1999, 47 (9):2831-40.
    [107] Cheng KG, Wang JL, Lang KM. Hot-pressed mica galss- ceramics with high-strength and toughness. J Am Ceram Soc, 1999. 82 (6):1633-1667.
    [108] Cheng KG, Wang JL, Lang KM. Enhanced mechanical - properties of oriented mica flass - ceramics.Mater lett, 1999. 39:350-353.
    [109] 程慷果, 万菊林, 梁开明. 热压云母微晶玻璃的晶体取向与力学性能. 无机材料学报,1997. 12(6) :779 - 784
    [110] Habelitz S, Carl G, Russel C, Marchetti K, Roeder E, Eifler D, Hergt R. Oriented mica glass– ceramic by extrusion and subsequent heat treatment. Glastech Ber Glass Sci Technol. 1997, 70, 86-92.
    [111] Denry IL, Holloway JA, Effect of Heat Pressing on the Mechanical Properties of a Mica-Based Glass-Ceramic. J Biomed Mater Res, 2004, 70:37-42.
    [112] Denry I, Baranta G, Holloway J.A, et al. Effect of processing variables on texture development in a mica-based glass ceramic. J Biomed Mater Res, 2003, 64:70–77.
    [113] Habelitz S, Carl G, Rüssel C, et al. Mechanical properties of oriented mica glass ceramic J. Non-Cryst. Solids. 1997, 220:291-298.
    [114] 李宏. 以钙云母为主相的高强度可切削牙科微晶玻璃的研究. 四川大学博士学位论文.
    [115] Lehman RL, Yoon SC, McLaren MG, et al. Mechanism of modifier release from lead-containing glasses in acid solution. Am Ceram Soc Bull, 1978; 57: 802-805.
    [116] Baik DS, No KS, Chun JS, et al. Mechanical properties of mica glass-ceramics, J. Am. Ceram. Soc. 1995, 78(5):1217-1222.
    [117] Baik DS, No KS, Chun JS, et al. Effect of the aspect ratio of mica crystals and crystallinity on the microhardness and machinability of mica glass-ceramics, J. Mater. Pro. Tech., 1997, 67(1-3): 50-54.
    [118] Nagarajan VS, Jahanmir S. The relationship between microstructureand wear of mica-containing glass-ceramics. Wear, 1996, 200(1-2):176-185.
    [119] Goto Y, Tsunge A, Mechanical Properties of Unidirectionally Oriented SiC-Whisker-Reinforced Si3N4 Fabricated by Extrusion and Hot-Pressing, J. Am. Ceram. Soc. 1993, 76(6): 14-20.
    [120] Peterson IM, Wuttiphan S, Lawn BR, et al, Role of microstructure on contact damage and strength degradation of micaceous glass-ceramics, Dent. Mater. 1998, 14(1):80-89.
    [121] Lehman RL, Yoon SC, McLaren MG, et al. Mechanism of modifier release from lead-containing glasses in acid solution. Am Ceram Soc Bull, 1978; 57:802-805.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700