牙科二硅酸锂玻璃陶瓷的制备及热压铸工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玻璃陶瓷是由基质玻璃在晶化热处理后得到的由晶相和玻璃相组成的多相固体材料,集中了陶瓷和玻璃的优点,在牙科全瓷修复材料中占有重要地位。二硅酸锂晶体具有适宜的热膨胀系数和光折射系数,与玻璃相能够达到良好的热力学和光学匹配,使得二硅酸锂玻璃陶瓷在具备较高机械性能的同时,仍能保持优秀的半透光特性,实现了高强度和美学效果的统一,在全瓷美学修复领域具有广阔的应用前景。本课题的目的是通过分析玻璃成分组成、成核剂含量、晶化热处理程序对玻璃陶瓷微观结构和性能的影响,制备高强度牙科二硅酸锂玻璃陶瓷;并对该实验玻璃陶瓷的热压铸工艺进行初步的研究,筛选最佳热压铸参数,分析热压铸对材料结构和性能的影响,为研发拥有自主知识产权的牙科玻璃陶瓷产品提供实验基础。本课题共分两部分:
    
     第一部分二硅酸锂玻璃陶瓷的制备
     1.基于Li2O-SiO2二元玻璃系统设计了多种玻璃组成,通过对玻璃熔制特性、外观、玻璃陶瓷晶相组成、微观结构和机械性能等方面进行分析筛选,确立了Li2O–SiO2–K2O–Al2O3–ZrO2系统作为本课题基质玻璃系统。P2O5作为本系统玻璃的成核剂,具有良好的促进晶化能力。
     2.分析了添加不同含量成核剂(P2O5)的基质玻璃在两种晶化热处理制度后的析晶特征,微观结构和机械性能。结果表明P2O5含量和热处理制度对二硅酸锂玻璃陶瓷的微观结构和性能具有显著的影响。成核剂含量为0.5mol.%时,基质玻璃以表面晶化为主,当含量达到1.0mol.%后,主要表现为整体晶化特征。随着成核剂含量的提高,DTA曲线晶化峰温度呈下降趋势,玻璃陶瓷晶化程度提高,析出晶体尺寸减小,从长大的棒状晶形逐渐转变为球形晶和短针形晶体并存的多晶型微观结构。阶梯制晶化热处理可赋予玻璃陶瓷更稳定的微观结构,有利于获得更好的机械性能。P2O5含量为1.0mol.%,采用阶梯制晶化热处理的二硅酸锂玻璃陶瓷具有稳定的微观结构和理想的机械性能。
     3.分析了晶化热处理温度对Li2O–SiO2–K2O–Al2O3–ZrO2-P2O5系统玻璃陶瓷结构和性能的影响。结果表明:随着晶化温度的提高,析晶度显著增加,Li2Si2O5晶体含量增加,并成为主要晶相;晶体尺寸逐渐增大,晶体间发生融合,从球状晶体为主逐渐转变为棒状晶体为主;弯曲强度和对比度均表现出不同程度的增高趋势。C组晶化热处理程序(650℃(1h)+900℃(1h))制得的二硅酸锂玻璃陶瓷具有最高的弯曲强度和适当的半透明特性。
     4.对比分析了实验二硅酸锂玻璃陶瓷(ELDC)和IPS e.max Press玻璃陶瓷的晶相组成,微观结构和机械性能,探讨了微观结构与性能的关系,并对牙科二硅酸锂玻璃陶瓷的自增韧机制进行了分析。实验玻璃陶瓷ELDC和e.max Press均以二硅酸锂为主晶相,晶相含量60-70%,棒状二硅酸锂晶体均匀分布,大小为2-5μm,形成互锁微结构。两种二硅酸锂玻璃陶瓷间机械性能无显著性差异。二硅酸锂玻璃陶瓷较高的机械性能与其晶相组成和微观结构紧密相关,高晶相含量、残余应力场和互锁微结构可能在牙科二硅酸锂玻璃陶瓷自增韧机制中发挥重要作用。
     第二部分实验二硅酸锂玻璃陶瓷应用牙科热压铸工艺的研究
     5.通过热压铸参数的正交优化设计,分析热压温度和时间对实验二硅酸锂玻璃陶瓷ELDC的铸入百分比、气孔率和强度的影响。结果表明实验玻璃陶瓷可以应用现有的牙科热压铸造设备进行热压成型。热压温度950℃、保温时间15min、热压时间5min,为实验二硅酸锂玻璃陶瓷ELDC的最佳热压铸参数。
     6.分析热压铸对实验二硅酸锂玻璃陶瓷(ELDC)晶相组成,微观结构和化学稳定性的影响。结果表明:热压铸对实验二硅酸锂玻璃陶瓷的晶相组成和晶体含量无显著影响,热压前后玻璃陶瓷均是以二硅酸锂为主晶相;热压后二硅酸锂晶体尺寸轻度增大,呈现出一定程度的定向排列趋势;热压前后实验二硅酸锂玻璃陶瓷均表现出良好的化学稳定性。
     7.应用前期制备的二硅酸锂玻璃陶瓷,利用牙科热压铸技术制作全瓷修复体。结果表明:ELDC制作的全瓷基底冠铸造完整,结构致密,无气孔存在,边缘密合;与IPS e.max Ceram饰瓷形成良好的结合,界面致密,无任何裂隙存在;制作的全瓷修复体形态美观,具有良好的半透光特性,符合牙科美学修复材料的要求,展现出理想的应用前景。
Glass-ceramics are composed of crystalline phases and a vitreous matrix phase. These materials combine the advantages of glass and ceramic, and play an important role in dental all-ceramic restorations. Oweing to the suitable coefficient of thermal expansion and refractive index of lithium disilicate crystals, lithium disilicate glass-ceramics could obtain high mechanical strength and translucent effect simultaneously, which show a brilliant future in dental aesthetic restorations. The purpose of the study was to investigate the effects of glass composition, content of P2O5 and heat treatment procedures on microstructure and properties of final glass-ceramic products. And the possibility of application of experimental lithium disilicate glass-ceramic in dental heat-pressing technique was also studied. The appropriate heat-pressing parameters were determined and the influence of heat-pressing on microstructure and properties was also analyzed, which could provide valuable information for developing novel dental glass-ceramic with intellectual property.
     The whole experiments were composed of two parts.
     Part one: the preparation of lithium disilicate glass-ceramic
     1. In this experiment, several glasses were designed based on the Li2O-SiO2 binary glass system. After analysis of crystalline composition, microstructure and mechanical properties, Li2O–SiO2–K2O–Al2O3–ZrO2 glass system was selected for following investigations. P2O5 as nucleation agent could promote the crystallization of base glass.
     2. The effect of P2O5 content and heat treatment on the crystallization, microstructure and properties of glass-ceramic was studied. Results demonstrated that surface crystallization occurred in the glass ceramic with P2O5 content of 0.5mol.%, and glass-ceramics with P2O5 content in the range of 1.0-2.0 mol.% showed obvious volume crystallization characteristics. With an increasing P2O5 content, the crystallization temperature of parent glasses decreased. There appeared a decreasing trend in crystal size and flexural strength as P2O5 content increased. Glass ceramic with P2O5 content of 1.0mol.% after two-stage heat treatment showed the highest flexural strength and stable microstructure.
     3. The effect of heat treatment temperature on microstructure and properties of glass-ceramic (Li2O–SiO2–K2O–Al2O3–ZrO2-P2O5) was studied. Results demonstrated that as temperature increased, the content of Li2Si2O5 increased and became the main crystallize phase. The crystal size also increased, even from spherical shape into bar shape (2-5μm). Flexural strength and contrast ratio showed an increasing trend followed the increased temperature. Glass-ceramic in group C (650℃(1h)+900℃(1h)) showed the highest flexural strength and suitable translucent characteristics, in which appropriate crystal size and interlocking microstructure were found.
     4. The crystalline composition, microstructure and mechanical properties of experimental lithium disilicate glass-ceramic (EDLC) and IPS e.max Press were compared. No obvious difference in mechanical properties and crystalline composition was found between these two materials. The high mechanical properties of dental lithium disilicate glass-ceramics were attributed to the relatively high crystalline content, residual stress and the interlocking microstructure.
     Part two: the application of experimental lithium disilicate glass-ceramic in dental heat-pressing technique
     5. The effect of different heat-pressing procedures on the porosity and flexural strength was studied. The feasibility of processing ELDC with current dental heat-pressing equipments was verified. The appropriate parameters were determined as follow: heat-pressing temperature-950℃; holding time-15min; pressing time-5min.
     6. The influence of dental heat-pressing on the crystalline composition, microstructure and chemical stability of ELDC was studied. Dental heat-pressing had no influence on the crystalline composition and content. Lithium disilicate (Li2Si2O5) represented the main crystalline phase for both ELDC glass-ceramics before or after heat-pressing. After pressing, crystal size increased slightly and seemed to align along the direction of pressing. Superior chemical stability was found for both glass-ceramics before or after heat-pressing.
     7. In this experiment, all-ceramic restoratives were made with experimental lithium disilicate glass-ceramic using dental heat-pressing technique. The cores made from ELDC were intact and showed superior marginal fitness. No gap was found at the interface between ELDC and veneers ceramic. All restoratives showed good appearance and superior translucent characteristics.
引文
1. Sabelle L. Denry. Recent advances in ceramics for dentistry. Crit Rev Oral Biol Med. 1996, 7 (2):134-143.
    2. Jones DW. Development of dental ceramics: An historical perspective. Dent Clini North Am. 1985, 29(4): 621-644.
    3. Weinstein M,KatzS,Weinstein AB. Fused porcelain-to-metal teeth,U.S.Patent No.3052982.1962 .Washington,DC.
    4. Mclean JW. Evolution of dental ceramics in the twentieth century. J Prosthet Dent.2001, 85(l):61-66.
    5. Bergman M, Bergman B, S?remark R. Tissue accumulation of nickel released due to eleetrochemical corrosion of non-precious dental casting alloys. J Oral Rehabil. 1980, 7(4):325-330.
    6.张怡,杜传诗.烤瓷用镍基合金的体外细胞毒性实验.华西腔医学杂志.1990, 8(l):19-22.
    7. Pang IC, Gilbert JL, Chai J, et al. Bonding characteristics of low-fusing porcelain bonded to pure titanium and palladium-copper alloy. J Prosthet Dent. 1995, 73(1):17-25.
    8. Nakajima H, Okabe T. Titanium in dentistry: development and research in the U.S.A. Dent Mater J. 1996, 15(2):77-90.
    9. McLean JW, Hughes TH. The reinforcement of dental porcelain with ceramic oxides. Br Dent J. 1965, 119(6):251-67.
    10. Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: A systematic review. J Prosthet Dent. 2007, 98(5):389-404.
    11.程金树,李宏,汤李缨等.微晶玻璃.北京:化学工业出版社,2006.
    12.周敏,杨觉明,周建军,等.玻璃陶瓷的研究与发展.西安工业学院学报. 2001, 21(4):343-348.
    13. Jason A. Griggs. Recent advances in materials for all-ceramic restorations. Dent Clin N Am. 2007, 51:713–727.
    14. Martin N, Jedynakiewicz NM. Clinical performance of CEREC ceramic inlays: a systematic review. Dent Mater,1999,15(1):54–61.
    15. Bapna MS, Mueller HJ. Study of devitrification of Dicor glass. Biomaterials,1996,17(21):2045-2052.
    16. Fasbinder DJ. Clinical performance of chairside CAD/CAM restorations. J Am Dent Assoc. 2006, 137(Suppl):22S-31S.
    17. Shriharsha Pilathadka, Dagmar Vahalova. Contemporary all-ceramic materials, Part 1. ACTA Medica. 2007, 50(2):101–104.
    18. Dong JK, Luthy H, Wohlwend A, et al. Heat-pressed ceramics: technology and strength. Int J Prosthodont. 1992,5(1):9-16.
    19. Grossman DG. Machinable glass-ceramics based on tetrasilicic mica. J Am Ceram Soc. 1972, 55(9):446-449.
    20. Thompson JY, Bayne SC, Heymann HO. Mechanical properties of a new mica-based machinable glass ceramic for CAD/CAM restorations. J Prosthet Dent. 1996, 76(6):619-623.
    21. Grossman DG. Cast glass ceramics. Dent Clin North Am. 1985, 29(4): 725-739.
    22. Tinschert J, Zwez D, Marx R, et al. Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconia-based ceramics. J Dent. 2000, 28(7): 529-535.
    23. Malament KA, Socransky SS. Survival of Dicor glass-ceramic dental restorations over 14 years: Part I. Survival of Dicor complete coverage restorations and effect of internal surface acid etching, tooth position, gender, and age. J Prosthet Dent. 1999, 81(1):23-32.
    24. Malament KA, Socransky SS. Survival of Dicor glass-ceramic dentalrestorations over 14 years. Part II: effect of thickness of Dicor material and design of tooth preparation. J Prosthet Dent. 1999, 81(6):662-667.
    25. Guess PC, Kulis A, Witkowski S, et al. Shear bond strengths between different zirconia cores and veneering ceramics and their susceptibility to thermocycling. Dent Mater. 2008, 24(11):1556-1567.
    26. Oh SC, Dong JK, Lüthy H, et al. Strength and microstructure of IPS Empress 2 glass-ceramic after different treatments. Int J Prosthodont. 2000, 13(6):468-472.
    27. Nakamura T, Ohyama T, Imanishi A, et al. Fracture resistance of pressable glass-ceramic fixed partial dentures. J Oral Rehabil. 2002, 29:951-955.
    28. H?land W, Schweiger M, Frank M, et al. A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics. J Biomed Mater Res. 2000, 53(4):297-303.
    29. Esquivel-Upshaw JF, Chai J, Sansano S, et al. Resistance to staining, flexural strength, and chemical solubility of core porcelains for all-ceramic crowns. Int J Prosthodont. 2001, 14(3):284-288.
    30. Stappert CF, Att W, Gerds T, et al. Fracture resistance of different partial-coverage ceramic molar restorations: An in vitro investigation. J Am Dent Assoc. 2006, 137:514-522.
    31. Haselton DR, Diaz-Arnold AM, Hillis SL. Clinical assessment of high-strength all-ceramic crowns. J Prosthet Dent. 2000, 83:396-401.
    32. Heffernan MJ, Aquilino SA, Diaz-Arnold AM, et al. Relative translucency of six all-ceramic systems. Part II: core and veneer materials. J Prosthet Dent. 2002, 88:10-15.
    33. Magne P, Belser U. Esthetic improvements and in vitro testing of In-Ceram Alumina and Spinell ceramic. Int J Prosthodont. 1997, 10:459-466.
    34. Sundh A, Sjogren G. A comparison of fracture strength of yttrium-oxide- partially-stabilized zirconia ceramic crowns with varying core thickness shapes and veneer ceramics. J Oral Rehabil. 2004, 31:682-688.
    35. Andersson M, Oden A. A new all-ceramic crown. A dense-sintered, high-purity lumina coping with porcelain. Acta Odonto Scand. 1993, 51:59-64.
    36. Fradeani M, D'Amelio M, Redemagni M, et al. Five-year follow-up with Procera all-ceramic crowns. Quintessence Int. 2005, 36(2):105-113.
    37. Odén A, Andersson M, Krystek-Ondracek I, et al. Five-year clinical evaluation of Procera AllCeram crowns. J Prosthet Dent. 1998, 80(4):450-456.
    38.巢永烈,孟玉坤,廖运茂,等. GI-II型粉浆涂塑渗透陶瓷试件的弯曲强度测试.口腔材料器械杂志. 1998, 7(2): 63-65
    39.陈吉华,周忠慎,艾绳前,等.高强度铝瓷全冠材料的研制—核瓷强度的研究.实用口腔医学杂志. 1995,11(1):48-51.
    40. Pr?bster L. Four year clinical study of glass-infiltrated alumina crowns. J Oral Rehil.1996, 23(3):147-151
    41. Christel P, Meunier A, Dorlot JM, et al. Biomechanical compatibility and design of ceramic implants for orthopedic surgery. Ann N Y Acad Sci. 1988, 523:234-256.
    42. Piwowarczyk A, Ottl P, Lauer HC, et al. A clinical report and overview of scientific studies and clinical procedures conducted on the 3M ESPE Lava All-Ceramic System. J Prosthodont. 2005, 14:39-45.
    43. Raigrodski AJ. Contemporary materials and technologies for all-ceramic fixed partial dentures: a review of the literature. J Prosthet Dent. 2004, 92:557-62.
    44. Raigrodski AJ. Contemporary all-ceramic fixed partial dentures: a review. Dent Clin North Am. 2004, 48:531-544.
    45. Lazar DR, Bottino MC, Ozcan M, et al. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics. Dent Mater. 2008, 24(12):1676-1685
    46. Gup ta TK, Bechtold JH, Kuznicki RC. Stabilization of tetragonal phase inpolycrystalline zirconia. J Mater Sci. 1977, 12(12):2421-2426.
    47. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999, 20:1-25.
    48. Devigus A, Lombardi G. Shading Vita In-ceram YZ substructures: influence on value and chroma, part II. Int J Comput Dent. 2004, 7(4):379-388
    49. Suttor D. Lava zirconia crowns and bridges. Int J Comput Dent. 2004, 7(1):67-76.
    50. Addi S, Hedayati-Khams A, Poya A, et al. Interface gap size of manually and CAD/CAM-manufactured ceramic inlays/onlays in vitro. J Dent. 2002, 30:53-58.
    51. Molin MK, Karlsson SL. Five-year clinical prospective evaluation of zirconia-based Denzir 3-unit FPDs . Int J Prosthodont. 2008, 21(3):223-7
    52. Hobo S, Iwata T. Castable apatite ceramics as a new biocompatible restorative material. Quint Int. 1985, 2:135-141.
    53. Seghi RR, Daher T, Caputo A. Relative flexural strength of dental restorative ceramics. Dent Mater. 1990;6:181-184
    54. Dong JK, Luthy H, Wohlwend A, et al. Heat-pressed ceramics: technology and strength. Int J Prosthodont. 1992, 5:9-16.
    55. Seghi RR, Sorensen JA. Relative ?exural strength of six new ceramic materials. Int J Prosthodont. 1995, 8:239-246.
    56.何帅,陈吉华,苗鸿雁,等.氧化锆陶瓷口腔修复材料复合粉体的研制.中国美容医学. 2001, 02:4-6.
    57.张斌,陈吉华,李秦新.牙科用Ce-Y-Mg复合稳定氧化锆增韧陶瓷的基本性能.口腔医学纵横. 2002, 01:10-12
    58. Kosmac T, Oblak C, Jevnikar P, et al. The effect of surface grinding and sandblasting on ?exural strength and reliability of Y-TZP zirconia ceramic. Dent Mater. 1999, 15:426-433.
    59. Studart AR, Filser F, Kocher P, et al. Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges. DentMater. 2007, 23: 106-114.
    60.乔冠军,金志诰.微晶玻璃的发展:组成、性能及应用.硅酸盐通报. 1994, 13(4):52-56.
    61.侯朝霞,苏春辉.玻璃陶瓷的研究与发展.功能材料. 2004,34:379-383.
    62.李天伶.β-锂辉石的晶体化学性质及其低热膨胀性的结构解释.硅酸盐通报. 1995, 14(2):27-33.
    63.任祥忠,张培新,梁讯,等. MgO-Al2O3-SiO2系统微晶玻璃晶化行为研究.深圳大学学报理工版.2007; 24(3):299-304
    64.陈伟民,英廷照,陈杨枝,等.氟硅酸盐微晶玻璃的热膨胀性能研究[ J ].无机材料学报. 1999;14(2):271
    65. Holand W, Rheinberger V, Schweiger M. Control of nucleation in glass ceramics. Phil Trans R Soc Lond A. 2003, 361:575–589.
    66. Beall G H. Design and properties of glass-ceramics. Annu Rev Mater Sci. 1992, 22: 91-119.
    67.马新沛,李光新,沈莲,等.一种新型云母玻璃陶瓷的切削行为与显微结构.无机材料学报. 2004, 19(1): 48-52.
    68.张飚,钱法汤,段兴龙,等.白榴石微晶化增强牙科玻璃陶瓷机制的实验研究.中华口腔医学杂志. 2002, 37(4):260-264.
    69. Wood DJ, Bubb NL, Clifford A, et al. An investigation into the crystallization of Dicor glass-ceramic. J Mater Sci Letters. 1999, 18(13): 1001-1002.
    70.刘允超.烧结法微晶玻璃的研究.陶瓷研究. 1996, 11(3):146-148.
    71. Tancred DC, Carr AJ, McCormack BA. The sintering and mechanical behavior of hydroxyapatite with bioglass additions. J Mater Sci Mater Med. 2001, 12(1):81-93.
    72. Jerzy Zarxyki. Past and present of sol-gel science and technology. J Sol-gel Sci Tech.1997, (8):17-22.
    73.曾庆冰,李效东,陆逸.溶胶-凝胶法基本原理及其在陶瓷材料中的应用.高分子材料科学与工程. 1998,4 (2):139-145.
    74. Nogami M, Nagasaka K, Kadono K. Toughened glass-ceramics containing ZrO2 and Al2O3 prepared by the sol-gel process from metal alkoxides. J Non-Cryst Solids. 1988, 100:298-302.
    75. Hamasaki T, Eguchi K, Koyanagi Y. Preparation and characterization of machinable mica glass-ceramics by the sol-gel process. J Am Ceram Soc. 1988, 71(12): 1120-1124.
    76.李勃,周济,岳振星,马振伟.Sol-Gel法制备B2O3-P2O5-SiO2系低介玻璃陶瓷.无机材料学报. 2000, 15(6):977-982.
    77.杨觉明,雷聚超,严文.溶胶凝胶法制备BAS玻璃陶瓷.西安工业学院学报. 1999, 19(4):294-306.
    78. Piche PW, O'Brien WJ, Groh CL, et al. Leucite content of selected dental porcelains. J Biomed Mater Res. 1994, 28:603-609.
    79. Hoard RJ, Hom JJ, Hewlett ER, et al. Comparison of casting ability of castable ceramic and type III gold. J Prosthet Dent. 1989, 61(1):45-47.
    80. Nahara Y, Sadamori S, Hamada T. Clinical evaluation of castable apatite ceramic crowns. J Prosthet Dent. 1991, 66(6):754-758.
    81. Sorensen JA, Choi C, Fanuscu MI, et al. IPS Empress crown system three-year clinical trial results. J Calif Dent Assoc. 1998, 26:130-136.
    82. Dong JK, Luthy H, Wohlwend A, et al. Heat pressed Ceramics: technology and strength. Int J Prosthodont. 1992, 5: 9-16.
    83. Cattell MJ, Knowles JC, Clarke RL, et al. The biaxial ?exural strength of two pressable ceramic systems. J Dent. 1999, 27:183-196.
    84. Gorman CM, McDevitt WE, Hill RG. Comparison of two heat-pressed all-ceramic dental materials. Dent Mater. 2000, 16:389-395.
    85. Bindl A, M?rmann WH. An up to 5-year clinical evaluation of posterior In-Ceram CAD/CAM core crowns. Int J Prosthodont. 2002, 15(5):451-456.
    86. Scotti R, Catapano S, D’Elia A. A clinical evaluation of In-Ceram rowns. Int J Prosthodont. 1995, 8(4):320-323.
    87. Mormann W H, Bindl A. The new creativity in ceramic restorations: Dental CAD/CAM. Quint Int. 1996; 27(12): 821-828.
    88. Raigrodski AJ, Chiche GJ, Potiket N, et al. The efficacy of posterior three-unit zirconium-oxide–based ceramic fixed partial dental prostheses. J Prosthet Dent. 2006, 96(4):237-244.
    89. Sailer I, Fehér A, Filser F, et al. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont. 2007, 20(4):383-388.
    90. Tinschert J, Schulze KA, Natt G, et al. Clinical behavior of zirconia-based fixed partial dentures made of DC-Zirkon: 3-year results. Int J Prosthodont. 2008, 21(3):217-222.
    91. Denissen H, Dozic A, van der Zel J, et al. Marginal fit and short-term clinical performance of porcelain-veneered CICERO, CEREC, and Procera onlays. J Prosthet Dent. 2000, 84:506-513.
    92. Chai J, Takahashi Y, Sulaiman F, et al. Probability of fracture of all-ceramic crowns. Int J Prosthodont. 2000, 13:420-424.
    93. Fradeani M, D’Amelio M, Redemagni M, et al. Five-year follow-up with Procera all-ceramic crowns. Quint Int. 2005, 36:105-113.
    94. May KB, Russell MM, Razzoog ME, et al. Precision of fit: the Procera All Ceram crown. J Prosthet Dent. 1998, 80:394-404.
    95. Itinoche KM, Ozcan M, Bottino MA, et al. Effect of mechanical cycling on the flexural strength of densely sintered ceramics. Dent Mater. 2006, 22(11): 1029-1034.
    96. P.C.Soares Jr, E.D.Zanotto, V.M.Fokin, et al. TEM and XRD study of early crystallization of lithium disilcate glass. J Non-Crystal Solids. 2003, 331(3): 217-227.
    97. ISO 6872. Dental ceramic. Geneva, Switzerland: International Organization for Standardization; 1995.
    98.张飚,钱法汤,段兴龙,等,白榴石微晶化增强牙科玻璃陶瓷热处理温度制度的研究.中华口腔医学杂志. 2003, 38:143-146.
    99.孙祥云,秦小梅,杨涛,等.含氧化锆可切削玻璃陶瓷的成分研究.稀有金属材料与工程. 1999, 28(6):383-385.
    100.刘晓秋,宋文植,孙宏晨.氧化钾的含量对牙科微晶玻璃析晶性能的影响.华西口腔医学杂志. 2006, 24(5):407-409.
    101.刘丽辉,邓再德,英廷照,等.晶核剂对Li2O-Al2O3-SiO2系统微晶玻璃热膨胀系数的影响.玻璃与搪瓷. 2001, 24(2):10-17.
    102.Apel E, van’t Hoen C, Rheinberger V,et al. In?uence of ZrO2 on the crystallization and properties of lithium disilicate glass-ceramics derived from a multi-component system. Journal of the European Ceramic Society. 2007, 27:1571-1577.
    103.Tzeng J M, Hun J G, et al. Al2O3- and ZrO2-modified dental glass ceramics. J Mater Sci. 1993, 28:6127-6135.
    104.Baik DS, No KS, Chun John S-S. Mechanical properties of mica glass-ceramics. J Am Ceram Soc. 1995, 78(5):1217-1222.
    105.Xu XJ, Ray CS, Day DE. Nucleation and crystallization of Na2O·2CaO·3SiO2 glass by differential thermal analysis. J Am Cream Soc. 1991, 74:909-914.
    106.杨于兴,漆睿.X射线衍射分析.上海交通大学出版社,1988.
    107.Diane Holland, Yaseen Iqbal, Peter James, et al. Early stages of crystallisation of lithium disilicate glasses containing P2O5-An NMR study. J Non-Cryst Solids. 1998, 232-234:140-146
    108.H?land W, Apel E, van‘t Hoen C, et al. Studies of crystal phase formations in high-strength lithium disilicate glass–ceramics. J Non-Cryst Solids. 2006, 352:4041-4050.
    109.郑欣.二硅酸锂微晶玻璃的制备及机械性能研究.哈尔滨工业大学博士论文。
    110.H?land W, Rheinberger V, Apel E, et al. Principles and phenomena ofbioengineering with glass-ceramics for dental restoration. Journal of the European Ceramic Society. 2007, 27:1521-1526.
    111.Harper H, McMillan PW. The formation of glass-ceramic microstructures. Physics and Chemistry of Glasses. 1972, 13(4):97-101.
    112.Hammetter WF, Loehman RE. Crystallization kinetics of a complex lithium silicate glass-ceramic.J Am Ceram Soc. 1987, 70(8):577-582.
    113.Zheng X, Wen G, Song L, et al. Effects of P2O5 and heat treatment on crystallization and microstructure in lithium disilicate glass ceramics. Acta Materialia. 2008, 56:549-558.
    114.Wakasugi T, Kadoguchi T, Ota R. Evaluation of the number density of nuclei in Li2O·2SiO2 glass by DTA method. J Non-Cryst Solids. 2001, 290: 64-72.
    115.Cramer von Clausbruch S, Schweiger M, H?land W, et al. The effect of P2O5 on the crystallization and microstructure of glass-ceramics in the SiO2–Li2O–K2O–ZnO–P2O5 system. J Non-Cryst Solids. 2000, 263-264: 388-394.
    116.Della Bona A, Mecholsky JJ Jr, Anusavice KJ. Fracture behavior of lithia disilicate- and leucite-based ceramics. Dental Materials. 2004; 20:956-962.
    117.Chu FC, Chow TW, Chai J. Contrast ratios and masking ability of three types of ceramic veneers. J Prosthet Dent. 2007, 98(5):359-364.
    118.Borom MP, Turkalo AM, Doremus RH. Strength and microstructure in lithium disilicate glass-ceramics. J Am Ceram Soc. 1975, 58:385-389.
    119.Wen G, Zheng X, Song L. Effects of P2O5 and sintering temperature on microstructure and mechanical properties of lithium disilicate glass-ceramics. Acta Materialia. 2007, 55: 3583-3591.
    120.Headley TJ, Loehman RE. Crystallization of a glass ceramic by epitaxial growth. J Am Ceram Soc. 1984, 67:620-625.
    121.Heffernan MJ, Aquilino SA, Diaz-Arnold AM, et al. Relative translucency of six all-ceramic systems. Part I: Core materials. J Prosthet Dent. 2002,88(1): 4-9.
    122.Antonson SA, Anusavice KJ. Contrast ratio of veneering and core ceramics as a function of thickness. Int J Prosthodont. 2001, 14(4):316-320.
    123.Schweiger M, H?land W, Frank M, et al. IPS Empress 2: A new pressable high-strength glass–ceramic for esthetic all-ceramic restorations. Quint Dental Technol. 1999, 22:143-151.
    124.Albakry M, Guazzato M, Swain MV. Biaxial ?exural strength, elastic moduli, and X-ray diffraction characterization of three pressable all-ceramic materials. J Prosthet Dent. 2003, 89:374-380.
    125.Berge HX, Sorensen JA, Edelhoff D. Split energy factor theory in fracture analysis of dental ceramics. J Dent Res. 2001, 80:57.
    126.Sorensen JA, Berge HX, Edelhoff D. Effect of storage media and fatigue loading on ceramic strength. J Dent Res. 2000, 79:217.
    127.Anusavice KJ, Della BA, Mecholsky JJ. Fracture behavior of leucite- and lithia- disilicate-based hot-pressed ceramics. J Dent Res. 2001, 80:544.
    128.Guazzato M, Albakry M, Ringer SP, et al. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent Mater. 2004, 20:441-448.
    129.H?land W, Beall GH, Glass–Ceramic Technology, The American Ceramics Society, Westerville, OH, USA, 2002.
    130.Fischer H, Marx R. Fracture toughness of dental ceramics: comparison of bending and indentation method. Dent Mater. 2002, 18:12-19.
    131.Edelhoff D, Sorensen JA. Light transmission through all-ceramic framework materials and bovine dentin. J Dent Res. 2001, 80:600.
    132.Denry IL, Holloway JA. Effect of post-processing heat treatment on the fracture strength of a heat-pressed dental ceramic. J Biomed Mater Res Part B: Appl Biomater. 2004, 68B:174-179.
    133.Fischer H, Dautzenberg G, Marx R. Nondestructive estimation of the strength of dental ceramic materials. Dent Mater. 2001, 17:289-295.
    134.Rice RW. Grain size and porosity dependence of ceramic fracture energy and toughness at 22°C. J Mater Sci. 1996, 31:1969-1983.
    135.Jones DW, Wilson HJ. Porosity in dental ceramics. Brit Dent J. 1975, 138:16-21.
    136.Cheung KC, Darvell BW. Sintering of dental porcelain: effect of time and temperature on appearance and porosity. Dent Mater. 2002, 18:163-173.
    137.Zhao YH, Chen JH, Ma XP. Effect of dental heat pressing on the microstructure in SiO2-K2O-B2O3-MgO-F glass-ceramic. Int J Applied Ceramic Technology. 2008, 5(6):649-656.
    138.Albakry M, Guazzato M, Swain MV. Influence of hot pressing on the microstructure and fracture toughness of two pressable dental glass-ceramics. J Biomed Mater Res B Appl Biomater. 2004, 71(1):99-107.
    139.Martin JW, Doherty RD, Cantor B. Stability of microstructure in metallic systems (2nd). Cambridge: Cambridge University Press; 1997.
    140.赵英华,陈吉华,马新沛,等.牙科热压铸造工艺对牙科低熔云母玻璃陶瓷显微结构的影响.实用口腔医学. 2008, 5(6):649-656.
    141.Habelitz S,Carl G,Rnssei s,et a1. Mechanical properties of oriented mica glass ceramic. J Non-Cryst solid. l997, 220(2-3):29l-298.
    142.Milleding P, Karlsson S, Nyborg L. On the surface elemental composition of non-corroded and corroded dental ceramic materials in vitro. J Mater Sci Mater Med. 2003, 14(6):557-566.
    143.Milleding P, Wennerberg A, Alaeddin S, et al. Surface corrosion of dental ceramics in vitro. Biomaterials. 1999, 20(8):733-746.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700