齿科二硅酸锂玻璃陶瓷的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玻璃陶瓷是由基质玻璃通过控制晶化制得的晶相和玻璃相均匀分布的多晶固体。经过一定的热处理程序后,基质玻璃中的一部分玻璃相转化为晶相,提高了材料的强度;此外,由于玻璃相的存在,玻璃陶瓷展现出了良好的半透光性,可以很好地模拟自然牙的光泽与透光性。因此,玻璃陶瓷集中了陶瓷和玻璃的特点,实现了高强度和良好美观性的统一,成为前牙美学修复的首选材料。本课题的目的是研究前期制备的实验二硅酸锂玻璃陶瓷(ELDC)应用牙科热压铸工艺的可行性,分析热压铸处理对玻璃陶瓷微观结构和性能的影响,探讨实验玻璃陶瓷烧结过程的影响因素;评价实验玻璃陶瓷与氟磷灰石饰瓷之间的结合强度及其对冷热循环的敏感性,并分析不同的表面处理对结合强度的影响;采用烧结法二次着色工艺制备单色梯度实验玻璃陶瓷,研究添加色料添加对实验玻璃陶瓷性能的影响以及不同色料浓度对色度值和反射光谱的影响。本课题分为三部分:
     第一部分实验玻璃陶瓷应用牙科热压技术的研究
     1)分析不同的热压铸条件对实验玻璃陶瓷铸入百分比、挠曲强度的影响,筛选最佳的热压铸工艺参数。同时用该材料制备实验性修复体,探讨其应用牙科热压铸工艺加工全瓷修复体的可行性。结果表明,实验二硅酸锂玻璃陶瓷具有理想的热压铸性能,能够应用现有的牙科热压铸设备进行热压成型,并获得较高的力学性能。制作的实验性修复体外形完整,美观性好,展示了良好的应用前景。
     2)比较分析热压铸对实验玻璃陶瓷晶相组成和微观结构的影响,探讨微观结构与性能的关系。结果表明:热压铸对实验玻璃陶瓷的晶相组成和含量无显著影响,热压前后玻璃陶瓷均是以二硅酸锂为主晶相,另外还有少量的磷酸锂晶体。实验玻璃陶瓷经牙科热压铸处理后,晶体呈现出一定程度的定向排列趋势,弯曲强度提高。
     3)对三种不同粒度的实验二硅酸锂玻璃粉体在经过不同的热处理制度后的性能和微观结构进行比较,并分析热压铸前后不同粒度的玻璃陶瓷之间的性能和微观结构,探讨实验玻璃陶瓷烧结过程的影响因素。结果表明:玻璃粉体的粒度变化对实验玻璃陶瓷的烧结行为有显著影响。不同粒度的实验玻璃陶瓷热压前后的弯曲强度均有显著差异。
     第二部分实验玻璃陶瓷与饰瓷结合强度的相关研究
     4)评价实验二硅酸锂玻璃陶瓷与氟磷灰石饰瓷之间的结合强度及其对冷热循环的敏感性。结果表明:实验玻璃陶瓷与氟磷灰石饰瓷之间能够形成良好的结合,界面无任何裂隙存在,其结合强度值与IPS e.max系统无显著差异,能够满足临床需求。冷热循环对二者间的结合强度无显著影响,表明二硅酸锂玻璃陶瓷与氟磷灰石饰瓷结合界面的长期耐久性。
     5)分析实验玻璃陶瓷表面不同的处理方法对其与氟磷灰石饰瓷结合强度的影响。结果表明:不同的表面处理方法对实验玻璃陶瓷与饰瓷的结合强度有显著影响。其中,表面打磨配合喷砂处理能够获得最高的结合强度。
     第三部分实验二硅酸锂玻璃陶瓷的着色研究
     6)通过在基础玻璃粉中添加不同质量百分比的锆铁红、锆铈镨黄和镍黑三种高温陶瓷色釉料,通过改良的烧结法二次着色工艺进行着色研究。结果表明通过烧结法二次着色工艺能够制备整体内着色的不同浓度梯度的二硅酸锂玻璃陶瓷块,并且着色内外均匀、稳定。
     7)分析添加色料对实验玻璃陶瓷微观结构和力学性能的影响。结果表明:在实验采用的浓度范围内,添加三种色料对玻璃陶瓷陶瓷烧结体的机械性能、晶相结构以及微观形貌均无显著性影响,添加三种色料是安全可靠的,对烧结体的稳定性没有显著影响。
     8)研究了不同色料浓度对实验玻璃陶瓷色度值和反射光谱的影响。结果表明:三种不同的色料对实验玻璃陶瓷色度值的影响不同;随着色料浓度的增加,在特定的光谱吸收波长区内,光谱反射率曲线呈现出良好的递减趋势,而全波长K/S曲线则呈现出良好的递增趋势;本实验中所得的单色基础数据基本符合计算机配色数据库的要求。
Glass-ceramics are fine-grained polycrystalline materials based on suitable heat treatment and controlled crystallization. After heat treatment, the glass-ceramics can obtain high mechanical strength owing to the crystalline phase; also, due to a certain content of glass phase, the glass-ceramics show high translucent characteristic. Thus, in dental aesthetic restorations, glass-ceramics have the advantages of both glass and ceramic. The aim of the present study was to analyze the possibility of application of experimental glass-ceramic in heat-pressing technique and study the influence of heat-pressing technique on microstructure and properties of experimental glass-ceramic; The shear bond strength between experimental glass-ceramic and veneering ceramics and their susceptibility to thermocycling was investigated. We also analyzed the influence of different surface treatments on the bond strength and fabricated glass-ceramic blocks by appending the pigments with sintering technology.
     The whole studies were divided into three parts:
     PartⅠ: The possibility of application of experimental glass-ceramics in dental heat-pressing technique
     1. The feasibility of processing experimental glass-ceramics with current dental heat-pressing equipments was verified and all-ceramic restoratives made with experimental lithium disilicate glass-ceramic showed good performances.
     2. The effect of heat-pressing technique on the crystalline phases and microstructure of experimental lithium disilicate glass-ceramics was studied. It was showed that dental heat-pressing had no influence on the crystalline composition. Li2Si2O5 represented the main crystalline phase before or after heat-pressing technique. After pressing, crystals aligned along the direction of pressing and glass-ceramics showed higher mechanical strength than these before heat pressing.
     3. The properties and microstructure of experimental glass-ceramics with different glass powder before and after pressing were compared. Results showed that grain size has a significant effect on the sintering behavior and mechanical properties of the experimental glass-ceramics both before and after heat pressing.
     Part two: the research on the bonding strength between experimental glass-ceramics and veneering ceramics
     4. The shear bonding strength between experimental glass-ceramic and veneering ceramics were investigated. No gap was found at the interface between experimental glass-ceramic core and veneering ceramic. And thermocycling had no significant effect on the bonding strength, indicated better long-term durability.
     5. The effect of different surface treatmentss on the bonding strength was evaluated. It was showed that different surface treatments had a significant effect on bond strength between experimental glass-ceramic and veneering ceramics. Polishing followed with sandblasting could achieve higher bond strength.
     Part three: the research on the coloration of experimental glass-ceramics
     6. Three kinds of pigments with different concentrations were added into base glass powder, then subjected to heat treatment for developing glass- ceramics. Results demonstrated that colored glass-ceramics with good uniformity and color stability were achieved.
     7. To evaluate the effect of addition of different pigments on the microstructure and properties of experimental glass-ceramics. Results showed that crystalline composition, mechanical properties and microstructure of experimental glass-ceramics were not influenced by adding pigments.
     8. To investigate the effect of pigments concentration on the color values and to validate if the relationship between pigments concentration and reflective spectrums is suitable for computer color matching. The results indicated that adding three pigments had significant influence on value L, value a and value b, respectively. The relationship between pigments concentrations and chroma value met the principles of color characteristic, which could be regaded as database while establishing computer-color-matching software.
引文
1. Sabelle L. Denry. Recent advances in ceramics for dentistry. Crit Rev Oral Biol Med. 1996, 7 (2):134-143.
    2. Jones DW. Development of dental ceramics: An historical perspective. Dent Clini North Am. 1985, 29(4): 621-644.
    3. J.Robert Kelly Ceramics in dentistry: Historical roots and current perspectives the Journal of Prosthetic Dentistry 1996; 75(1):18-31
    4.陈治清主编口腔材料学第二版人民卫生出版社2000:6。
    5. D. F.威廉姆斯主编,朱鹤孙等译医用与口腔材料材料与科学技术丛书:第14卷科学技术出版社1998
    6. Weinstein M,KatzS,Weinstein AB. Fused porcelain-to-metal teeth,U.S.Patent No.3052982.1962 .Washington,DC.
    7. Mclean JW. Evolution of dental ceramics in the twentieth century. J Prosthet Dent.2001, 85(l):61-66.
    8. Bergman M, Bergman B, S?remark R. Tissue accumulation of nickel released due to eleetrochemical corrosion of non-precious dental casting alloys. J Oral Rehabil. 1980, 7(4):325-330.
    9.张怡,杜传诗.烤瓷用镍基合金的体外细胞毒性实验.华西腔医学杂志.1990, 8(l):19-22.
    10. Pang IC, Gilbert JL, Chai J, et al. Bonding characteristics of low-fusing porcelain bonded to pure titanium and palladium-copper alloy. J Prosthet Dent. 1995, 73(1):17-25.
    11. Nakajima H, Okabe T. Titanium in dentistry: development and research in the U.S.A. Dent Mater J. 1996, 15(2):77-90.
    12. McLean JW, Hughes TH. The reinforcement of dental porcelain withceramic oxides. Br Dent J. 1965, 119(6):251-67.
    13. Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: A systematic review. J Prosthet Dent. 2007, 98(5):389-404.
    14.程金树,李宏,汤李缨等.微晶玻璃.北京:化学工业出版社,2006.
    15. Mcmillan. P.W.微晶玻璃.王韧千译.北京:中国建筑工业出版社,1988.
    16. Hench L L et al. J. Biomed Mater Res Symp. 1971, (2):117.
    17. Brown W. E. et al. A New Calcium Phosphate Water-setting Cement,.in:. Cements Research Progress,Ohio:.American Ceramic Society, 1986: 352- 379.
    18.周新华,陈安民,褚颖等.可切削生物微晶玻璃的生物学评价.江西医学院学报,2004,44(2).
    19.李延报等。生物医用钙磷酸盐微晶玻璃。材料科学与工程,2001,19(1)
    20.耿硕儒等.羟基磷灰石微晶玻璃人工骨的研制与应用.骨与关节损伤杂志.1995,10(6).
    21. Jason A. Griggs. Recent advances in materials for all-ceramic restorations. Dent Clin N Am. 2007, 51:713–727.
    22. Martin N, Jedynakiewicz NM. Clinical performance of CEREC ceramic inlays: a systematic review. Dent Mater, 1999, 15(1):54–61.
    23. Bapna MS, Mueller HJ. Study of devitrification of Dicor glass. Biomaterials, 1996, 17(21):2045-2052.
    24. Fasbinder DJ. Clinical performance of chairside CAD/CAM restorations. J Am Dent Assoc. 2006, 137(Suppl):22S-31S.
    25. Shriharsha Pilathadka, Dagmar Vahalova. Contemporary all-ceramic materials, Part 1. ACTA Medica. 2007, 50(2):101–104.
    26. Guess PC, Kulis A, Witkowski S, et al. Shear bond strengths between different zirconia cores and veneering ceramics and their susceptibility to thermocycling. Dent Mater. 2008, 24(11):1556-1567.
    27. Dong JK, Luthy H, Wohlwend A, et al. Heat-pressed ceramics: technology and strength. Int J Prosthodont. 1992,5(1):9-16.
    28. Grossman DG. Machinable glass-ceramics based on tetrasilicic mica. J Am Ceram Soc. 1972, 55(9):446-449.
    29. Thompson JY, Bayne SC, Heymann HO. Mechanical properties of a new mica-based machinable glass ceramic for CAD/CAM restorations. J Prosthet Dent. 1996, 76(6):619-623.
    30. Grossman DG. Cast glass ceramics. Dent Clin North Am. 1985, 29(4): 725-739.
    31. Tinschert J, Zwez D, Marx R, et al. Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconia-based ceramics. J Dent. 2000, 28(7): 529-535.
    32. YH Zhao, JH Chen, M Fang, N Li, X Sun, YH Xiao. Effect of Dental Heat Pressing on the Microstructure of SiO2–K2O–B2O3–MgO–F Glass–Ceramic. Int. J. Appl. Ceram. Technol. 2008, 5 [6]: 649–656.
    33. Wolfram Ho¨land, Marcel Schweiger, Martin Frank, et al. A Comparison of the Microstructure and Properties of the IPS EmpressT2 and the IPS EmpressT Glass-Ceramics. J Biomed Mater Res (Appl Biomater). 2000, 53: 297–303,
    34. Nakamura T, Ohyama T, Imanishi A, et al. Fracture resistance of pressable glass-ceramic fixed partial dentures. J Oral Rehabil. 2002, 29:951-955.
    35. H?land W, Schweiger M, Frank M, et al. A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empressglass-ceramics. J Biomed Mater Res. 2000, 53(4):297-303.
    36. Esquivel-Upshaw JF, Chai J, Sansano S, et al. Resistance to staining, flexural strength, and chemical solubility of core porcelains for all-ceramic crowns. Int J Prosthodont. 2001, 14(3):284-288.
    37.秦燕军,牙科用CAD/CAM加工用可切削微晶玻璃的研究.第四军医大学博士学位论文,2001, 5.
    38. .Probster L, Diehl J.Slip casting alumina ceramics for crown and ridge restorations.Quintessence Int,1992;23(1):25-31.
    39. Hoard RJ, Hom JJ, Hewlett ER, et al. Comparison of casting ability of castable ceramic and type III gold. J Prosthet Dent. 1989, 61(1):45-47.
    40. Nahara Y, Sadamori S, Hamada T. Clinical evaluation of castable apatite ceramic crowns. J Prosthet Dent. 1991, 66(6):754-758.
    41.马轩祥.口腔修复学.辽宁科学技术出版社.1999:327.
    42. McLean JW. J Prosthet Dent, 2001, 85(1):61-66
    43. Josephine F, Kenneth J, Megan R. Int J Prosthodent, 2001,14(2): 109-114.
    44. Mohammad Albakry, Massimiliano Guazzato, Michael Vincent Swain. Fracture toughness and hardness evaluation of three pressable all-ceramic dental materials. J Dent. 2003, 31:181-188.
    45. Lori L. Burgner, Michael C. Weinberg. An assessment of crystal growth behavior in lithium disilicate glass. J Non-Crystal Solids. 2001,279:28-43.
    46. Mormann W H, Bindl A. The new creativity in ceramic restorations: Dental CAD/CAM. Quint Int. 1996; 27(12): 821-828.
    47. Raigrodski AJ, Chiche GJ, Potiket N, et al. The efficacy of posterior three-unit zirconium-oxide–based ceramic fixed partial dental prostheses. J Prosthet Dent. 2006, 96(4):237-244.
    48. Sailer I, Fehér A, Filser F, et al. Five-year clinical results of zirconiaframeworks for posterior fixed partial dentures. Int J Prosthodont. 2007, 20(4):383-388.
    49. Tinschert J, Schulze KA, Natt G, et al. Clinical behavior of zirconia-based fixed partial dentures made of DC-Zirkon: 3-year results. Int J Prosthodont. 2008, 21(3):217-222.
    50. Denissen H, Dozic A, van der Zel J, et al. Marginal fit and short-term clinical performance of porcelain-veneered CICERO, CEREC, and Procera onlays. J Prosthet Dent. 2000, 84:506-513.
    51. Chai J, Takahashi Y, Sulaiman F, et al. Probability of fracture of all-ceramic crowns. Int J Prosthodont. 2000, 13:420-424.
    52. Fradeani M, D’Amelio M, Redemagni M, et al. Five-year follow-up with Procera all-ceramic crowns. Quint Int. 2005, 36:105-113.
    53.陈吉华.临床金属烤瓷修复学.西安:陕西科技出版社.1997.
    54.马轩祥主编.口腔修复学.第五版.北京:人民卫生出版社.2003.
    55.徐君五主编.口腔修复理论与临床.北京:人民卫生出版社.1999.278- 279,308-309.
    56. Anusavice KJ,Ringle RD,Morse PK,et al.A thermal shock test for porcelain metal system.J Dent Res.1981;60:1686-1691.
    57.王航,巢永烈,廖运茂等.一种全瓷核瓷与饰面瓷的热匹配性研究.临床口腔医学杂志.2000;16(4):230-231.
    58. Bertolotti RL,Lacy AM,Watanabe LG,Adhesive monomers for porcelain repair.Inc J Prosthodent,1989,2:283-289.
    59. Appeldoorn RE, Wilerding TM, Barkmeier WW.Bond strength of composite resin to porcelain with newer generation porcelain repair systems.J Prosthet Dent, 1993, 70:6-11.
    60. Roulet JF, Soderholm KJM, Longmate J. Effects of treatment and storageconditions on ceramic/composite bond strength. J Dent Res, 1995, 74:381.
    61. Wolf DM, Power JM, O,keefe KL. Bond strength of composite to etched and sandblasted porcelain. Am J Dent, 1993, 6 :155-158.
    62. Kern M, Thompson VP. Sandblasting and silica coating of a glass-infiltrated alumina ceramic: volume loss, morphology, and changes in the surface composition. J Prosthet Dent, 1994, 71: 453-461.
    63.何帅,陈吉华等.不同表面处理方法对氧化锆支架材料与Vitadue alpha瓷结合性能的影响,上海口腔医学,2005,14(4):397-401.
    64. Simonsen RI, Calamia JR. Tensile bond strength of etched porcelain. J Dent Res, 1983, 62: 281-297.
    65. Hussain MA, Bradford EW, Charlton G. Effect of etching on the strength of aluminous porcelain jacket crowns.Br Dent J, 1979, 147: 89-90.
    66. Bower RL, Rodriguez MS. Tensile strength and modulus of elasticity of tooth structure and several restorative materials. JADA, 1962, 64: 378-387.
    67. James R, Holian D.Evaluating the effect glove coating. JADA, 1995, 126: 611-616.
    68.万乾炳,杜传诗,巢永烈.G-1型粉浆涂塑铝瓷桩冠底层抗弯曲强度的测定.中华口腔医学杂志,1995,13:272.
    69. Haninad IA,Talic YF.Designs of bond strength test for metal ceramic complexes:Review of the literature.J Prosthet Dent,1996,75:602.
    70. Machert JR Jr,Ringle RD,Parry EE, et a1.The relationship between oxide adherence and porcelain-metal bonding. J Dent Res,1988,67:474-478.
    71. Ringle PD, Machert JR’Jr,Fairhurst CW.An X-ray spectrometric technique for measuring porcelain -metal adherene. J Dent Res, 1983, 62:933-936.
    72. Papazoglou E, Brantley Wloys: A critique of metal-ceramic bond testing.Dent Mater, 199A. Porcelain adherence vs force to failure forPalladium-gallium al8,14:112-119.
    73. Civijan S,Huget EF,De Simon LB et a1.Determination of apparent bond strength of alloy-porcelain systems[Abstract],J Dent Res,1974,53:240.
    74. Anusavice KJ,De Hof PH, Faithurst CW.Comparative evalution of Ceramic-metal bond test using finite element stress analysis.J Dent Res,1980,59:608-613.
    75. Petra C. Guess, Andreja Kulis, Siegbert Witkowski, et al. Shear bond strengths between different zirconia cores and veneering ceramics and their susceptibility to thermocycling. Dent mater 2008; 24:1556-1567.
    76. Luthardt RG, Sandkuhl O, Reitz B. Zirconia-TZP and alumina-advanced technologies for the manufacturing of single crowns. Eur J Prosthodont Restor Dent 1999; 7:113-9.
    77. Persson M, Bergman M. Metal-ceramic bond strength. Acts Odontol Scand,1996,54:160-165.
    78.汤顺青.色度学[M].北京.北京理工大学出版社.1990。
    79. Kangguo Cheng, Julin Wan, Kaiming Liang. Enhanced mechanical properties of oriented mica glass-ceramics. Materials Letters.1999; 39(6): 350-353.
    80.陈国华,刘心宇.尾矿微晶玻璃的制备及其性能研究[J].硅酸盐通报.2005,2:80-83.
    81.陈国华,刘心宇.添加氧化铈对堇青石基微晶玻璃的烧结和性能的影响.硅酸盐通报,2004,32(5):625-630.
    82. Fatma H. ElBatal, Moenis A. Azooz, Yousry M. Hamdy. Preparation and characterization of some multicomponent silicate glasses and their glass–ceramics derivatives for dental applications. Ceramics International. 2009, 35(3):1211-1218.
    83. Seiichi Taruta, Tomomi Ichinose, Tomohiro Yamaguchi, Kunio Kitajima.Preparation of transparent lithium-mica glass-ceramics. Journal of Non-Crystalline Solids. 2002.352(52-54): 5556-5563.
    84.常鹰,李溪滨. Li2O-Al2O3-SiO2微晶玻璃的IR、DTA、XRD和SEM研究.硅酸盐通报,2006, 25(3): 146-150.
    85.郭兴忠,杨辉,李海淼等.用熔制法制备含着色剂Li2O-Al2O3-SiO2玻璃的核化及晶化,2007,35 (10):1390-1395.
    86.姚强,陆雷,江勤等.添加剂对钢渣微晶玻璃抗弯强度及颜色的影响[J].硅酸盐通报,2005,24(4):104-106.
    87.程金树,肖静.Ni2O3着色剂对微晶玻璃装饰板材性能的影响[J].国外建材科技,2000,21:1-4.
    88.张强,周学东.锆基陶瓷色料的制备及其性能.硅酸盐通报,2001,20:3-45.
    89.马小鹏,牛冬等.陶瓷色料中添加发色离子的状态与反应[J].硅酸盐学报,2001, 29(3): 259-262.
    90.张文丽陈加庚.锆英砂制ZrO2-SiO3系陶瓷色料合成机理初探[J].硅酸盐通报,1994,13(6):27-31.
    91.文进,高升洲.浅谈锆基色料合成过程中矿化剂的作用机理[J].硅酸盐通报,1999,18(6):47-49.
    92.文进,高升洲.锆铁红颜料微观结构研究[J].硅酸盐学报, 1999,27(5):551-557.
    93.吴舜,何慧明等.色料添加浓度与氟硅云母玻璃陶瓷色度值及反射光谱的关系.中国美容医学,2009,18(10):1480-1483.
    94.李江,王忠义,田杰谟等.烧结温度对不同粒度氟硅云母玻璃陶瓷收缩率及微观形貌的影响.实用口腔医学,2005,15(2):191-194.
    95.陆庆秀,陈明源,江泽峰.牙科烤瓷系列配色研究[J].北京口腔医学,2004, 12(3):138-140.
    96. ISO 6872. Dental ceramic. Geneva, Switzerland: International Organization for Standardization; 1995.
    97. Mohammad Albakry, Massimiliano Guazzato, Michael Vincent Swain.Influence of Hot Pressing on the Microstructure and Fracture Toughness of Two Pressable Dental Glass-Ceramics. Pressable Dent Glass-ceramic. 2004, 21:99-108.
    98. Gorman CM, McDevitt WE, Hill RG. Comparison of two heat-pressed all-ceramic dental materials. Dent Mater. 2000, 16:389-395.
    99. Parvin Alizadeh, Bijan Eftekhari Yekta, Tannaz Javadi. Sintering behavior and mechanical properties of the mica–diopside machinable glass-ceramics. J Euro Ceramic Soci, 2008, 28, (8):1569-1573.
    100.王富,陈吉华,高婧,等.牙科热压技术对新型玻璃陶瓷微观结构和化学稳定性的影响.功能材料. 2009.40(7):1192-1195.
    101.Cattell MJ, Palμmbo RP, Knowles JC, Clarke RL, Samarawickrama DY. The effect of veneering and heat treatment on the flexural strength of Empress 2 ceramics. J Dent, 2002;30:161-169
    102.Fatma Hassan Margha, Salwa Abdel-Hameed Mohamed Abdel-Hameed, et al. Crystallization behaviour and hardness of glass ceramics rich in nanocrystals of ZrO2 Ceramics. Ceramics International, 2009; 35:1133-1137.
    103.Goto Y, Tsunge A. Mechanical properties of unidirectionally oriented SiC-whisker-reinforced Si3N4 fabricated by extrusion and hot-pressing. J Am Ceram Soc,1993;76(2):l420-1424.
    104.Denry IL,Baranta G,HoIIoway JA.Effect of processing variables on texture development in a mica-based glass ceramic. J Biomed Mater Res B Appl Biomater. 2003; 64(2):70-77.
    105.DenIy IL,Hol1oway JA. Effect of heat pressing on the mechanical properties of a mica-based glass-ceramic. J Biomed Mater Res. 2004;70(2):37-42.
    106.Habelitz S,Carl G,Russel C.0rienteD mica glass-ceramic by extrusion and subsequent heat treatment. Glastech Ber Glass Sci Technol. 1997; 70(2) :86-92.
    107.Drummond JL, King TJ, Bapna MS, Koperski RD. Mechanical propertyevaluation of pressable restorative ceramics. Dent Mater 2000; 16:226-33.
    108. Huizhi Yang Changping Chen, Hongwei Sun. Influence of heat-treatment schedule on crystallization and microstructure of bauxite tailing glass–ceramics coated on tiles. J Mater Res B Proce Tech. 2008; 197:206-211.
    109. E.C.Subbarao. Grain size eggects in adcanced ceramics. Colloids and Surfaces.1998, 133:3-11.
    110.V. Buscaglia, M.T. Buscaglia, M.Viviani. Grain size and grain boundary-related effects on the properties of nanocrystalline barium titanate ceramics.J Euro Ceramic Socie. 26 (2006) 2889–2898.
    111.Jason A. Griggs . Recent Advances in Materials for All-Ceramic Restorations.Dent Clin N Am 51 (2007) 713–727
    112.V.K. Marghussian, OU. Balazadegan, B. Eftekhari-yekta. Crystallization behaviour, microstructure and mechanical properties of cordierite-mullite glass ceramics. J Alloys ompounds. 2009, 74:909-914.
    113.李娜陈吉华马新沛等.晶化热处理制度对新型牙科云母基陶瓷弯曲强度的影响。实用口腔医学杂志.2007,23(2)217-219.
    114.王富.牙科二硅酸锂玻璃陶瓷的制备及热压铸工艺的研究.第四军医大学博士学位论文.2009.
    115.李江,王忠义等.保温时间对不同粒度氟硅云母魔力粉体烧结行为的影响.口腔材料器械杂志2008,17(3):117-121.
    116.Schmitz K, Schulmeyer H. Determination of the adhesion of dental metal-porcelain bonding systems. Dental Labor 1975: 23:1416-20.
    117.Anusavice KJ, De Hoff PH, Fairhurst CW. Comparative evaluation of ceramic-metal bond tests using finite element stress analysis. J Dent Res 1980; 59: 608-13.
    118.Shimoe S, Tanoue N, Yanagida H, et al. Comparative strength of metal- ceramic and metal-composite bonds after extended thermocycling. J Oral Rehabil 2004; 31:689-94.
    119.Ozcan M. Evaluation of alternative intraoral repair techniques for fractured ceramic-fused-to-metal restorations. J Oral Rehabil 2003;30:194-203.
    120.De Kler M, De Jager N, Meegdes M, Van Der Zel JM. Influence of thermal expansion mismatch and fatigue loading on phase changes in porcelain veneered Y-TZP zirconia discs. J Oral Rehabil 2007; 34:841-847.
    121.Jens Fischer, Bogna Stawarzcyk, Albert Trottmann, Christoph Impact of thermal misfit on shear strength of veneering ceramic/zirconia composites. Dent Mater 2009; 45:419-423.
    122.Anusavice KJ, Ringle RD, Morse PK, et al. A thermal shock test for porcelain metal system. J Dent Res. 1981; 60:1686-1691.
    123.王航,巢永烈,廖运茂等..一种全瓷核型材料与饰面瓷的热匹配性研究.临床口腔医学杂志.2000;16(4):230-231.
    124.Petra C. Guess, Andreja Kulis, Siegbert Witkowski, et al. Shear bond strengths between different zirconia cores and veneering ceramics and their susceptibility to thermocycling. Dent mater 2008; 24:1556-1567.
    125.杨晓喻,廖运茂,鲜苏琴等.可切削渗透陶瓷(MIC)玻璃料及其着色剂的研究.生物医学工程学杂志,2003,20(4): 664-667.
    126.Dong JK, Luthy H, Wohlwend A, Scharer P. Heat-pressed ceramics: technology and strength. Int J Prosthodont 1992; 5: 9-16.
    127.李江,王忠义,曹小刚等.齿科氟硅云母玻璃陶瓷计算机配色的三刺激值匹配法.中国美容医学,2004;13(6):713-715.
    128.吕海平,朱琳,彭蜀晋.形形色色的化学颜料.化学教育,2010;1:11-13.
    129.李冬云,乔冠军等.层状复合陶瓷材料的研究进展[J].无机材料学报2002,17 (1):10-16.
    130.金海云,乔冠军,高积强等.可加工陶瓷研究进展.硅酸盐通报2005,24(4):66-69.
    131.乔冠军,金志浩.微晶玻璃的发展:组成,性能及应用[J].硅酸盐通报,1994,13(4):52-56.
    132.Parvin Alizadeh, Bijan Eftekhari Yekta, Tannaz Javadi. Sintering behavior and mechanical properties of the mica–diopside machinable. J Euro Ceram Soc, 2008; 28: 1569-1573.
    133.孙颖,王忠义田杰谟等.牙科可切削云母微晶玻璃呈色的研究.中华口腔医学杂志,200738(2)13-139.
    134.姚江武.现代口腔色彩学.第1版.厦门:厦门大学出版社,2000.57-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700