新型蓄热式(HTAC)辐射管加热装置的开发和优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辐射管是热镀锌板生产线上重要的加热装置,在热镀锌板生产成本中,辐射管的能源消耗占了很大比重,应用高温空气燃烧技术(HTAC)的蓄热式辐射管具有高效节能和降低污染物排放的潜力,是燃气辐射管的发展方向之一。目前国内虽然已经研发出燃气蓄热式辐射管,但就其完整性和实用性上仍旧有很多关键性的技术值得进一步研究和优化。
     本文以热态实验为基础,对蓄热式辐射管的烧嘴结构、换向时间、蓄热体长度等进行优化设计,优化后的烧嘴结构能够较好地混合空燃气,从而均匀了辐射管的表面温度,使温差在30℃左右;对换向时间和蓄热体长度的选择,使烟气余热回收率在75%以上,同时对所采用的蜂窝式陶瓷蓄热体的蓄热特性和蓄热能力进行了分析和计算,认为其传热系数是常规金属换热器的1.6~5倍。
     实验过程中重点对降低NOx排放进行了研究。将低NOx燃烧技术与蓄热式燃烧技术有机的结合起来,开发出可靠、实用的工程技术,如内衬管、“十”字型插件等,并应用在蓄热式辐射管中,得到了较好的效果。在辐射管表面温度达到其工作温度以上时(>900℃),烟气中的NOx浓度能够降低到200×10-6以下。
     在实验研究的同时,结合数值仿真研究工作,丰富了对辐射管内燃烧过程的认识。对蓄热式辐射管内低NOx燃烧过程进行模拟,针对不同的低NOx燃烧技术,分析对NOx抑制效果的影响,具体研究了燃料与空气混合方式的变化、助燃空气中氧浓度的变化、分级燃烧中一次空气比例及一次燃烧区域长度的变化以及燃料及空气入口相对位置的变化对NOx生成的影响,研究结果为低NOx燃烧器的优化设计提供了理论依据。同时对人们关心的蓄热式辐射管内高温空气燃烧状态下的温度场、流场及组分分布进行了模拟研究,丰富了对高温空气燃烧技术的认识和理解。
Radiant tube is a important heating instruments in product line of galvanization ban. The energy cost of radiant tube take a lot place in the total cost. The regenerative radiant tubes with high temperature air combustion (HTAC) technique have potential of energy saving and low exhaust gas emission. This is the direction of radian tube development. Right now regenerative fuel radiant tube has been applied natively, but it could be optimized in the part of inteqrality and practicability.
     This text based on combustion experiment. The burner structure , switching time and the length of honeycomb regenerator were design optimization in the regenerative radiant tube. After optimization, the burner can make the mix of gas and fuel better according to equality the surface temperature of the radiant-tube and the difference of surface temperature limited 30℃.The selection of switching time and honeycomb regenerator make the heat recovery rate more than 75%.At the same time, this experiment had a study on the performance and capacity of the honeycomb regenerator, the result show that the heat transfer coefficient of regenerator was 1.6~5 times more than normal heat storage bed.
     The most important content in this paper was how to reduce the NOx emission in the working condition of radiant tube low NOx emission combustion technology and regenerative combustor technology were combined for developing dependable, practical technology in this experimental study,for example two burning zones and crossed device. The result show that in the condition of above working temperature(>900℃) the NOx emission can reduced to under 200×10-6.
     There were a lot of work about simulation in this text. It can strengthen and enrich the acquaintanceship of HTAC. The major study is about the effect of different technology of low NOx emission. The mostly contents contained different mix of the fuel and air, oxygen concentration in the combustion air, the influences of primary air propotion and the primary zone length, different inlet of the flue and combustion air. The study results provided the theoretical basis for optimum design of burner structure. At one time having a simulation on fluid flow gas temperature profile and oxyen concentration profile in the regenerative radiant tube. and compared to the normal air preheat combustion in order to enrich the knowledge of HTAC.
引文
[1] 罗晓春, 梁卫民, 蒋漫文. HTAC 辐射管在燃气真空热处理炉中的应用. 冶金能源,2004,23(4):30-33.
    [2] 王政民. 高温低氧燃烧方法的热工规律和扩大应用. 冶金能源,2003,22(2):24-29.
    [3] 吴建常. 在钢铁协会“环保与节能工作委员会第二次全体会议”上的讲话,钢铁信息 2002, 24(总第 145 期):2-6.
    [4] 高家锐, 高仲龙, 张先掉. 关于工业加热炉发展方向的探讨. 工业炉. 1996,(3):3-6.
    [5] 周怀春, 盛峰, 姚洪等, 高温空气燃烧一 21 世纪关键技术之一. 工业炉. 1998,20(1):I9-3I.
    [6] Newby J N. Hihgh perfonmance heat recovery with regenerative burners. Iron and Steel Engineer, 1987,64(4):20-24.
    [7] Hsiao T C, Yoshikawa K. eds. Pnooeedings of Beijing Symposium on High Temperature Air Combustion. Beijing: The Federation of Engineering Societies of Chinese Association for Science and Technology,1999
    [8] Tanaka R New progress of energy saving technology toward the 21th century :Frontier of combustion & heat transfer technology. In: Proceedings of 11th Internation flame Research Foundation(IFRF) Membeas Conference, The Netherlands,1995.
    [9] 须藤淳多田健. 蜂窝型蓄热式燃烧系统的开发和应用.工业炉.1999, 21(2) : 50-53.
    [10] Tanaka R, Kishimoto K, Hasegawa T. High Efficiency heat transfer method with use of High temperature pre-heated air and gas recirculation. Combust. Sci. Technology, 1999, 1(4):264-273
    [11] Hasegawa T, Tanaka R, Nuoka T, High temperate air combution contributing to energy saving and pollutant reduction in industrial furnace. In: Hsiao T C, Yoshikawa K. eds.Proceedings of Beijing Symposium on High Temperature Air Combustion. Beijing: The Federation of Engineering Soci}ies of Chinese Association for Science and Technology, 1999.102-114
    [12] Tsuji H, Gupta A, Hasegawa T, et al. High Temperature Air Combustion: From Energy Conservation to Pollution Reduction, CRC Press LLC, New Yo 氏 2003.
    [13] Kishimotol K. New techonology "High-Temperature Air Combustion" and its Future. In: 3rd Intenational Symposium on advanced Energy Conversion System and Related Technologies. Nagoya: Nagoya University, 2001
    [14] Mortberg M, Rafidi N, Blasialc W. Measurements of temperahme, heat flux and flue gas composition in HTAC flame. Challenges in Reheating Furnaces Conference, London: IOMComunications Ltd,2002.
    [15] Wuming J A, Wunning J G. Flameless oxidation to reduce thermal NO-fommation. Prog. Energy Combust.Sci,1997,23:81-94.
    [16] Yasuda T. Diseminahon project for high performance industrial fumaces of highly preheated air combustion technology.AIAA,990729,1-6.
    [17] 丰酶鹰,李宇红,由长福等,高温空气燃烧技术的国际发展动态,工业加热,2003,1:1-7
    [18] Mochida S.HTAC application in larger scale ind}ial fiana}Fur}dame}, In: BlasiakW,Yang WH, eds. High Temperature Air Combustion, The Quest of Zero Fanissions in Industrial Furnace, International Flame Research Foundation and Swedish Flame Reaeanh Committee, Stockholm, 2003,9-13.
    [19] 祁每鹰,徐旭常.中国开发应用高温空气燃烧技术的前景.高温空气燃烧新技术讲座论文集:中国科协工程学会联合会,1999.192-205
    [20] 日本钢管(株)福山制铁所,蓄热式べ一ナの开发大型加热炉の适用,省ェネルキ一,51(2),1999.
    [21] Milani A. Mild Combustion Technique Applied to Regenerative Firing in Industrial Furances. In: Jemkontoret-KTH. Proceedings of the 2nd International Seminar on High Temperature Combustion in Industrial Furnaces. Stockholm: 2000.17-18
    [22] Giuseppe G, Ambrogio M. Flameless technologies: Industrial applications and R&D projects in Italy In:5thInternational Symposium on High Temperature Air Combustion and Gasification.Yokohama Tokyo Institute of Technology, 2002. A301-A309.
    [23] Wunning J G.Application of flameless combustion: a challenge for the theirnal process technology. Roman: Italian Flame Days,1999.
    [24] Blasiak W, Yang W H, eds. High temperature Air Combustion, The Quest of Zero Emissions in Industrial Furnace. Stockholm: International Flame Research and Swedish Flame Research Comrnittee, 2003
    [25] 王秉铨.工业炉设计手册,第2版.北京:机械工业出版社,2000, pp.885-886.
    [26] 益田明英.节能型连续式光亮退火炉介绍.杨志华,译.国外金属热处理,1995(5):29-32.
    [27] [27]徐斌.燃气辐射管的改进.煤气与热力,1988,(6):46-51.
    [28] 谢辰,黄德轩,周勇.辐射管加热炉的优劣化分析.四川冶金,2000(6):28-30.
    [29] 吴道洪 谢善清.高温空气燃烧技术的研究与应用. 新技术新工艺,2002, (7):32-35.
    [30] Y. Suzakawa. Regenerative Burner Heating System. In: Hsiao Tsechiang,Yoshikawa Kunio, eds roceeding of High Temperature Air Combustion Symposium.Beijing: 1999.169-180.
    [31] J.S. Tsai, K. Yoshikawa, T. Iwahashi, K. Kawai. Thermal Performance of A High Temperature Air Combustion Boiler. In:Proceeding of International Symposium onCombustion.1998, l-5.
    [32] 张朝生.日本蓄热式辐射管燃烧系统的开发和应用.节能,1999,(9)42-45.
    [33] Toshiaki Hasegawa Ryoichi Tanaka Takashi Niioka. In : High Temperature Air CombustionContributing to Energy Saving and Pollutant Reduction in.Industrial Furnace[A].Proceedings of High Temperature Air Combustion[C]. Beijing: The Federation of Engineering Societies of ChinaAssociation for Science and Technology, 1999.
    [34] Mochida S. Hasegawa T. Tanaka R. Characteristics of High Temperature Air Combustion [A].Ran95 International Symposium [C].Nagoya, 1995.
    [35] 萧琦 吴道洪 王东方等.蓄热式辐射管燃烧器在镀锌板退火炉上的应用, 工业炉,2004,26 (5):16-18
    [36] 阎承沛 吴道洪 萧琦 王东方.蓄热式(HTAC)燃气辐射管燃烧器研制开发.热处理,2004,19(1).
    [37] 杨思安.P型蓄热式辐射管的开发研究:[博士学位论文].沈阳,东北大学,2005.
    [38] Dugue J, Louedin O, Ixroux B, et al. Ultra low NOx Oxy-combustion system with adjustable flame length and heat transfer profile. In: ENEA of Italy, eds. 4th Internaronal Sympossium on HighTemperature Air Combustion and Gasification, Rome, 2001.
    [39] Szewczyk D, Morrbeig M, Rafidi N., et al. Measurements of Temperature and Heat Flux in HiTAC Flame for Unsteady State Condition. 1n: Yoshikawa K. eds. 5th lntmrional Symposium on HighTemperature Air Combustion and Gasificalion. Yokohama: Tokyo Institute of Technolog,2002.C401-C411.
    [40] Szewczyk D, Blasiak W, Jewartowski M et al. Increase of the effective energy from the Radiant Tube equipped with FTigh-cycle Regenerative System (HRS) in comparison with conventional recuperative system. In: Blasiaic W, Yang W H, eds. High Tie Air Combustion, The Quest of Zero Emissions in Indusizial Furnace. Stockholm: International Flame Research Foundation and Swedish Flame Research Committee, 2003: 95-101.
    [41] 武立云,马重芳,杨永军.减少蓄热式燃烧系统NOx排放量的研究.高温蓄热式工业炉应用学术会议论文集.北京,2001, 50-53.
    [42] Cain B, Robertson T, Newby J. The development and application of direct injection techniques for emission reduction in high temperature fiunaces. In: Jemkontoret-KTH. Proceedings of the 2th honal Seminar on High Temperature Combustion in Industrial Furnaces. Stockholm,2000.
    [43] Piepers O, Breithaupt P P, Van Beelen A B N. On combustion stability and emissions of jet injectors firing into highly preheated air wide other furnace atmospheres. In: CREST: 3th International Symposium on High Temperature Air Combustion and Gas-ification,Yokohama,2000: 2000.
    [44] 张成毅,李帆,荣庆兴.天然气燃烧的低NOx排放研究现状和趋势,上海煤气,2005(4)31-34.
    [45] 陈树义.章丽玲译.燃料燃烧及燃烧装置.北京:冶金工业出版.1985
    [46] 陈应忠,陈袱珍,严连.WY2000 型蜂窝蓄热体的研究和实践. 蓄热式高温空气燃烧技术论文集. 成都,2003. 419-424 .
    [47] 李朝祥,王雪松,王耀卿.高铝质陶瓷蓄热材料的开发研究. 蓄热式高温空气燃烧技术论文集. 成都,2003. 62-66.
    [48] 胡定军,陈义胜,宋希文等. 新型蜂窝陶瓷的研制. 蓄热式高温空气燃烧技术论文集.成都.2003. 142-145.
    [49] 朱聘冠.换热器原理及计算.北京:清华大学出版社,1987.
    [50] 蒋绍坚,曹小玲,汪洋洋等.蜂窝陶瓷蓄热体传热数学模型及传热系数求解.工业炉,2001(3)50-53.
    [51] 高家锐.动量、热量、质量传输原理,P238-243 重庆大学出版社,1987.5.
    [52] 赵惠富.污染气体NOx的形成和控制. 北京: 科学出版社,1993.
    [53] 张永照,牛长山.环境保护与综合利用.北京:机械工业出版社,1982.
    [54] 曾汉才.燃烧与污染.武汉:华中理工大学出版社,1992.
    [55] 梅炽.有色冶金炉窑仿真与优化.北京:冶金工业出版社,2001.
    [56] Loclcwood F C, Romi Millances C A. Mathematical modeling of Fuel-NO emissions from PF burners.J.1nt.Energy,1992,65:144-152.
    [57] 赵坚行.燃烧的数值模拟.北京:科学出版社,2002.
    [58] 周力行.NOx生成湍流反应率数值模拟的进展,力学进展,2000, 30 (1) : 77-82
    [59] 饶文涛,朱彤. 高温空气燃烧 NOx 生成规律研究.工业炉. 2003, 25 (4) :1-4.
    [60] MASASHI KATSUKI , TOSHIAKI HASEGAWA , The science andtechnology of combustion in highly preheated air [A] . 27th Symposium( Internation) on Combustion[C] . Pittsburgh : the Combustion Institute 1998,335-346.
    [61] 杨卫宏,数值模拟在工业炉窑研究与开发中的应用:[博士学位论文].长沙:中南大学,2000
    [62] 李欣峰.CFD技术在闪速炼铜中的应用:[博士学位论文].长沙:中南大学,2001
    [63] 月周萍.铝电裤槽内电磁流动模型及铝液流场数值仿真的研究:[博士学位论文].长沙: 中南大学.2002.
    [64] Gupta A K, Bolz S, Hasegawa T Effect of air preheat temperature and oxygen concertation on flame structure and emissions. ASME Journal of Energy Resources Technology. 1999 ,121,209-216.
    [65] GirardiG, Giammartini S. Numeical and experimental study of Mild combustion of differentfuels and burners. In: Yoshikawa K. eds.5th International Symposium on High Temperature Air Combustion and Gasification. Yokohama: Tokyo Instihite of Technology, 2002. D201-D219
    [66] Wei D, Blasiak W numerical modeling of highly preheated air combustion in a 580kW testing furnace at IFRF.In: The 3rd CREST Intemabional Symposium. Yokohama, 2000:E401-E412.
    [67] 欧俭平,马爱纯,占树华等.U 型蓄热式辐射管表面温度分布数值模拟研究,金属热处理,2005(1)74-77.
    [68] 萧泽强,蒋绍坚,周孑民等.高温低氧空气燃烧过程实验研究和数值模拟.:高温空气燃烧新技术讲座论文集.北京 1999. I16-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700