高光无痕注射成型工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高光无痕注射成型(Rapid Heat Cycle Molding, RHCM)技术的提出源于客户对高精端产品品质的追求,又以其精密、高效、节能、绿色环保等技术优势而得以迅速发展。目前该技术已经在实际生产中得到很好的应用,相对于生产经验,其成型理论的研究则较为匮乏和滞后,本研究正是针对这一现状,采用成型实验与数值模拟并重之方法,对高光无痕注射成型工艺技术方面作一些开拓性的应用基础研究工作,以期为高光产品、高光模具的设计与开发,以及高光成型工艺的制定与优化等提供理论上的指导。
     研究了高光无痕注射成型数值模拟技术。根据高光无痕注射成型“高温、快速”的工艺特点,提出合理的简化与假设;将熔体填充和保压阶段看作统一的可压缩填充过程,由流体力学基本定律推导出与广义Hele—haw平面流动模型相一致的连续性方程、动量方程和能量方程,给出与之相适应的边界条件;以Rabino-Witsch模型为基础,推导了熔体粘度随成型压力变化关系式,得出因压力增大而引起熔体粘度相应增加的粘度修正因子,据此对Cross_WLF模型进行修正以更客观描述熔体粘弹行为;采用双域Tait方程描述熔体填充状态,实现了高光无痕注射成型过程数值模拟。
     研究了确保高光制品与模具型腔高精确复合的结构设计技术,以及确保能够对介质温度做出快速且均衡响应的高光模具结构设计技术;对模具结构尤其是型腔设计做以大胆创新,自主开发了以随行介质通道和直通式水路接入口为主要结构特征的车载高光蓝牙模具;简要介绍了以J11-W-160型模温机为核心的模具温度控制辅助系统的工作原理。
     研究了温度因素对高光无痕注射成型制品残余应力的影响。从连续性方程、动量方程和能量方程出发,以线性、小变形、热弹模型Duhamel-Neumann方程为基础,推导了高光无痕注射成型冷却过程制品残余应力(应变)与降温速度和降温梯度的关系式,从理论上分析了温度因素对制品残余应力的影响。
     研究了模具温度在快速升温和降温交变温差条件下的对制品品质的影响。以制品对型腔复原性能、成型收缩、成型翘曲和表面沉降等为品质考核指标,采用成型实验与数值模拟并重的方法,通过人为引入干扰因子的方法保证模拟结果具有更高的客观性,研究并得出了模具温度在快速升温和降温交替变化条件下对制品品质的影响效应与影响规律,相同及不同模具温度条件下其他成型参数,诸如熔体温度、注射压力、保压压力、保压时间和冷却时间等,对制品品质影响效应及影响规律,以及在保证相同成型品质条件下,各成型参数随模具温度的变化规律,且实验结果与理论分析得到较好的吻合。
     研究了高光无痕注射成型工艺优化技术。以车载高光蓝牙产品为例,以中心复合实验法(center composite design, CCD)进行实验规划,引入信噪比(signal-to-noise, S/N)理论、熵值权重法(Entropy-Based Weight, EBW)与顺序偏好法(Technique for Order Preference by Similarity Ideal Solution, TOPSIS)等数据处理技术,从数理角度处理实验数据使之能客观反应制品品质状况;利用响应曲面法(Response Surface Methodology. RSM),并结合方差分析(analysis of variance, ANOVA)和误差分析建立了成型工艺预测模型;针对传统遗传算法的不足之处提出改进算法(Improved Genetic Algorithm, IGA)实现了工艺预测模型的寻优过程,并经生产实验验证该工艺优化技术具有很好的适用性,给出了一种可用于指导生产实践的可行高光无痕注射成型工艺优化方法。
Rapid Heat Cycle Molding (RHCM) technology, developed from the high-precision product quality pursuit of customers, and for its precision, high efficiency, energy saving, environmental protection and other technical advantages to flourish. RHCM technology has already been in actual production well applied currently, and considerable success. Relative to production experience, the theoretical research is more scarce and hysteresis. In response to current research situation, this study has made a pioneering fundamental research work in process using experiment and numerical simulation methods. And the purpose is to give some theoretical guidance on high-gloss products, high-gloss mold design and development, and process determination and optimization etc.
     The numerical simulation technology of RHCM is studied. Based on the process characters of RHCM technology, suitable hypothesis and reduction are introduced. Considering melt filling and packing stages as uniform compressible process, the mathematical models of continuity, momentum and energy equation, have been derived based on the theory of polymer rheology theory, which is similar to Hele-Shaw model. And the corresponding boundary conditions are defined. The relation of melt viscosity with pressure changed is derived based on Rabino-Witsch equation, a viscosity correction factor is obtained. Thus a modified CrossWLF model is obtained, which can more objective description viscoelastic behaviors of polymer melt in filling process. Coupling with the Tait model to describe melt filling status, the numerical simulation of RHCM is realized ultimately.
     The high-gloss part, as well as the high-gloss mold, structure design technology is investigated, which can ensure products reaching to a high-precision replication with the cavity, and the temperature of mold cavity varied with the medium in timely and evenly. Then a vehicle-used high-gloss bluetooth mold, with following media path and straight through type media inlet, is independent innovated. And then a mold temperature control auxiliary system is introduced, especially the core devise of J11-W-160 type mold temperature control machine.
     The influence of temperature factor in Rapid Heat Cycle Molding on thermal stress maintained in part is researched. Based on continuity, momentum and energy equation, coupling with linear, infinitesimal, thermoelasticity Duhamel-Neumann equation, the relation between the thermal stress and temperature factor in cooling stage of RHCM is reached. Thus the influence tendency of temperature factor on residual thermal stress is analysis in theory.
     The influence of mold temperature on part quality is investigated, which is heated or cooled in the fast alternating conditions. The replication of part to cavity, shrinkage, wrapage and sink of part are considered as quality evaluation indexes. By integrating the experimental and numerical simulation method, as well as interference factors technology, this thesis investigates and come to the influence effect and impact law of mold temperature on product quality. It also studies and come to the influence effect and impact law of other parameters on product quality under fixed or changed mold temperature conditions, as well as the changing law of others with mold temperature under the same product quality presumed conditions. And the experimental results and the theoretical analysis are in good agreement.
     The RHCM process optimization technology is investigated. In this paper, the center composite design (CCD) method is employed in arranging the experimental points. And the samples qualitative data is processed to more objective response the products quality by integrating signal-to-noise (S/N) method, Entropy-Based Weight (EBW) method, Technique for Order Preference by Similarity Ideal Solution (TOPSIS), etc. Then a predictive response surface model (RS) for comprehensive quality index is created using Response Surface Methodology (RSM) based on analysis of variance (ANOVA) method. The RS model is interfaced with an effective improved Genetic Algorithm (IGA) to find the optimum process parameters values. And the actual production achieves good result, which shows that the process control technology is feasible and effective on processing quality optimization of high-gloss plastic part.
引文
[1]W Kurt. Thinwall:reducing the weight, size and cost of portable electronics by reducing the wall thickness of enclosures[J]. Materials and Design,2000,21:51-55
    [2]J K L Ho, K F Chu, C K Mok. Minimizing manufacturing costs for thin injection molded plastic components[J]. Int J Adv Manuf Technol,2004,8(12):159-190
    [3]刘东雷.塑料薄壁注塑制品成型表观质量控制研究[D].南昌大学硕士论文,2007,06
    [4]吴裕福.微射出机缩模机构的设计与验证[D].台湾成功大学硕士论文,2003,07
    [5]杨芯萍.应用于微流体元件之微射出成型研究[D].台湾成功大学硕士论文,2003,06
    [6]ONO SANGYO Co., Ltd. http://www.onosg.co.jp/en/rhcm/index.html
    [7]BRUIJS W. Cut part costs thermodynamically. Injection Molding Magazine,2007, (8):52. httn://www.iniectionmoldingmagazine-digital.com/immnet/200708/?ng=52
    [8]CAI L. B. Simulation on Rapid Heating Cycling Molding System of Injection Mould Based on 3D TIMON. http://www.hvnerinfo.com.tw/enaoer/950627/950627.htr
    [9]葛娜.高光注塑成型工艺及制品表观质量控制研究[D].南昌大学硕士论文,2009,06
    [10]葛娜,辛勇.LCD电视机前面壳高光成型CAE分析及参数优化[J].塑料,2009,38(2):112—114
    [11]张鹏,程永奇,宋财富.高光注射成型及其关键技术[J].工程塑料应用,2009,37(4):31—34
    [12]王桂龙,赵国群,李辉平等.变模温注塑技术的研究与应用分析[J].现代化工,2009,29(2):24—27
    [13]李育云.感应加热应用于模具快速加热之研究[D].台湾私立中原大学硕士论文,2002,5
    [14]赵国群,王桂龙,李辉平等.快速热循环注塑技术的研究与应用[J].塑性工程学报,2009,16(1):190—195
    [15]丁磊,伍晓宇,李伟荣等.高光无痕注射成型工艺与装置[J].模具工业,35(1):45—48
    [16]V Piotter, T Bauer, T Benzler, et al. Injection Molding of Components for Microsystems[J]. Microsystem Technologies,2001,7(3):99-111
    [17]M Heckele, W K Schomburg. Review on Micro Molding of Thermoplastic Polymers. Journal of Micromechical and Microengineering[J].2004,14(3):1-14
    [18]W Schinkothe, T Walther. Reducing cycle times, alternative mould temperature control for microinjection moulding[J]. Kunststoffe Plast Eur,2000,90(5):17-19
    [19]W Michaell, A Spennermann. Injection moulding microstructured functional surfaces, correct temperature control is half the battle[J]. Kunststoffe Plast. Eur.,2000,90(9):16-17
    [20]D G Yao, B Y Kim. Injection Molding High Aspect Ratio Microfeatures[J]. Journal of Injection Molding Technology,2002,6(1):131-137
    [21]D K Kim, M H Kang, Y H Chun. Development of a New Injection Molding Technology: Momentary Mold Surface Heating Process[J]. Journal of Injection Molding Technology,2001, 5 (4):229-232
    [22]D G Yao, B Kim. Development of Rapid Heating and Cooling Systems for Injection Molding Applications[J]. Polymer Engineering and Science,2002,42(12):2471-2481
    [23]S C Chen, H S Peng, J A Chang, et al. Simulations and Verifications of Induction Heating on Mold Plate[J]. Int. Comm. Heat Mass Transfer,2004,31(7):971-980
    [24]K M Jansen. Heat Transfer in Injection Molding Systems with Insulation Layers and Heating Elements [J]. International Journal of Heat and Mass Transfer,2005,38(2):309-316
    [25]S C Chen, W R Jong. Dynamic Mold Surface Temperature Control Using Induction Heating and Its Effects on Surface Appearance of Weld Lines[J]. Journal of Applied Polymer Science,2006,101(2):1174-1180
    [26]J A Chang, S C Chen, J C Cin. Rapid Mold Temperature Control on Micro Injection Molded Parts with High Aspect Ratio Micro-features[R]. ANTEC 2006,1275-1279
    [27]C Bonten, C Tuchert. Welding of Plastics-Intreduction into Heating By Radiation. Journal of Reinforced Plastic and Composites[J].2002,21 (8):231-236
    [28]T Satio, I Satoh, Y Kurosaki. A new Concept of Active Temperature Control for an Injection Molding Process Using Infrared Radiation Heating[J]. Polymer Engineering and Science,2002,42(12):234-241
    [29]T Satio, I Satoh. A New Concept of Active Temperature Control for an Injection Molding Process Using Infrared Radiation Heating[J]. Polymer Engineering and Science,2002,42(12): 2418-2429
    [30]纪崇仁.晶圆快速热处理模拟[D].台湾成功大学博士论文,2002,5
    [31]M Pettersson, S Stenstron. Modelling of an Electric IR Heater at Transient and Steady State Conditions Part I:Model and Validation[J]. International Journal of Heat and Mass Transfer,2000,43:1209-1222
    [32]M Pettersson, S Stenstron. Modelling of an Electric IR Heater at Transient and Steady State Conditions Part I:Modelling a Paper Dryer[J]. International Journal of Heat and Mass Transfer,2000,43:1223-1232
    [33]T Miyanaga, Y Nakano. Radiation Heat Transfer in Three-Dimensional Closed Space Including Diffuse and Specular Surfaces[J]. Heat Trasfer-Asian Research,2003,32(3): 108-129
    [34]P C Zhang, S J Hwang. Injection Molding of Microprobe Array Part[J]. Junrnal of Polymer Research,2006,13(1):25-32
    [35]P C Zhang, S J Hwang. Simulation of Infrared Rapid Surface Heating for Injection Molding[J]. Journal of Heat and Mass Transfer,2006,49:3846-3854
    [36]P C Zhang, S J Hwang. Experimental Investigation of Infrared Rapid Surface Heating for Injection Molding[J]. Journal of Applied Polymer Science,2006,102(4):3704-3713
    [37]P C Zhang, S J Hwang, H H Lee, et al. Development of an External-Type Micro Injection Molding Module of Thermoplastic Ploymer[J]. Journal of Material Processing,2007,184(1-3): 163-172
    [38]M Chen, D Yao, B Kim. Eliminating flow induced birefringence and minimizing thermally induced residual stresses in injection molding parts[J]. Poly Plast Technol Eng,2001.40:491-502
    [39]D Yao, B Kim. Increasing flow length in thin wall injection molding using a rapidly heated mold[J]. Polym Plast Technol Eng,2002,41:819-832
    [40]D Yao, B Kim. Injection molding high aspect ratio microfeatures[J]. J Injection Molding Technol,2002,6:11-17
    [41]D Yao, B Kim. Development of rapid heating and cooling systems for injection molding applications. Polym Eng Sci,2002,42:2471-2481
    [42]E K Thomas, W Liu, B H Kim, et al. Rapid hot embossing of polymer microfeatures[J]. Microsyst Technol,2006,12(8):730-735
    [43]L Weber, W Ehrfeld. Micromoulding——market position and development [J]. Kunststoffe Plast Eur.1999,89(10):192-202
    [44]M S Despa, K W Kwlly, J R Collier. Injection Molding of Polymeric LIGA HARMS[J]. Microsystem Technologies,1999, (6):60-66
    [45]D Grewell, et al. Feasibility of selected methods for embossing micro-features in thermoplastics[J]. Technical papers of ANTEC 2003, Society of Plastic Engineers, Nashville. TN, pp 1094-1098
    [46]J H Chang, S Y Yang. Development of fluid-based heating and pressing systems for micro hot embossing[J]. Microsyst Technol,2005,11:396-403
    [47]林志鸿.微射出快速模温控制系统与玻璃模仁表面微结构复制成型探讨[D].台湾大学硕士论文,2001,5
    [48]D Yao, B Kim. Increasing flow length in thin wall injection molding using a rapidly heated mold[J]. Polym Plast Technol Eng.2002,41:819-832
    [49]M S Despa, K W Kwlly, J R Collier. Injection Molding of Polymeric LIGA HARMS[J]. Microsystem Technologies,1999, (6):60-66
    [50]V Piotter, T Hanemann, R Ruprecht et al. Injection molding and related techniques for fabrication of microstructures[J]. Microsystem Technology.1997, (4):129-133
    [51]V Piotter. K Mueller, K Plewa, et al. Performance and simulation of thermoplastic micro injection molding[J]. Microsystem Technology.2002,8(6):387-390
    [52]L Y Yu, G K Chen, L J Lee, et al. Experimental investigation and numerical simulation of injection molding with micro-features[J]. Polymer Engineering and Science,2002,42(5): 871-888
    [53]L Y Yu. Experimental and numerical analysis of injection molding with microfeatures[D]. Graduate of the Ohio State University,2004
    [54]Y C Su. J Shan, I W Ian. Implementation and analysis of polymeric microstructure replication by micro injection molding[J]. Micromesh. Microeng.,2004,14(3):415-422
    [55]Y K Shen, Y J Shie, W Y Wu. Extension Method and Numerical Simulation of Micro-injection Molding[J]. Int. Comm. Heat Mass Transfer,2004,31 (6):795-804
    [56]W B Young. Simulation of the filling process in molding components with micro channels[J]. Microsystem Technologies,2005,11(7):410-415
    [57]I James, et al. Design and fabrication of CD-like microfluidic platforms for diagnostics: polymer-based microfabrication[J]. Biomedical Microdevices,2001,3(4):245-254
    [58]B K Lee, D S Kim, T H Kwon. Replication of microlens arrays by injection molding[J]. Microsystem Technologies,2004,10(6):531-535
    [59]M C Yu, W B Young, P M Hsy. Micro-injection molding with the infrared assisted mold heating system[J]. Material Science and Engineering A,2007,460-461:288-295
    [60]张宏超.射出成型制程参数对微特征孔洞填充之影响[D].台湾成功大学硕士论文,2004,6
    [61]林晃业.微米级结构射出成型之研究[D].台湾成功大学硕士论文,2005,6
    [62]杨益成.辐射快速加热模具表面之试验研究[D].台湾成功大学硕士论文,2005,6
    [63]游茗景.快速加热系统于微射出成型之应用[D].台湾成功大学硕士论文,2006,6
    [64]陈永坤.双面微沟槽之薄件射出成型研究[D].台湾科技大学硕士论文,2005,6
    [65]李建宏.微流道射出成型充型模拟研究[D].台湾成功大学硕士论文,2007,6
    [66]陈福添.以蒸汽加热可变温模具系统开发研究[D].台湾成功大学硕士论文,2008,6
    [67]httD://www. hvDerinfo. com. tw/epaDer/950718/950718. htm
    [68]许海航,吴宏武.注射模温度快速响应技术[J].模具工业,2004,(10):34-37.
    [69]王桂龙,赵国群,李辉平等.蒸汽辅助快速热循环注塑技术及模温响应模拟[J].高分子材料科学与工程,2009,25(8):171—174
    [70]张爱敏,赵国群,高军等.基于快速热循环注塑工艺要求的ABS改性[J].合成树脂及塑料,2009,26(2):4—7
    [71]李熹平,赵国群,管延锦等.快速热循环注塑模具加热与冷却过程分析及其结构优化设计[J].塑性工程学报,2009,16(1):196—201
    [72]王桂龙,赵国群,李辉平等.变模温注塑热响应模拟与模具结构优化[J].机械工程学报,2009,45(6):216—221
    [73]王桂龙,赵国群,李辉平等.基于CAE的大型LCD注塑面板变模温设计与分析[J].材料工程,2009,(9):24—28
    [74]伍晓宇,程蓉,梁雄等.局部薄壁件的高光无痕注塑成型[J].塑料工业,2009,37(6):44—46
    [75]梁雄,伍晓宇,彭太江等.车载蓝牙上盖高光无痕注射模设计[J].模具工业,2009,35(6):48—50
    [76]伍晓宇,梁雄,李积彬等.基于全区域连通型随形介质槽的注塑模具[J].塑料工业,2009,37(5):24—26+34
    [77]张鹏,宋财富,程永奇.高光注射及其动态模温控制技术[J].模具制造,2009,9(2):75—78
    [78]刘锦辉,史玉升,陈继兵.具有内置随形冷却水路的注塑模具快速制造[J].粉末冶金技术,2008,26(5):365—368+373
    [79]史玉升,伍志刚,魏青松等.随形冷却对注塑成型和生产效率的影响[J].华中科技大学学报(自然科学版),2007,35(3):60—62
    [80]陈文芳.非牛顿流体力学[M].北京:科学技术出版社,1984
    [81]米德尔曼著S,赵德禄译.聚合物加工基础[M].北京:科学技术出版社,1984
    [82]伦克P S.聚合物流变学[M].北京:国防工业出版社,1982
    [83]塔德莫尔Z,戈戈斯S S著,耿孝正译[M].聚合物加工原理.北京:化学工业出版社,1990
    [84]H H Chiang, C A Hieber, K K Wang. A Unified Simulation of the Filling and Post-Filling Stages in Injection Molding [J]. Part I:Formulation, Polym. Eng. Sci.,1991,31:116
    [85]H H Chiang, C A Hieber, K K Wang. A Unified Simulation of the Filling and Post-Filling Stages in Injection Molding [J]. Part Ⅱ:Experimental Verification, Polym. Eng. Sci.,1991,31: 125
    [86]T H Kwon. Mold Cooling System Design Using Boundry Element Method [J]. Journal of Engineering for Industry,1988,110(4):384-394
    [87]W Dietz. A Cooling Time Model for Plastics Processing Operations [J]. Ploymer Engineering and Science,1978,18(13):1030-1036
    [88]G S Keni, M R Kamal. Heat Transfer in the Cooling of Thermoplastic Melts Under Pressure [J]. Journal of Chemical Engineering,1997,49(2):210-219
    [89]T E Burton, M Rezayat. Simulation of Heat Transfer in Injection Molds [J]. Computers in Engineering,1987, (2):457-463
    [90]伦克P S.聚合物流变学[M].北京:国防工业出版社,1982
    [91]唐志玉.注塑模流变学设计[M].北京:国防工业出版社,1991
    [92]塔德莫尔Z,戈戈斯S S著,耿孝正译[M].聚合物加工原理.北京:化学工业出版社,1990
    [90]J Koszkul, J Nabialek. Viscosity models in simulation of the filling stage of the injection molding process[J]. Journal of Materials Processing Technology,2004,157-158(10):183-187
    [91]M Dubus, H Burlet. Rheological Behaviour of a Polymer Ceramic Blend[J]. Journal of the European Ceramic Society.1997,17:191-196
    [92]L F A Douven, F P T Baaijens, H E H Meijer. The Computation of Properties of Injection Moulded Products[J]. Prog. Polym. Sci.,1995,20:403-457
    [93]F Hisamoto, T Kiyoshi. Analysis of Folw Behavior of Non-Newtonian Fluids Based on a Concept of Traveling Force[J]. Journal of Bioscience and Bioengineering.1999,87(2): 218-223
    [94]Y K Shen, P H Yen, J S Wu. Numerical simuation for thin wall injection molding of fiber-reinforced thermoplastics[J]. International Communications in Heat and Mass Transfer. 2001(10),28:1035-1042
    [95]K C M Nair, R P Kumar, S Thomas, et al. Rheological behavior of short sisal fiber-reinforced polystyrene composites[J]. Composites:Part A,2000,31:1231-1240
    [96]S A Iqbal, MS J Hashimi. Determination of the Pressure dependent viscosity of now-Newtonian fluid using a new rheometrical device[J]. Journal of Materials Processing Technology,2001,199:146-151
    [97]M Massoudl, T X Phuoc. Unsteady shear flow of fluids with pressure-dependent viscosity[J]. International Journal of Engineering Science,2006,44:915-926
    [98]Scott Bair. A Reynolds-Ellis equation for line contact with shear-thinning[J]. Tribology International,2006,39:310-316
    [99]RAJENDRA P CHHABRA, JACQUES COMOTO, IVAN MACHAC. Folw of non-Newtonian fluids in fixed and fluidised beds[J]. Chemical Engineering Science,2001,56: 1-27
    [100]J H He. Variational principle for non-Newtonian lubrication:Rabinowitsch fluid model[J]. Applied Mathematics and Computation,2004,157:281-286
    [101]翟明.塑料注射成型填充过程模拟、优化与控制[D].大连理工大学博士学位论文,2002,5
    [102]刘春太.基于数值模拟的注塑成型工艺优化和制品性能研究[D].郑州大学博士学位论文,2003,5
    [103]王丽霞.基于数值模拟的注塑成型工艺优化及制品质量控制研究[D].郑州大学博士学位论文,2003,5
    [104]谷净魏.薄壳注塑成型熔体填充过程数值模拟研究[D].吉林大学博士学位论文,2001,11
    [105]陈志刚.塑料模具设计[M].北京:机械工业出版社,2002
    [106]M Stanczyk, J J Telega. Therlmal problem in biomechanics-a review. Part Ⅲ. Cryosurgery, cryoperservation and cryotherapy [J]. Acta of Bioengineering and Biomechanics, 2003,5(2):3-22
    [107]H M Youssef, E Bassiouny. Two-Temperature Generalized Thermopiezoelastocity for one Dimensional Problems-State Space Approach [J]. Computational Methods in Science and Technology,2008,14(1):55-64
    [108]H Tizanhu, T Xiaogeneg, S Yapeng. State Space Approach to One-Dimensional Shock Problem for a Semi-infinite Piezoelectric Rod [J]. Int. J. Eng. Sci,2002,40:1081-1097
    [109]陈静波.粘弹性聚合物熔体注射成型模型化理论与数值模拟研究[D].郑州大学博士学位论文,2003,6
    [110]B Sha, S Dimov, G Griffiths, et al. Investigation of micro—injection moulding:factors affecting the replication quality[J]. Journal of Materials Processing Technology,2007,183(3): 284-296
    [111]Y Yang, F R Gao. Injection molding product weight:online prediction and control based on a nonlinear principal component regression model[J]. Polymer Engineering and Science,2006, 46(4):540-548
    [112]M R Kamal, A E Varela, W Patterson. Control of part weight in injection molding of amorphous thermoplastics[J]. Polymer Engineering and Science,1999,39(5):940-952
    [113]H Postawa. J Koszkul. Change in injection moulded parts shrinkage and weight as a function of processing conditions[J]. Journal of Materials Processing Technology,2005, 162-163(3):109-115
    [114]J Zhao, R H Mayes, G Chen, et al. Effect of process parameters on the micro molding process[J]. Polymer Engineering and Science,2003,43(9):1542-1554
    [115]H Schift, F Glaus, J Gobrecht, et al. V-groove replication:a tool for quality control of a compact disc injection molding process[R]. PSI annual Report,2000
    [116]N S Ong, Y H Kon. Experimental investigation into micro injection molding of plastic parts. Materials and Manufacturing Processes,2005,20(2):245-253
    [117]蒋炳炎,申瑞霞,沈龙江等.成型工艺参数对微结构零件复制度的影响[J].精密工程,2008,16(2):248—255
    [118]潘丽军,陈锦权.试验设计与数据处理[M].南京:东南大学出版社,2008,2
    [119]王更新,韩之俊.望大特性与望小特性的质量损失与信噪比的关系[J].机械科学与技术,2000,19(2):236—238
    [120]W L Chen, T H Chen. Application of Entropy and TOPSIS Method on Evaluating Decision-Making Model for Pin-Work Design[J]. Chinese Electronic Periodical Srevice,2008, 11(1):23-41
    [121]T Y Chen, C Y Tsao, The interval-valued fuzzy TOPSIS method and experimental analysis[J]. Fuzzy Sets and Systems,2008,159:1410-1428
    [122]T C Chu, Y C Lin. A Fuzzy TOPSIS Method for Robot Selection[J]. International Journal of Advanced Manufacturing Technology,2008,21:284-290
    [123]G R Jahanshaloo, F Hosseinzadeh Lotfi, M Izadikhah, Extension of the TOPSIS method for decision-making problems with fuzzy data[J]. Appl. Math. Comput,2006.181:1544-1551
    [124]曾耀铭.白僵菌蛋白质分解酵素发酵制备之研究探讨[D].台湾朝阳科技大学博士论文,2004,7
    [125]G Kim, C S Park, K P Yoon. Identifying investment opportunities for advanced manufacturing systems with comparative-integrated performance measurement[J]. International Journal of Production Economics,2007,50:23-33
    [126]M C Kathleen, Y K Natalia, R Jeff. Response Surface Methodology—CASOS Technical Report[R] U.S.:CMU-ISRI-04-136,2004
    [127]W K Lu, T Y Chiu. Use of Response Surface Methodology to Optimize Culture Medium for Production of Poly-Y-glutamic Acid by Bacillus licheniformis[J]. International Journal of Applied Science and Engineering,2004,2(1):49-58
    [128]H Kurteran, T Etzurumlu. Efficient warpage optimization of thin shell plastic parts using response surface methodology and genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology,2005.5
    [129]H Kurteran, B Ozcelik, T Etzurumlu. Warpage optimization of a bus ceiling lamp based using neural network model and genetic algorithm[J]. Journal of Materials Processing Technology,2005,169(10):314-319
    [130]B Ozcelik, T Etzurumlu. Determination of effecting dimensional parameters on warpage of thin shell plastic parts using integrated response surface method and genetic algorithm[J]. Heat and Mass Transfer,2005,32(8):1085-1094
    [131]B Ozcelik, T Etzurumlu. Comparison of the wrapage optimization in the plastic injection molding using ANOVA, neural network and genetic algorithm[J]. Journal of Materials Processing Technology,2006,171:437-445
    [132]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2005
    [133]刘东雷.基于反应曲面法与遗传算法的薄壁注塑件成型工艺参数预测[J].中国塑料,2007,21(3):53—57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700