高温空气燃烧技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温空气燃烧技术是新兴的先进燃烧技术,具有高效节能和低污染排放的双重优越性,受到世界科学界和工业界的广泛关注,更符合我国可持续发展战略目标。当前高温空气燃烧技术的发展方兴未艾,人们在其应用方面已经对该技术的先进性达成共识,把高温空气燃烧技术提到了一个重要的地位。
     本课题为国家973项目,在自身设计的小型实验炉上进行燃烧实验,选取不同的实验参数:一次空气系数0.15、0.3、0.45;二次空气系数1.2、1.4、1.8;换向时间60秒、90秒、120秒、360秒;不同构型,燃气不换向、空气与燃气同向换向、空气与燃气逆向换向。利用烟气成分分析仪进行烟气成分测量。为了测量温度在炉膛内与管道中布置了31根直径为0.5毫米的裸偶。利用自行编制的测温软件进行温度测量。对实验数据进行整理分析,寻求符合自身条件的污染物排放最低的最佳工况。
     为了进一步提高烟气余热回收率,进行了将排烟温度降低到60℃的实验。计算了陕北天然气露点为85℃—110℃。因此将排烟温度降低到60℃后,考虑了低温腐蚀的问题。对比了不同空气系数下,不同排烟温度时的余热回收温度效率,探讨了利用燃烧过程中生成水的冷凝热及其对污染物的吸收作用。
     从理论上分析了氮氧化物产生的机理,从影响氮氧化物生成的因素上分析了换向过程对氧气浓度、炉温的影响。对比不同构型对高温空气燃烧的影响。分析了不同构型下温度变化的特点,对氮氧化物生成的影响,在空气与燃气逆向给进的构型中,氮氧化物生成量明显低于其它方式。初步探讨了产生这些特点的原因。为今后的工作打下基础。关于涉及换向过程对高温空气燃烧的影响的内容在相关文献中还未见到。
High temperature air combustion (HTAC) technology, which is a new type combustion technology with advantages of both highly energy saving and low pollutant emissions, is more attended in the fields of science and industry. To develop this technology accords with the situation of our country.
    This project is a national 973 item. Studied on a set of self-designed regenerative combustion system, choosing several parameters: primary air 0.15, 0.3 andO. 45; secondary air 1.2, 1.4 and 1.8; switching time 60s, 90s, 120s and 360s. Observed and measured in the three configurations that are fuel (and primary air)/2nd air parallel flow, counter flow and fuel-steadiness on the kiln. Arranged 31 thermal couples, diameter 0. 5mm. Measured temperature with self-program software. Calculated system heat exchanging and measured pollutant emission in order to get optimal work situation.
    The temperature of waste fume are reduced from 200℃ to 60℃ in order to increasing recovery rate of waste heat further In HTAC. Because calculated dew point of gas is about from 85℃ to 110℃, so we should consider low temperature corrosion. Discussed taking advance condensation heat of water in waste fume. At the same time, the water can absorbed several pollutants in waste fume.
    Emphases on reducing nitrogen oxide emission. Analyzed switching process affect on oxygen content, temperature in HTAC. Compared different on oxygen content, temperature under three configurations. Discover that nitrogen oxide emission is lower outstanding in the fuel /2nd air counter
    
    
    
    flow configuration than other two configurations and try to discuss this reason. This study is brought forward to guide the work for the future.
引文
1 周怀春,盛锋等.高温空气燃烧技术-21世纪关键技术之一.工业炉.1998(1):19-27
    2 田中良一,森田光宣.高温空气工业炉的开发现状及发展趋势-高温空气燃烧技术的世界动向.机械振兴.1997,30(11):39-48
    3 祁海鹰,徐旭常.中国开发应用高温空气燃烧技术的前景.Hsiao,Tsechiang,Yoshikawa,Kunio.High temperature air combustion.Beijing.1999.Beijing:192-205
    4 关运泽,苍大强等.烟气再循环实现HTAC技术的超低NOx排放.工业加热.2001(6):11-13
    5 Tadashi Tanigawa, Mistunobu Morita. Experimental and Theoretical Analysis Result for High Temperature Air combustion. International Joint Power Generation Conference.1998,Vol1:207-214
    6 Ashwani K. Gupta, Toshiaki Hasegawa. High temperature air combustion: Flame characteristic, challenges and opportunities. Hsiao, Tsechiang, Yoshikawa, Kunio. High temperature air combustion. Beijing.1999. Beijing: 9-28
    7 蒋绍坚,彭好义等.高温低氧空气燃烧火焰观察实验研究.冶金能源.2000,19(3):14-18
    8 祁海鹰,李宇红等.高温低氧燃烧条件下氮氧化物的生成特性.燃烧科学与技术.2002,8(1):17-22
    9 www.ask.com(2000,3,12)
    10 赵振永,邱峰.蓄热式高温预热烧嘴蓄热室传热性能的研究.工业炉.1996,(1):17
    11 高仲龙,张先棹,高家锐.关于工业加热炉发展方向的再探讨-从自身预热式烧嘴谈起.工业炉.1997,(1):1
    
    
    12 Yutaka Suzukawa, et al. Heat transfer improvement and NOx reduction by highly preheated air combustion. Energy Conversion Management.1997,38(10):1061-1073
    13 Nishimura et al. Low NOx Combustion Under High Preheated Air Temperature Condition in a Industrial Furnace. Energy Conversation and Management.1997,38(10):1353-1363
    14 L M Dearden, J D Massingham,et al. Air-preheat burners with air-staging controlling NOx emissions from high-temperature. Journal of the Institute of Energy.1996,69(3):23-30
    15 Donghee Han, M.G.Mungal et al. Prediction of NOx Control by Basic and Advanced Gas Reburning Using the Two-Stage Lagrangian Model. Combustion and Flame.1999,119:483-493
    16 T. lshii, C. Zhang et al. Effects of Models on the Prediction of NO Formation in a Regenerative Furnace. Journal of Energy Resources Technology.2000,122(4):224-228
    17 萧泽强,蒋绍坚等.高温低氧空气燃烧过程实验研究和数值计算.Hsiao,Tsechiang,Yoshikawa,Kunio.High temperature air combustion.Beijing.1999.Beijing:116-129
    18 蒋绍坚,艾元方等.高温空气资源的开发与应用.冶金能源.2000,19(4):40-44
    19 Hirmoichi Kobayashi et al. Gasification Power Generation System and Boiler Performance Using High Temperature Air,高温空气燃烧新技术讲座,北京,Oct.18-19,1999
    20 杨永军.新型低污染高效节能燃气燃烧系统的研究.北京工业大学.1999:3
    21 汪金龙.材料工程测试技术.河南科学技术出版社,1996:133
    22 张先棹,高仲龙,高家锐.工业加热炉发展方向.工业炉.2001,23(1):2
    
    
    23 一色尚次 [日] 等.余热回收利用系统实用手册(上册).机械工业出版社,1988:120-122
    24 童志权.工业废气净化与利用.化学工业出版社.2001:281-286
    25 North American Combustion Handbook. Third Edition.North American Mfg.Co,1997:155
    26 中国石油天然气总公司给出的陕北井口天然气加权平均组分 (mo1%),1997年4月14日
    27 孙晋涛.硅酸盐工业热工基础.第二版.武汉工业大学出版社.1997:234
    28 宋世谟,庄公惠等.物理化学.第三版.高等教育出版社.1993:81
    29 陈德昌.实验室实用化学试剂手册.山东科学技术出版社.1986:85-92
    30 钱家麟,于遵宏等.管式加热炉.烃加工出版社,1987:520-521
    31 庄永茂,施惠邦.燃烧与污染控制.同济大学出版社,1998:140-141
    32 岑可法,樊建人等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算.科学出版社.1994:381-382
    33 B.M.蒂姆恰克.加热炉与热处理炉计算手册,机械工业出版社.1989:448

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700