基于MEMS技术的光学读出非制冷红外成像系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,红外成像技术已在军事、工业、商业等广泛的领域发挥了重要的应用,其中,非制冷红外成像技术因其体积小、成本低、性能高而备受关注。本文在课题组已有工作基础上,对基于MEMS技术的新型光学读出非制冷红外成像系统进行了深入的研究,主要在无基底FPA的仿真分析和结构设计、光学读出方法的优化、红外成像系统的小型化和工程化等方面进行学习和研究,取得的主要成果如下:
     (1)在无基底FPA的仿真分析方面,通过有限元方法,开发了像素数为80×80的无基底FPA和有基底FPA的三维有限元仿真分析平台,并通过ANSYS软件分析热应力问题时的间接法,详细分析了它们在热学性能、热机械性能上的差异。分析发现:
     (a)在热学性能方面,由于支撑框架的热导大幅度减小,无基底FPA具有和有基底FPA完全不同的热学特性。一方面,支撑框架等效于一段与热隔离梁串联的热阻,它有效降低了感热单元的总热导,提高了感热单元的温升效果,另一方面,支撑框架通过热扩散使相邻单元产生了“预温升”现象,它通过线性叠加大幅度提高了感热单元的温升。这些特性使得无基底FPA的能量转换效率大幅度提高,甚至有数量级的提升。
     (b)在热机械性能方面,由于无基底FPA的支撑框架是变温结构,各感热单元的双材料变形梁的温升几乎相等,因此,其热变形效率与有基底FPA相比,最大可提高约33%。
     根据上述有限元分析结果,修正了基于恒温基底假设的物理模型,具体涉及感热单元的总热导和热变形效率公式。
     (2)在无基底FPA的结构设计方面,设计了增强型的支撑框架。它可在保持感热单元热学性能的基础上有效提高支撑框架的结构性能,从而解决在大阵列的无基底FPA(≥1024×1024)中,支撑框架的Z向刚度比较薄弱的问题。
     (3)在光学读出方法的优化方面,根据傅里叶光学的近场夫琅和费衍射理论,建立了反光板弯曲时的光学检测灵敏度的理论分析模型,发现系统的光学检测灵敏度是关于反光板板长、曲率半径和刀口滤波器位置的函数。通过建立的理论分析模型,提出了一种针对弯曲反光板的光学优化方法。它可以最大化地提高系统的光学检测灵敏度,将由反光板弯曲引起的灵敏度损失降低到最小程度。
     (4)在红外成像系统的小型化和工程化方面,通过FPGA+DSP架构,设计并实现了第一代小型化的图像采集处理系统,并组装了光学读出非制冷红外成像系统的原理样机,虽然其成像效果与放置在防震台上的实验系统有明显差距,但仍获得了室温物体的红外图像。
Currently, infrared imaging has been a key technology in variety of military, in-dustrial, and commercial applications, especially uncooled infrared imaging has drawn substantially increased attention for its small dimension, low cost and high performance. Based on past achievements, this dissertation primarily studied a novel MEMS based optical readout uncooled infrared imaging system. The chief contents include:the finite element analysis and structural design of substrate-free focal plane array (FPA), the optimization of optical readout method, the miniaturization and in-dustrialization of uncooled infrared imaging system. The main achievements of this dissertation are as follows:
     (1) Based on the finite element method, the three-dimensional (3-D) finite ele-ment models of substrate/substrate-free FPA with 80×80 pixels were developed, and then using the sequential approach of multiphysics analysis in ANSYS software, the thermal and mechanical characterizations of substrate/substrate-free FPA were inves-tigated and found that:
     (a) As compared with the substrate FPA, because of the large decrease in thermal conductance, the supporting frame is a temperature-variable one. This brings out a unique thermal characteristic:(i) the supporting frame functions as a'thermal isola-tion' frame which reduces the thermal conductance and therefore increases the tem-perature change; (ii) the supporting frame also functions as a‘thermal diffusion’frame which certainly results in the temperature pre-change in the ones not absorbing radia-tion. The linear superposition of the temperature pre-change by the other ones thus will greatly increase the temperature change. This characteristic will significantly in-crease the energy conversion efficiency, even with a magnitude of one order.
     (b) Because the supporting frame is a temperature-variable structure, the temper-ature change in the bi-material microcantilevers is almost in the same level, therefore, a potential of 33% improvement in thermo-mechanical efficiency is envisioned
     Based on the finite element analysis, the theoreticl model which assumes that the substrate is a temperature constant structure was corrected, namely the calculation of total thermal conductance and thermo-mechanical efficiency of each microcantilever.
     (2) An enhanced supporting frame was developed for substrate-free FPA. This design would not only increase the structure performance of supporting frame but also maintain an excellent thermal performance, and therefore is much suitable for large scale substrtate-free FPA (≥1024×1024).
     (3) Based on the Fraunhofer diffraction pattern of each reflector in Fourier Op-tics, and the theoretical model of the optical readout sensitivity was established and found to be a function of reflector length, curvature radius and position of knife-edge filter. Using this theoretical model, an optical resolution to the reflector deformation was developed. This optical solution can efficiently maximize the optical readout sen-sitivity, and the sensitivity loss induced by the deformed micro-reflector can be re-duced to minimum level.
     (4) Using FPGA and DSP, the first generation image acquisition and processing system based on miniaturization design was developed, and the prototype machine of optical readout uncooled infrared imagings system was aslo established. This proto-type machine could obtaion thermal image at room temperature but with a decrease in performance, as compared with the experimental platform.
引文
[1]何道清,张禾,谌海云,传感器与传感技术,北京:科学出版社,2008.
    [2]徐科军,马修水,李晓林,传感器与检测技术,北京:电子工业出版社,2008.
    [3]金篆芷,王明时,现代传感技术,北京:电子工业出版社,1995.
    [4]周继明,江世明,传感技术与应用,长沙:中南大学出版社,2005.
    [5]http://www.memsnet.org/.
    [6]徐泰然,MEMS和微系统—设计与制造,北京:机械工业出版社,2004.
    [7]Sawyer B. F., Eric J. W., and Joseph M. J., Ink-Jet Printed Nanoparticle Micro-electromechanical Systems, Journal of Microelectromechanical systems,2002, 11(1):54-60.
    [8]李德胜等,MEMS技术及其应用,哈尔滨:哈尔滨工业大学出版社,2002.
    [9]吴宗凡等,红外与微光技术,.北京:国防工业出版社,1998.
    [10]Rogalski A., Antoszewski J., and Faraone L., Third-generation infrared photode-tector arrays, Journal of Applied Physics,2009,105(9):091101.
    [11]周书铨,红外辐射测量基础,上海:上海交通大学出版社,1991.
    [12]陈衡,红外物理学,北京:国防工业出版社,1985.
    [13]Norton P. R., Infrared detectors in the next millennium, Proceedings of SPIE, 1999,3698:652-665.
    [14]Rogalski A., Infrared detectors:status and trends, Progress in Quantum Electron-ics,2003,27(2):59-210.
    [15]Kruse P. W., Principle of uncooled infrared focal plane array, Semiconductors and Semimetals,1997,47:17-42.
    [16]Kruse P. W., Blue M. D., Gargunkel J. H., and Saur W. D., Long wavelength photoeffects in mercury selenide, mercury telluride, and mercury tellu-ride-cadmium telluride, Infrared Physics,1962,2(1):53-60.
    [17]Kinch M. A., Metal-insulator-semiconductor infrared detectors, Semiconductors and Semimetals,1981,18:313-378.
    [18]John R.Vig, Raymond L.Filler, Yoonkee Kim, Uncooled IR imaging Array Based on Quartz Microresonators, Journal of Microelectromechanical systems, 1996,5(2):131-137.
    [19]Charles H., Howard B., Robert O. et al, Uncooled thermal imaging at Texas In-struments, Proceeding of SPIE,1992,2020:330-339.
    [20]Amantea R., Goodman L. A., Pantuso F., Sauer D. J., Varghese M., Villani T. S., and White L. K., Progress Towards an Uncooled IR Imager With 5 mK NEDT, Proceeding of SPIE,1998,3436:647-659.
    [21]Wood R.A., Uncooled thermal imaging with monolithic silicon focal planes, Proceeding of SPIE,1993,2020:322-329.
    [22]Kruse P. W., Uncooled IR Focal Plane Arrays, Proceeding of SPIE,1995,2552: 556-563.
    [23]Tidrow M. Z., Clark III W. W., lipton W., et al, Uncooled Infrared Detectors and Focal Plane Arrays, Proceeding of SPIE,1998,3553:178-187.
    [24]Raymond S. B., Uncooled IR Imaging:technology for the next generation, Pro-ceeding of SPIE,1999,3698:110-118.
    [25]Tissot J.L., IR detection with uncooled sensors, Infrared Physics & Technology, 2004,46:147-153.
    [26]Scott M., Brian B., Margaret K. Pascual A., Jason W., Test Methods and Tech-nology for Uncooled Imaging Systems, Proceeding of SPIE,2004,5407:30-37.
    [27]Yon JJ., Biancardini L., Mottin E., Tissot JL., Letellier L., Infrared microbolo-meter sensors and their application in automotive safety.
    [28]Kruse P. W., A comparison of the limits to the performance of thermal and pho-ton detector imaging arrays, Infrared Phys. Technol.,1995,36:869-882.
    [29]Amantea R., Knoedler C. M., Pantuso F. P. et al, An Uncooled JR Imager with 5 mK NEDT, SPIE,1997,3061:210-222.
    [30]Li B., Design and simulation of an uncooled double-cantilever microbolometer with the potential for-5mK NETD, Sensors and Actuators A,2004,112: 351-359.
    [31]Hanson C., Uncooled thermal imaging at Texas Instruments, Proceeding of SPIE, 1993,2020:330-339.
    [32]Shigeru T., Masaru M., Seiji K., Nobukazu I., Tokuhito S., Akira A., Yutaka T., New thermally isolated pixel structure for high resolution (640×480) uncooled infrared focal plane arrays, Optical Engineering,2006,45(1):014001.
    [33]Corbeil J. L., Lavrik N. V., and Rajic S., Datskos P. G., Self-levelsing uncooled microcantilever thermal detector, Appl. Phys. Lett.,2002,81(7):1306-1308.
    [34]Datskos P. G., Lavrik N. V., Rajic S., Performance of uncooled microcantilever thermal detectors, Rev. Sci. Instrum.,2004,75(4):1134-1148.
    [35]Jae-Kwan K., Chul-Hi H., A new uncooled thermal infrared detector using sili-con diode, Sensors and Actuators A,2001,89:22-27.
    [36]Senesac L.R., Corbeil J.L., Rajica S., Lavrik N.V., Datskos P.G., IR imaging us-ing uncooled microcantilever detectors, Ultramicroscopy,2003,97:451-458.
    [37]Dayeh, S. A., Butler, D. P., Celik-Butler Z., Micromachined infrared bolometers on flexible polyimide substrates, Sensors and Actuators A,2005,118:49-56.
    [38]Datskos P.G., Rajic S., and Lavrik N.V., Performance of uncooled microcanti-lever thermal detectors, Proceeding of SPIE,2005,5721:136-150.
    [39]Datskos P. G., Oden P. I., Thundat T., Wachter E. A., Warmack R. J., Remote infrared radiation detection using piezoresistive microcantilevers, Appl. Phys. Lett.,1996,69:2986-2988.
    [40]Deepika K., Alok J., Jaiwania C. R. and Jain V. K., Uncooled IR-Sensor Based On MEMS Technology, Proceeding of SPIE,2003,5062:753-760.
    [41]Tissot J.L., Chatard J.P., Mottin E., Technical trends in amorphous silicon based uncooled IR focal plane arrays, Proceedings of SPIE.2003,4820:220-226.
    [42]Malyarov V. G., Uncooled thermal IR arrays, J. Opt. Technol.,2002,69(10): 750-760.
    [43]Barnes J. R., Stepheson R. J., Woodburn C. N., O'Shea S. J., and Welland M. E., A femtojoule calorimeter using using micromechanical sensors, Rev. Sci. In-strum.,1994,65(12):3793-3798.
    [44]Lai J., Perazzo T., Shi Z., et al., Optimization and performance of high-resolution micro-optomechanical thermal sensors, Sensors and Actuators A,1997,58: 113-119.
    [45]Varesi J., Lai J., Perazzo T., et al., Photothermal measurements at picowatt reso-lution using uncooled micro-optomechanical sensors, Appl. Phys. Lett.,1997, 71(3):306-308.
    [46]Hunter S. R., Amantea R. A., Goodman L. A. et al., High sensitivity uncooled microcantilever infrared imaging arrays, Proceeding of SPIE,2003,5074: 469-480.
    [47]Hunter S. R., Maurer G., Jiang L. et al., High sensitivity uncooled microcantilev-er Infrared imaging arrays, Proceeding of SPIE,2006,6206:62061 J.
    [48]Hunter S. R., Maurer G., Simelgor G., High sensitivity 25μm and 50μm pitch microcantilever IR imaging arrays, Proceeding of SPIE,2007,6542:65421F.
    [49]Huang S. S., and Zhang X., Study of gradient stress in bimaterial cantilever structures for infrared applications, Journal of Micromechanics and Microengi-neering,2007,17(7):1211-1219.
    [50]I-Kuan L., Zhang Y. H. and Zhang X., The deformation of microcantilever-based infrared detectors during thermal cycling, Journal of Micromechanics and Mi-croengineering,2008,18(7):075012.
    [51]Il W. K., Hyuck J. S., Dong S. K., Chi H. H., Yong S. L., Byung-Gon Y., and Hee C. L., A Cantilever-Type Uncooled Infrared Detector With High Fill-Factor and Low-Noise Characteristic, IEEE Electron Device Letters,2009,30(6): 635-637
    [52]http://www.multispectralimaging.com.
    [53]Oden P. I., Datskos P. G., Thundat T., et al, Uncooled thermal imaging using a piezoresistive microcantilever, Appl. Phys. Lett.,1996,69(21):3277-3279.
    [54]Datskos P. G., Rajic S., Datskou I., Photoinduced and thermal stress in silicon microcantilevers, Appl. Phys. Lett.,1998,73(16):2319-2321.
    [55]Datskos P. G., Micromechanical Uncooled Photon Detectors, Proceeding of SPIE, 2000,3948:80-93.
    [56]Manalis S. R., Minne S. C., Quate C. F. et al, Two-dimensional micromechanical bimorph arrays for detection of thermal radiation, Appl. Phys. Lett.,1997, 70(24):3311-3313.
    [57]Zhao Y., Optomechanical uncooled infrared imaging system, Dissertation of U.C. Berkeley,2002.
    [58]Perazzo T., Mao M., Kwon O., et al, Infrared vision uncooled microoptome-chanical camera, Appl. Phys. Lett.,1999,74(23):3567-3569.
    [59]Mao M., Perazzo T., Kwon O., et al, Infrared vision using an uncooled ther-mo-opto-mechanical camera:design, microfabrication, and performance, Pro-ceeding of IEEE MEMS Conference, Orlando,1999,100-105.
    [60]Norton P., Mao M., Perazzo T. et al, Micro-optomechanical infrared receiver with optical readout-MIRROR, Proceeding of SPIE,2000,4028:72-78.
    [61]Mao. M, Perazzo T., O. Kwon, et al, Direct-view Uncooled micro-optomechan-ical infrared camera, Proceeding of IEEE MEMS Conference, Orlando,1999,
    100-105.
    [62]Zhao Y., Mao M., and Majumdar A., Application of Fourier optics for detecting deflection of infrared-sensing microcantilever arrays, Microscale Thermophysi-cal Engineering,1999,3(4):249-251.
    [63]Zhao Y., Mao. M., Horowitz R. et al, Optomechanical uncooled infrared imaging system:design, microfabrication, and performance, Journal of Mi-cro-electro-mechanical Systems,2002,11(2):136-146.
    [64]Choi J., Yamaguchi J., Morales S., Horowitz R., Zhao Y., Majumdar A., Design and control of a thermal stabilizing system for a MEMS optomechanical un-cooled infrared imaging camera, Sensors and Actuators A,2003,104(2): 132-142.
    [65]Ishizuya T., Suzuki J., Akagawa K. et al, Optically readable bi-material infrared detector, J. of Institute of Image Information & Television Engineers,2001, 55(2):304-309.
    [66]Ishizuya T., Suzuki J., Akagawa K. et al,160x120 pixels optically readable bi-material infrared detector, Proceeding Of IEEE MEMS,2002,578-581.
    [67]Ishizuya T. et al., US Patent.6,080,988,2000.
    [68]Ishizuya T. et al., US Patent,6,339,219 B1.
    [69]Suzuki, et al., US Patent,6,469,301 B1.
    [70]Zhang L., Yang G., Design, simulation and testing on a light modulating thermal image device, J. Micromechanics and Microengineering,2001,11:85-93.
    [71]Senesac L. R., Corbeil J. L., Lavrik N. V. et al., IR imaging using uncooled mi-crocantilever detectors, Ultramicroscopy,2003,97:451.
    [72]Labrik N. V., Grbovic D., Rajic S. et al., Uncooled infrared imaging using bima-terial microcantilver arrays, Proceeding of SPIE,2006,6206:62061K.
    [73]Grbovic D., Lavrik N. V., Datskos P. G. et al., Uncooled infrared imaging using bimaterial microcantilever arrays, Appl. Phys. Lett.,2006,89:073118.
    [74]Lavrik N., Archibald R., Grbovic D., Rajic S., and Datskos P., Uncooled MEMS IR imagers with optical readout and image processing, Proceeding of SPIE,2007, 6542:65421E.
    [75]Grbovic D., Lavrik N. V., Rajic S., and Datskos P. G., Arrays of SiO2 sub-strate-free micromechanical uncooled infrared and terahertz detectors. Journal of Applied Physics,2008,104(5):054508.
    [76]Jones C.D.W., Bolle C.A., Ryf R., et al. MEMS thermal imager with optical readout, Sensors and Actuators A,2009,155(1):47-57.
    [77]Erdtmann M., Zhang L., Jin G., Radhakrishnan S., Simelgor G., and Salerno J., Optical readout photomechanical imager:from design to implementation, Pro-ceeding of SPIE,2009,7298:729801.
    [78]Zhao J., DiFilippo V., Li M., Low Cost Molded Optics for IR Imaging, Proceed-ing of SPIE,2009,7298:72983J.
    [79]潘亮,张青川,伍小平,段志辉,陈大鹏,王玮冰,郭哲颖,基于MEMS的光力学红外成像,实验力学,2004,19(4):403-406.
    [80]段志辉,张青川,伍小平,潘亮,不可见光的光学成像方法及光学成像装置,发明专利:ZL03132258.1.
    [81]段志辉,张青川,伍小平,潘亮,红外热像成像仪,发明专利:ZL03132259.X.
    [82]Duan Z. H., Zhang Q. C., Wu X. P. et al. Uncooled Optically Readable Bima-terial Micro-Cantilever Infrared Imaging Device, Chinese Physics Letters,2003, 20(12):2130-2132.
    [83]董凤良,张青川,伍小平,潘亮,郭哲颖,陈大鹏,王玮冰,段志辉,双材料微梁阵列非制冷红外成像技术—微梁阵列的设计与制作,红外与毫米波学报,2005,24(6):409-413.
    [84]缪正宇,张青川,陈大鹏,伍小平,李超波,郭哲颖,董凤良,熊志铭,双材料微梁阵列室温物体红外成像,物理学报,2006,55(7):3208-3214.
    [85]熊志铭,张青川,陈大鹏,伍小平,郭哲颖,董凤良,缪正宇,李超波,光学读出微梁阵列红外成像及性能分析,物理学报,2007,56(5):2529-2535.
    [86]Zhang Q. C, Miao Z. Y., Guo Z. Y., Dong F. L., Xiong Z. M., Wu X. P., Chen D. P., Li C. B., Jiao B. B., Optical readout uncooled infrared imaging detector using knife-edge filter operation, Optoelectronic Letters,2007,3(2):119-122.
    [87]Dong F. L., Zhang Q. C., Chen D. P., Miao Z. Y., Xiong Z. M., Guo Z. Y., Li C. B., Jiao B. B., Wu X. P., Optimized Optomechanical Micro-cantilever Array for Uncooled Infrared Imaging, Chin. Phys. Lett.,2007,24(12):3362.
    [88]Dong F. L., Zhang Q. L., Chen D. P, Pan L., Guo Z. Y., Wang W. B., Duan Z. H., Wu X. P., An uncooled optically readable infrared imaging detector, Sensor and Actuator A,2007,133(1):236-242.
    [89]Guo Z. Y., Zhang Q. C., Chen D. P., Dong F. L., Xiong Z. M., Miao Z. Y., Li C. B., Jiao B. B., Wu X. P., Performance analysis of microcantilever arrays for opt-ical readout uncooled infrared imaging, Sensor and Actuator A,2007, 137(1):13-19.
    [90]Miao Z. Y., Zhang Q. C, Chen D. P., Guo Z. Y., Dong F. L., Xiong Z. M., Wu X. P., Li C. B., Jiao B. B., Uncooled IR imaging using optomechanical detectors, Ultramicroscopy,2007,107(8):610-616.
    [91]Dong F. L., Zhang Q. C., Chen D. P., Miao Z. Y., Xiong Z. M., Guo Z. Y., Li C. B., Jiao B. B., Wu X. P., Uncooled infrared imaging device based on optimized optomechanical micro-cantilever array, Ultramicroscopy,2008,108(6):579-588.
    [92]Xiong Z. M., Zhang Q. C., Gao J., Wu X. P., Chen D. P., Jiao B. B., The Pres-sure-dependent Performance of Substrate-free FPA in Uncooled Infrared Imag-ing System, Journal of Applied Physics,2007,102(11):113524.
    [93]Miao Z. Y., Zhang Q. C., Guo Z. Y., and Wu X. P., An optical readout method for microcantilever array sensing and its sensitivity analysis, Optics Letters,2007, 32(6):594-596.
    [94]董凤量,焦斌斌,张青川,陈大鹏,缪正宇,熊志铭,光学读出非制冷红外成像的最新进展.实验力学,2007.22(3):401-406.
    [1]董凤量,焦斌斌,张青川,陈大鹏,缪正宇,熊志铭,光学读出非制冷红外成像的最新进展,实验力学,2007,22(3):401-406.
    [2]董凤量,基于MEMS的光学读出热成像技术的研究,博士论文,合肥:中国科学技术大学,2007.
    [3]Varesi J., Lai J., Perazzo T., et al., Photothermal measurements at picowatt res-olution using uncooled micro-optomechanical sensors, Appl. Phys. Lett.,1997, 71(3):306-308.
    [4]Oden P. I., Datskos P. G., Thundat T., et al, Uncooled thermal imaging using a piezoresistive microcantilever, Appl. Phys. Lett.,1996,69(21):3277-3279.
    [5]Datskos P. G., Rajic S., Datskou I., Photoinduced and thermal stress in silicon microcantilevers, Appl. Phys. Lett.,1998,73(16):2319-2321.
    [6]Datskos P. G., Micromechanical Uncooled Photon Detectors, Proceeding of SPIE,2000,3948:80-93.
    [7]Manalis S. R., Minne S. C., Quate C. F. et al, Two-dimensional micromechani-cal bimorph arrays for detection of thermal radiation, Appl. Phys. Lett.,1997, 70(24):3311-3313.
    [8]Zhao Y., Optomechanical uncooled infrared imaging system, Dissertation of U.C. Berkeley,2002.
    [9]Perazzo T., Mao M., Kwon O., et al, Infrared vision uncooled microoptome-chanical camera, Appl. Phys. Lett.,1999,74(23):3567-3569.
    [10]Mao M., Perazzo T., Kwon O., et al, Infrared vision using an uncooled ther-mo-opto-mechanical camera:design, microfabrication, and performance, Pro-ceeding of IEEE MEMS Conference, Orlando,1999,100-105.
    [11]Mao M., Perazzo T., Kwon O., et al, Infrared vision using an uncooled ther-mo-opto-mechanical camera:design, microfabrication, and performance, Pro-ceeding of IEEE MEMS Conference, Orlando,1999,100-105.
    [12]Mao. M, Perazzo T., O. Kwon, et al, Direct-view Uncooled micro-optomechan-ical infrared camera, Proceeding of IEEE MEMS Conference, Orlando,1999, 100-105.
    [13]Zhao Y., Mao M., and Majumdar A., Application of Fourier optics for detecting deflection of infrared-sensing microcantilever arrays, Microscale Thermophysi-cal Engineering,1999,3(4):249-251.
    [14]Zhao Y., Mao. M., Horowitz R. et al, Optomechanical uncooled infrared imaging system:design, microfabrication, and performance, Journal of Mi-cro-electro-mechanical Systems,2002,11(2):136-146.
    [15]Choi J., Yamaguchi J., Morales S., Horowitz R., Zhao Y., Majumdar A., Design and control of a thermal stabilizing system for a MEMS optomechanical un-cooled infrared imaging camera, Sensors and Actuators A,2003,104(2): 132-142.
    [16]Ishizuya T., Suzuki J., Akagawa K. et al, Optically readable bi-material infrared detector, J. of Institute of Image Information & Television Engineers,2001, 55(2):304-309.
    [17]Ishizuya T., Suzuki J., Akagawa K. et al,160×120 pixels optically readable bi-material infrared detector, Proceeding Of IEEE MEMS,2002,578-581.
    [18]Ishizuya T. et al., US Patent,6,080,988,2000.
    [19]Ishizuya T. et al., US Patent,6,339,219 B1.
    [20]Suzuki, et al., US Patent,6,469,301 B1.
    [21]Zhang L., Yang G., Design, simulation and testing on a light modulating thermal image device, J. Micromechanics and Microengineering,2001,11:85-93.
    [22]Senesac L. R., Corbeil J. L., Lavrik N. V. et al, IR imaging using uncooled mi-crocantilever detectors, Ultramicroscopy,2003,97:451.
    [23]Labrik N. V., Grbovic D., Rajic S. et al., Uncooled infrared imaging using bima-terial microcantilver arrays, Proceeding of SPIE,2006,6206:62061K.
    [24]Grbovic D., Lavrik N. V., Datskos P. G. et al., Uncooled infrared imaging using bimaterial microcantilever arrays, Appl. Phys. Lett.,2006,89:073118.
    [25]Lavrik N., Archibald R., Grbovic D., Rajic S., and Datskos P., Uncooled MEMS IR imagers with optical readout and image processing, Proceeding of SPIE,2007, 6542:65421E.
    [26]Grbovic D., Lavrik N. V., Rajic S., and Datskos P. G., Arrays of SiO2 sub-strate-free micromechanical uncooled infrared and terahertz detectors. Journal of Applied Physics,2008,104(5):054508.
    [27]Jones C.D.W., Bolle C.A., Ryf R., et al. MEMS thermal imager with optical
    readout, Sensors and Actuators A,2009,155(1):47-57.
    [28]Erdtmann M., Zhang L., Jin G., Radhakrishnan S., Simelgor G., and Salerno J., Optical readout photomechanical imager:from design to implementation, Pro-ceeding of SPIE,2009,7298:729801.
    [29]Zhao J., DiFilippo V., Li M., Low Cost Molded Optics for IR Imaging, Proceed-ing of SPIE,2009,7298:72983J.
    [30]Li C. B., Jiao B. B., Shi S. L., Chen D. P., Ye T. C., et al., A novel uncooled substrate-free optical-readable infrared detector:design, fabrication and perfor-mance, Measurement Science & Technology,2006,17(7):1981-1986
    [31]潘亮,张青川,伍小平,段志辉,陈大鹏,王玮冰,郭哲颖,基于MEMS的光力学红外成像,实验力学,2004,19(4):403-406.
    [32]Wood R. A., Monolithic silicon microbolometer arrays, Semiconductors and Se-mimetals,1997,47:43-121.
    [33]Xiong Z. M., Zhang Q. C., Gao J., Wu X. P., Chen D. P., Jiao B. B., The Pres-sure-dependent Performance of Substrate-free FPA in Uncooled Infrared Imag-ing System, Journal of Applied Physics,2007,102(11):113524.
    [34]Lai J., Perazzo T., Shi Z., et al., Optimization and performance of high-resolution micro-optomechanical thermal sensors, Sensors and Actuators A,1997,58: 113-119.
    [35]Duan Z. H., Zhang Q. C., Wu X. P. et al. Uncooled Optically Readable Bima-terial Micro-Cantilever Infrared Imaging Device, Chinese Physics Letters,2003, 20(12):2130-2132.
    [36]段志辉,非相干光技术在阶跃物体形状重建和微梁阵列红外成像中的应用,硕士论文,合肥:中国科学技术大学,2003
    [37]Dong F. L., Zhang Q. L., Chen D. P, Pan L., Guo Z. Y., Wang W. B., Duan Z. H., Wu X. P., An uncooled optically readable infrared imaging detector, Sensor and Actuator A,2007,133(1):236-242.
    [38]Dong F. L., Zhang Q. C., Chen D. P., Miao Z. Y., Xiong Z. M., Guo Z. Y., Li C. B., Jiao B. B., Wu X. P., Uncooled infrared imaging device based on optimized optomechanical micro-cantilever array, Ultramicroscopy,2008,108(6):579-588.
    [1]王成,邵敏,有限单元法基本原理和数值方法.北京:清华大学出版社,1997.
    [2]龚曙光,ANSYS基础应用及实例解析,北京:机械工业出版社,2003.
    [3]李皓月,ANSYS工程计算应用教程,北京:中国铁道出版社,2003.
    [4]刘相新,孟宪颐,ANSYS基础与应用教程,北京:科学出版社,2006.
    [5]张朝辉,ANSYS热分析教程与实例解析,北京:中国铁道出版社,2007.
    [6]ANSYS, Inc. ANSYS Thermal Analysis Guide.
    [7]ANSYS, Inc. ANSYS Structural Analysis Guide.
    [8]ANSYS, Inc. Advanced Analysis Techniques Guide.
    [9]Cheng T., Zhang Q. C., Wu X. P., Chen D. P., and Jiao B. B., Uncooled Infrared Imaging Using a Substrate-Free Focal-Plane Array, IEEE Electron Device Let-ters,2008,29(11):1218-1221.
    [10]Cheng T., Zhang Q. C., Chen D. P., Shi H. T., Gao J., and Wu X. P., Perfor-mance of an optimized substrate-free focal plane array for optical readout un-cooled infrared detector, Journal of Applied Physics,2009,105:034505.
    [11]Cheng T., Zhang Q. C., Chen D. P., Shi H. T., Gao J., Qian J. and Wu X. P., Thermal and mechanical characterizations of substrate-free focal plane array, Chinese Physics B,2010,19(1):010701.
    [12]程腾,张青川,陈大鹏,伍小平,史海涛,高杰.无基底焦平面阵列的红外成像性能分析.物理学报.2009,58(2):0852-0859.
    [13]Kruse P. W., Principle of uncooled infrared focal plane array, Semiconductors and Semimetals,1997,47:17-42.
    [14]Rogalski A., Infrared detectors:status and trends, Progress in Quantum Electron-ics,2003,27(2):59-210.
    [15]潘亮,张青川,伍小平,段志辉,陈大鹏,王玮冰,郭哲颖,基于MEMS的光力学红外成像,实验力学,2004,19(4):403-406.
    [16]潘亮,基于MEMS和可见光读出的微梁阵列传感器和探测系统,硕士论文,合肥:中国科学技术大学,2004.
    [17]董凤量,基于MEMS的光学读出热成像技术的研究,博士论文,合肥:中国
    科学技术大学,2007.
    [18]Dong F. L., Zhang Q. C., Chen D. P., Miao Z. Y., Xiong Z. M., Guo Z. Y., Li C. B., Jiao B. B., Wu X. P., Uncooled infrared imaging device based on optimized optomechanical micro-cantilever array, Ultramicroscopy,2008,108(6):579-588.
    [19]Xiong Z. M., Zhang Q. C., Gao J., Wu X. P., Chen D. P., Jiao B. B., The Pres-sure-dependent Performance of Substrate-free FPA in Uncooled Infrared Imag-ing System, Journal of Applied Physics,2007,102(11):113524.
    [20]Zhao Y., Optomechanical uncooled infrared imaging system, Dissertation of U.C. Berkeley,2002.
    [21]Wood R. A., Monolithic silicon microbolometer arrays, Semiconductors and Se-mimetals,1997,47:43-121.
    [22]Goodman J. W., Introduction to Fourier Optics, McGraw-Hill,1968.
    [23]Holst G.C., Testing and Evaluation of Infrared Imaging Systems (2nd ed.), Flor-ida:JCD Publishing, Washington:SPIE,1998.
    [24]Mazzetta J.A., Scopatz S.D., Automated Testing of Ultraviolet Visible and Infra-red Sensors Using Shared Optics, Infrared Imaging Systems:Design Analysis Modeling and Testing XVIII,2007,6543:654313.
    [25]Chapra S. C., Canale R. P., Numerical Methods for Engineers (5th ed.). New York, New York:McGraw-Hill,2006.
    [26]张青川,程腾,陈大鹏,焦彬彬,伍小平,叶甜春.用于光学读出热型红外辐射传感器的大尺寸微梁阵列.发明专利,申请号:200910116862X.
    [27]Thomson W. T., Marie D. D., Theory of Vibration with Application (5th ed), Prentice Hall,1997.
    [28]季文美,方同,陈松淇,机械振动,北京:科学出版社,1985.
    [29]李东旭,高等结构动力学,长沙:国防科技大学出版社,1997.
    [30]曹树谦,张文德,萧龙翔,振动结构模态分析,天津:天津大学出版社,2000.
    [1]Liu W., and Talghader J. J., Current-controlled curvature of coated micromirrors, Optics Letters,2003,28(11):932-934.
    [2]Goodman J. W., Introduction to Fourier Optics, McGraw-Hill,1968.
    [3]Duan Z. H., Zhang Q. C., Wu X. P. et al. Uncooled Optically Readable Bima-terial Micro-Cantilever Infrared Imaging Device, Chinese Physics Letters,2003, 20(12):2130-2132.
    [4]Cheng T., Zhang Q. C., Jiao B. B., Chen D. P., and Wu X. P., Optical readout sensitivity of deformed microreflector for uncooled infrared detector:theoretical model and experimental validation, Journal of the Optical Society of Ameica A, 2009,26(11):2353-2361.
    [5]Cheng T., Zhang Q. C., Jiao B. B., Chen D. P., and Wu X. P., Analysis of Opti-cal Readout Sensitivity for Uncooled Infrared Detector, Chinese Physics Letters, 2009,26(12):124206.
    [6]董凤量,焦斌斌,张青川,陈大鹏,缪正宇,熊志铭,光学读出非制冷红外成像的最新进展,实验力学,2007,22(3):401-406.
    [1]Cheng T., Zhang Q. C., Chen D. P., Shi H. T., Gao J., and Wu X. P., Perfor-mance of an optimized substrate-free focal plane array for optical readout un-cooled infrared detector, Journal of Applied Physics,2009,105:034505.
    [2]胡继阳,嵌入式系统导论,北京:中国铁道出版社,2005.
    [3]彭启琮,李玉柏,管庆,DSP技术的发展与应用,北京:高等教育出版社,2002.
    [4]张雄伟,陈亮,徐光辉,DSP芯片的原理与开发应用,北京:电子工业出版社,2003.
    [5]陈玉,王宗和,张旭东等,TMS320系列DSP硬件开发系统,北京:清华大学出版社,2008.
    [6]朱明程,现场可编程逻辑门阵列器件FPGA原理及应用设计,北京:电子工业出版社,1994.
    [7]刘皖,何道君,谭明,FPGA设计与应用,北京:清华大学出版社,2006.
    [8]吴继华,王诚,Altera FPGA/CPLD设计.高级篇,北京:人民邮电出版社,2005.
    [9]米本和也,CCD/CMOS图像传感器基础与应用,北京:科学出版社,2006.
    [10]https://www.dalsa.com/sensors/.
    [11]http://www.ti.com/.
    [12]http://www.altera.com/.
    [13]江思敏,PCB和电磁兼容设计,北京:机械工业出版社,2006.
    [14]顾海洲,马双武,PCB电磁兼容技术:设计实践,北京:清华大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700