有机朗肯循环低温烟气余热发电系统实验研究及动态特性仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国工业余热特别是低温烟气余热资源丰富,节能潜力巨大。由于缺乏有效的技术手段,低温烟气余热没有得到充分利用,使得我国的能源利用率偏低。有机朗肯循环(Organic Rankine Cycle,简称ORC)具有蒸发压力和冷凝压力较低、循环热效率高及设备相对简单等优点,是一种有效的低品位余热发电技术。围绕该技术开展相关的研究工作,对提高我国能源利用率,改善我国低温余热资源利用技术缺乏的现状具有重要的意义。
     本文在广泛查阅相关文献的基础上,建立了ORC系统的多目标优化数学模型,采用模拟退火算法对系统参数进行了优化计算,为系统选取了合适的工质;搭建低温烟气余热发电实验装置,对系统的稳态及动态性能进行了实验研究;建立了ORC系统的动态过程数学模型,对热源温度、工质泵频率发生阶跃变化时系统的动态特性进行了仿真分析。
     本文完成的主要工作与相关结论如下:
     1)有机朗肯循环的参数优化及工质选择。在对有机朗肯循环进行热力分析的基础上,以单位输出功率所需换热面积及系统热回收率为目标函数,建立ORC系统的多目标优化模型;以蒸发压力、冷凝压力、蒸发器及冷凝器管内的介质流速为设计变量,采用模拟退火优化算法,利用Matlab软件编写计算程序对循环参数进行了优化计算;在最优工况下,分析热源温度、蒸发器的最小传热温差、蒸发器面积富裕度以及工质物性参数对系统性能的影响;建立系统的经济分析模型,对比分析了最佳条件下系统的经济性。
     2)优化结果分析。结果表明:随着工质沸点的升高,循环的最佳蒸发压力逐渐减小;系统的最佳蒸发压力随着热源温度升高而增大,当蒸发压力接近工质的临界压力时,热回收率最大;当热源温度低于180℃时,在研究的工质中R123的综合目标函数值最小,发电成本最低,为最佳工质。热源温度高于180℃时,循环采用R141b更加适合;蒸发器内最小传热温差为15℃时,系统的综合性能更高;随着蒸发器面积富裕度的升高,单位输出功率所需换热面积线性增加,而热回收率变化很小。热源温度较低时,系统的发电成本与投资回收期随热源温度的升高而迅速降低。当烟气温度低于100℃,由于发电成本高、投资回收期长而不适合采用ORC技术。
     3)实验系统的设计与搭建。在确定实验设计方案的基础上,对主要实验设备进行了选型分析,并对热风炉、蒸发器、冷凝器进行了设计计算,完成了实验系统相关装置的选型,搭建了低温烟气有机朗肯循环发电实验系统。系统包括热源部分、工质循环回路、冷却水回路以及润滑油循环回路等四个部分,采用R123为循环工质,以热风炉产生的低温烟气为热源,采用整体翅片管式的蒸发器,冷凝器采用水冷却的方式,膨胀机则选用涡旋式膨胀机。
     4)系统稳态特性的实验研究。实验结果表明:实验条件下,涡旋膨胀机的最大效率为56%,最高转速为1240rpm;涡旋膨胀机效率随着膨胀比的增大而提高,而受工质过热度的影响较小;膨胀机转速随着膨胀比、工质流量的升高而增大,随着负载的增加而降低。当热源温度为215℃、蒸发压力在1.0MPa~1.08MPa时,循环的热效率最高为8.5%、输出功率最大,为645W;蒸发压力在0.56MPa~0.65MPa时,系统的热回收率最大,为22%。循环的热效率、系统输出功率以及(?)效率随着蒸发压力的升高而增大,系统热回收率则随着蒸发压力的升高而降低;随着热源温度的升高,系统输出功率、(?)效率以及热回收率增大;随着过热度的增大,系统输出功率、(?)效率以及热回收率降低,但循环热效率变化较小。
     5)对系统中热源条件变化、工质泵停/启以及工质泵频率变化时的系统性能进行了实验研究。结果表明:随着二次风阀门的开启,烟气的温度迅速下降,烟气的流量则迅速上升;膨胀机入口温度逐渐降低,并在阀门开启后2.7分钟时趋于稳定。此时工质为汽液两相状态,涡旋膨胀机的转速也逐渐升高;与初始状态相比,膨胀机转速提高了9.6%。在泵停/启过程中,停泵后蒸发压力的下降速度明显低于开泵过程中蒸发压力的上升速度;膨胀机转速及循环热效率随着泵的关闭而逐渐降低,并在泵启动后35s达到最小值;随后转速及热效率逐渐升高,逐步达到稳定状态。工质泵频率调整时,压力与工质流量在调整频率后2分钟时处于稳定状态,而膨胀机入口温度稳定所需的时间更长,约为4.5分钟。
     6)系统动态性能仿真模型的建立。以质量守恒方程、能量守恒方程为基础,将蒸发器分为过冷区、两相区以及过热区,建立了蒸发器的移动边界数学模型;针对管壳式冷凝器,将其分为过热区、冷凝区以及过冷区三个部分,采用控制容积法建立了数学模型;将涡旋膨胀机视为涡旋压缩机的反向运动,结合涡旋膨胀机的工作过程,建立了涡旋膨胀机的稳态数学模型;采用多项式拟合的方式,建立了多级离心泵的稳态数学模型。为各部件选择合适的状态参数,对系统热力参数的耦合关系进行分析,确定了各部件之间系统参数的相互关系;分析蒸发器与冷凝器的求解思路,确定了系统动态性能仿真时各部件的求解顺序。
     7)系统动态性能的仿真研究。在Simulink仿真平台上构建了ORC系统各部件的仿真模块,并根据系统参数之间的耦合关系,将各部件模型组合成系统仿真模型。结合实验测试数据,对系统仿真模型进行了检验,并对系统在热源温度以及工质泵频率发生阶跃变化时的动态特性进行了仿真。结果表明:仿真模型具有较高的精度,稳态仿真结果与实验结果的误差小于5%。当烟气温度从150℃阶跃到170℃时,蒸发压力、冷凝压力以及循环热效率基本不受热源温度的影响;蒸发器内过冷区与两相区的长度迅速减小,而过热区的长度则快速增大;冷凝器中的过热区不断增大、两相区先降低后升高,而过冷区则逐渐降低;膨胀机输出功率随着烟气温度的增大而不断增加,系统的响应时间为300s-400s。当工质泵频率正向阶跃10%时,蒸发压力迅速增大,蒸发器内过冷区、两相区所占的比例增加,蒸发器的出口焓值不断减小;冷凝器内的压力则呈现先降低后升高的趋势,冷凝器出口焓与冷凝压力的变化规律相同;膨胀机的输出功率迅速增大,而循环效率则呈现先降低后升高的趋势,整个过程的响应时间为200s-300s。
     本文的研究成果可以为工业规模低温烟气余热ORC发电系统的设计与研制提供理论依据。
The industrial waste heat resources of our country, especially in low-temperature flue gas, are abundant. Therefore, there is a great potential of energy conservation. The waste heat of low-temperature flue gas has not been fully utilized for lack of valid method, which leads to the low energy efficiency. Organic Rankine Cycle (ORC) is considered to be an effective power generation technology due to its higher thermal efficiency, lower evaporation and condensation pressures and relatively simple system. The farther research about ORC is very important to improve the energy efficiency and the situation of technology shortage for low-temperature waste heat recovery.
     In the present dissertation, based on plenty of reviewed literatures, a multi-objective mathematical model for ORC was developed. The parameters were optimized by simulated annealing algorithm (SA) and the ideal working fluid was recommended for system. Then an experimental system for low-temperature flue gas heat recovery was constructed. According to the system, the steady and dynamic performance was tested. Further, a dynamic process mathematical model of ORC system was developed and the dynamic performance simulation was performed for system with a step change of heat source temperature and pump frequency.
     The main contents and conclusions for the present study are as follows:
     1) Based on the thermodynamic analysis for ORC system, a multi-objective mathematical model was developed. The ratio of heat transfer area to net power and heat recovery efficiency were used as the objective function and was optimized using the SA. Evaporation and condensation pressures, working fluids and cooling water velocities were varied in the process of optimization. The optimization procedure was conducted with a simulation program written in Matlab. Under the optimal conditions, the effects of waste heat temperature, pinch temperature difference and area rich degree on the system performance were int. And the economic performance was compared with an economic model for ORC system.
     2) The optimization results show that optimal evaporation pressure decreases as the boiling temperature of working fluids increases. And it increases with the increase of heat source temperature. When evaporation pressure closes to the critical pressure of working fluids, heat recovery efficiency reaches to maximum. Compared with other working fluids, R123is the best choice for the temperature range of100℃~180℃and R141b shows better performance when the temperature higher than180℃. In order to get higher performance for ORC system, the suitable pinch temperature in evaporator is about15℃for the exhaust temperature range from100℃to220℃. With the increase of excess area of evaporator, the area for per unit power increases. However, the change of heat recovery efficiency can be ignored. Economic characteristic of system decreases rapidly with heat source temperature. ORC system is uneconomical for the temperature of exhaust lower than100℃.
     3) Based on the design conditions, the type of equipments in experiment system was selected. Then the design calculation for stove, evaporator and condenser was performed. According to the designed and selected equipments, the system was established. The system consisted of four part:the heat source section, the circuit for working fluid, cooling water and lubricant circuit. R123was selected as the working fluid of the experimental system, and low-temperature flue gas produced by stove was regarded as heat source. Integral fin tubes were applied to the evaporator and the condenser was cooled by water. The expander was originally a scroll compressor, adapted to operate in reverse.
     4) The steady performance of ORC system was tested. The results show that the greater pressure ratio, the higher efficiency of scroll expander. However, the superheating of working fluid has little effect on it. The rotating speed increases with the pressure ratio and mass flow rate of working fluid, and it decreases with the increase of loads. The maximum efficiency of scroll expander is56%, and the maximum rotating speed is1240rpm. When heat source temperature is215℃and evaporation pressure is1.0MPa-1.08MPa, ORC system gets the highest cycle efficiency and output power. And the corresponding result is8.5%and645W, respectively. In the experiment process, the maximum heat recovery efficiency is22%. The corresponding heat source temperature is215℃and evaporation pressure is0.56MPa-0.65MPa. With the increase of evaporation pressure, cycle efficiency, power generated by expander and exergy efficiency increases. However, the heat recovery efficiency decreases with it. For the same evaporation pressure, as the heat source temperature rises, power generated by expander, exergy efficiency and heat recovery increases. But they decrease with the increase of superheating. The superheating has little effect on cycle efficiency.
     5) Dynamic performance during the process of changing temperature of heat source, pump stopping/starting and frequency of pump was tested. The experimental results show that temperature of heat source decreased and flow rate increased rapidly while opening the valve of secondary air. The expander inlet temperature decreases and it becomes stable2.7minutes later. At that moment, working fluid is at the state of gas-liquid, which leads to a increase of expander rotating speed. And it improves9.6%compared with the initial speed. The decreasing rate of evaporation pressure in stopping is obviously lower than that of increasing rate in starting. The rotating speed and cycle efficiency decreases when pump stops running. Although the pump starts again, the speed and efficiency did not increased immediately and there is a delay of35s. Then, rotating speed and cycle efficiency increases gradually. When the pump frequency changes abruptly, pressure and flow rate of working fluid reaches a steady state after2minutes. Expander inlet temperature takes4.5minutes to reach the steady value.
     6) A dynamic mathematic model for ORC system was developed. The evaporator consisted of three regions, including the sub-cooled region, the two-phase region and the superheated region. Based on the equations of mass continuity and energy conservation, a generalized moving-boundary model was developed to describe the transient behavior of evaporator. Each state of the refrigerant in the condenser was formulated by a control volume. The selected control volumes in the refrigerant region were as follows: superheating zone, condensing one and sub-cooled region. Compared to the evaporator, the dynamics of expander and pump was negligible. Therefore, steady models were presented. The scroll expander mode was obtained by operating a scroll compressor in reverse. And the model on multi-stage centrifugal pump was presented using the polynomial fitting method. Then the relationship between different components was analyzed and the solving way for system model was presented.
     7) A dynamic simulation model was established using Simulink according to the relationship between different models. Numerical solution was validated with the experimental results. Compared with the experimental results, the relative error of simulation solution was less than5%. This accuracy was believed to be sufficient for most engineering applications. Based on the validated model, the dynamic simulation was performed. The results show that the evaporating pressure, condensing pressure and cycle efficiency is about the same for a step change of heat source temperature. The length of sub-cooled and two-phase region in evaporator decreases rapidly. Instead, the superheated increases quickly. In the condenser, the variety of different zone is different. The superheating zone in condenser increases, and the condensing one decreases firstly and then increases. The sub-cooled zone gradually reduces. Power generated by expander improves obviously. The response time for system is about300s-400s. When pump frequency increases10%suddenly, the pressure, proportion of sub-cooled and two-phase region in evaporation increases. As a result, the outlet enthalpy of evaporator reduces gradually. The condensing pressure decreases firstly and then increases, and the change of enthalpy at the condenser outlet is similar. The response time for a step change of pump frequency is about200s~300s.
     The results are useful for the industrial application and design of low-temperature waste heat generation system based on organic Rankine cycle.
引文
[1]BP Group. BP Statistical Review of World Energy June 2011[EB/OL]. http://www.bp.com
    [2]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [3]周伟,米红.中国碳排放:国际比较与减排战略[J].资源科学,2010,32(8):1570-1577.
    [4]孟嘉.工业烟气余热回收利用方案优化研究[D].武汉:华中科技大学,2008.
    [5]World Bank WDI Database 2011[EB/OL]. http://data.worldbank.org/indicator/ eg.use.comm.kt.oe.
    [6]强闫,陈毓川,王安建,等.我国新能源发展障碍与应对:全球现状评述[J].地球学报,2010,31(5):759-767.
    [7]刘建中.浅析中国新能源产业的发展现状及传统能源行业的战略选择[J].中国煤炭,2010,36(1):21-23.
    [8]周伏秋.“十二五”时期加快经济绿色转型的若干重点[J].宏观经济管理,2011(12):22-23.
    [9]王爱冬,赵鑫.我国“十一五”节能减排政策效果评价及启示[J].燕山大学学报(哲学社会科学版),2011,12(3):119-122.
    [10]周耘,王康,陈思明.工业余热利用现状及技术展望[J].科技情报开发与经济,2010,20(23):162-164.
    [11]汪玉林.低温余热能源发电装置综述[J].热电技术,2007(1):1-4.
    [12]张富,张福滨.水泥行业纯低温余热发电技术及现状[J].建材发展导向,2007(1):40-47.
    [13]赵钦新,王宇峰,王学斌,等.我国余热利用现状与技术进展[J].工业锅炉,2009(5):8-15.
    [14]刘赵淼,王秀丽,于海源,等.国内高温空气燃烧技术发展现状和趋势[J].北京工业大学学报,2006,32(7):614-621.
    [15]王爱华,蔡九菊,王连勇,等.高温空气燃烧技术进展与应用[J].中国冶金,2006,6(8):1-6.
    [16]饶荣水.热管技术研究进展及其在冶金工业中的应用[J].工业加热,2001(3):1-5.
    [17]Zhang H, Zhuang J. Research, Development and industrial application of heat pipe technology in China[J]. Applied Thermal Engineering,2003,23(9):1067-1083.
    [18]罗凯,张继忠.热泵技术应用现状[J].科技资讯,2008(24):244-245.
    [19]Chua K J,Chou S K,Yang W M. Advances in heat pump systems:A review[J].Applied Energy,2010,87(12):3611-3624.
    [20]Paola B, Costante M I, Claudio P. Heat recovery from Diesel engines:A thermodynamic comparison between Kalina and ORC cycles [J]. Applied Thermal Engineering,2010,30 (2):212-219
    [21]Bertrand F T, Lambrinos G, Frangoudakis A.Low-grade heat conversion into power using organic Rankine cycles-A review of various applications[J]. Renewable and Sustainable Energy Reviews,2011,15(8):3963-3979.
    [22]Larjola J. Electricity from industrial waste heat using high-speed organic Rankine cycle (ORC)[J]. International Journal of Production Economics,1995,41(3):227-235.
    [23]郑浩,汤珂,金滔,等.有机朗肯循环工质研究进展[J].能源工程,2008(4):5-11.
    [24]褚泽.废热半导体温差发电技术的研究与开发[D].重庆:重庆大学动力工程学院,2008.
    [25]白忠恺.中高温余热回收半导体温差发电热系统设计研究[D].南京:南京航空航天大学能源与动力学院,2009.
    [26]张踢研.热驱动热声热机特性实验研究[D].长沙:中南大学能源科学与工程学院,2010.
    [27]汪双凤,西尾茂文,曾朝霞.热声发动机在低温余热利用方面的研究[J].化工进展,2007,26(3):448-451.
    [28]Hung T. Waste heat recovery of organic Rankine cycle using dry fluids[J]. Energy Conversion and Management,2001,42(5):539-553.
    [29]Mark S. O. Heather E K, Nancy F T.2005 Ashare Handbook:Fundmentals [M]. America:ASHRAE,2005.
    [30]冯驯,徐建,王墨南,等.有机朗肯循环系统回收低温余热的优势[J].节能技术,2010,28(5):387-391.
    [31]Badr O, O'Callaghan P W,Probert S D. Rankine-cycle systems for harnessing power from low-grade energy sources[J]. Applied Energy,1990,36(4):263-292.
    [32]Lee M J,Tien D L,Shao C T. Thermophysical capability of ozone-safe working fluids for an organic rankine cycle system[J]. Heat Recovery Systems and CHP, 1993,13(5):409-418.
    [33]Gozdur A B,Nowak W. Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius-Rankine cycle[J]. energy,2007,32(4): 344-352.
    [34]Liu B, Chien K, Wang C. Effect of working fluids on organic Rankine cycle for waste heat recovery [J]. Energy,2004,29(8):1207-1217.
    [35]Hung T C,Wang S K, Kuo C H, et al. A study of organic working fluids on system efficiency of an ORC using low-grade energy sources[J]. energy,2010,35(3): 1403-1411.
    [36]Roy J P, Mishra M K, Misra A. Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle[J]. Energy,2010,35(12): 5049-5062.
    [37]Aljundi I H. Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle[J]. Renewable Energy,2011,36(4):1196-1202.
    [38]Quoilin S, Orosz M, Hemond H, et al. Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation[J]. Solar Energy, 2011,85 (5):955-966.
    [39]Saleh B, Koglbauer G,Wendland M, et al. Working fluids for low-temperature organic Rankine cycles[J]. Energy,2007,32(7):1210-1221.
    [40]Drescher U, Bragemann D. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants[J], Applied Thermal Engineering,2007,27(1): 223-228.
    [41]Lakew A A, Bolland O. Working fluids for low-temperature heat source[J]. Applied Thermal Engineering,2010,30(10):1262-1268.
    [42]Tchanche B F, Papadakis G, Lambrinos G, et al. Fluid selection for a low-temperature solar organic Rankine cycle[J]. Applied Thermal Engineering,2009,29(11-12): 2468-2476.
    [43]Angelino G, Colonna D, Paliano P. Multicomponent Working Fluids For Organic Rankine Cycles (ORCs)[J]. Energy,1998,23(6):449-463.
    [44]Maizza V, Maizza A. Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems [J].Applied Thermal Engineering,2001,21(3): 381-390.
    [45]Chen Y, Lundqvist P,Johansson A, et al. A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery[J].Applied Thermal Engineering, 2006,26(17-18):2142-2147.
    [46]Hettiarachchia H D M, Golubovica M, Woreka W M, et al. Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources[J]. Energy,2007,32(9):1698-1706.
    [47]Papadopoulos A I, Stijepovic M, Linke P. On the systematic design and selection of optimal working fluids for Organic Rankine Cycles [J]. Applied Thermal Engineering, 2010,30(6-7):760-769.
    [48]裴刚,李晶,季杰.不同有机工质对太阳能低温热发电效率的影响[J].太阳能学报, 2010,31(5):581-587.
    [49]乔卫来,陈九法,薛琴,等.太阳能驱动有机朗肯循环的工质比较[J].能源研究与利用,2010(2):31-36.
    [50]马一太,龚文瑾,李敏霞.制冷工质在低温发电中的热力学分析[J].热科学与技术,2009,8(3):248-254.
    [51]王晓东.太阳能低温朗肯循环系统适用工质的理论和实验研究[D].天津:天津大学机械工程学院,2008.
    [52]赵力,王晓东,张启.非共沸工质用于太阳能低温朗肯循环的理论研究[J].太阳能学报,2009,30(6):738-743.
    [53]罗琪,翁一武,顾伟.抽汽回热式有机工质发电系统的热力特性分析[J].现代电力,2009,26(06):39-44.
    [54]何茂刚,张新欣,曾科.车用发动机余热回收的新型联合热力循环[J].西安交通大学学报,2009,43(11):1-6.
    [55]贺红明.利用LNG物理的朗肯循环研究[D].上海:上海交通大学,2006.
    [56]朱江,鹿院卫,马重芳,等.低温地热有机朗肯循环(ORC)工质选择[J].可再生能源,2009,27(2):76-79.
    [57]顾伟,翁一武,王艳杰,等.低温热能有机物发电系统热力分析[J].太阳能学报,2008,29(5):608-612.
    [58]王辉涛,王华.海洋温差发电有机朗肯循环工质选择[J].海洋工程,2009,27(2):119-123.
    [59]刘杰,陈江平,祁照岗.低温有机朗肯循环的热力学分析[J].化工学报,2010,61(S2):9-14.
    [60]黄翔超.有机工质双循环螺杆膨胀机系统研究[D].天津:天津大学机械学院,2006.
    [61]刘经武,戴义平.基于有机朗肯循环低温余热利用研究[J].东方汽轮机,2010(2):22-27.
    [62]Zhang S J, Wang H X, Guo T. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation[J], Applied Energy,2011,88(8): 2740-2754.
    [63]Guo T, Wang H X, Zhang S J. Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources[J]. Energy,2011, 36(5):2639-2649.
    [64]Badr O,Probert S D, O'Callaghan P W. Selecting a working fluid for a Rankine-cycle engine[J]. Applied Energy,1985,21(1):1-42.
    [65]Dai Y P, Wang J, Gao L. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery [J]. Energy Conversion and Management,2009,50(3):576-582.
    [66]Liu H, Qiu G, Shao Y,et al. Preliminary experimental investigations of a biomass-fired micro-scale CHP with organic Rankine cycle[J]. International Journal of Low-Carbon Technologies,2010,5(2):81-87.
    [67]Chinese D, Meneghetti A, Nardin G. Diffused introduction of organic Rankine cycle for biomass-based power generation in an industrial district:a systems analysis[J]. International Journal of Energy Research,2004,28(11):1003-1021.
    [68]Mago P J, Chamra L M, Spinivasan K, et al. An examination of regenerative organic Rankine cycles using dry fluids[J]. Applied Thermal Engineering,2008,28(8-9): 998-1007.
    [69]罗琪.中低温热源有机物工质发电系统分析[D].上海:上海交通大学机械与动力工程学院,2010.
    [70]顾伟.低品位热能有机物朗肯动力循环机理研究和实验验证[D].上海:上海交通大学机械与动力工程学院,2010.
    [71]Schuster A, Karellas S, Aumann R. Efficiency optimization potential in supercritical Organic Rankine Cycles[J]. Energy,2010,35(2):1033-1039.
    [72]Chen H, Goswami D Y, Rahman M M, et al. A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power[J]. Energy,2011,36(1):549-555.
    [73]王辉涛,王华,黄晓艳.低温余热驱动的低沸点工质超临界动力循环[J].武汉工大学学报,2009,31(14):32-35.
    [74]黄晓艳,王华,王辉涛.超临界有机朗肯循环低温余热发电系统的分析[J].工业加热,2009,38(3):22-25.
    [75]刘广林,鹿院卫,马重芳,等.超临界地热有机朗肯循环工质参数优化[J].工程热物理学报,2010,31(11):1886-1888.
    [76]郑彬,翁一武,顾伟,等.低温热源喷射式发电制冷复合系统特性分析[J].中国电机工程学报,2008,28(29):16-21.
    [77]Wang J W, Dai Y P, Zhang T,et al. Parametric analysis for a new combined power and ejector-absorption refrigeration cycle[J]. Energy,2009,34(10):1587-1593.
    [78]Gnutek Z,Bryszewska M A. The thermodynamic analysis of multicycle ORC engine[J]. Energy,2001,26(12):1075-1082.
    [74]Hettiarachchia H D M, Golubovica M, Woreka W M, et al. Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources[J]. Energy,2007,32(9):1698-1706.
    [79]Lee K M, Kuo S F, Chien M L, et al. Parameters analysis on organic rankine cycle energy recovery system[J]. Energy Conversion and Management,1988,28(2): 129-136.
    [80]方金莉,魏名山,王瑞君,等.采用中温有机朗肯循环回收重型柴油机排气余热的模拟[J].内燃机学报,2010,28(04):362-367.
    [81]Mohanty B, Paloso Jr. G. Economic power generation from low-temperature geothermal resources using organic rankine cycle combined with vapour absorption chiller[J]. Heat Recovery Systems and CHP,1992,12(2):143-158.
    [82]李晶,裴刚,季杰.太阳能有机朗肯循环低温热发电关键因素分析[J].化工学报,2009,60(4):826-832.
    [83]Hung T C, Shai T Y, Wang S K. A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat[J]. Energy,1997,22(7):661-667.
    [84]Roy J P, Mishra M K, Misra A. Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions [J]. Applied Energy,2011,88(9):2995-3004.
    [85]刘怀亮,何雅玲,程泽东,等.槽式太阳能有机朗肯循环热发电系统模拟[J].工程热物理学报,2010,31(10):1631-1634.
    [86]魏东红,陆震,鲁雪生,等.废热源驱动的有机朗肯循环系统变工况性能分析[J].上海交通大学学报,2006,40(8):1398-1402.
    [87]Dipippo R. Second Law assessment of binary plants generating power from low-temperature geothermal fluids[J]. Geothermics,2004,33(5):565-586.
    [88]魏东红,鲁雪生,陆震,等.环境温度对余热驱动的有机朗肯循环系统性能的影响[J].兰州理工大学学报,2006,32(06):59-61.
    [89]Yamamoto T, Furuhata T, Arai N, et al. Design and testing of the Organic Rankine Cycle[J]. Energy,2001,26(3):239-251.
    [90]Quoilin S, Lemort V, Lebrun J. Experimental study and modeling of an Organic Rankine Cycle using scroll expander[J]. Applied Energy,2010,87(4):1260-1268.
    [91]曹滨斌,李惟毅.螺杆膨胀机双循环低温余热回收系统分析[J].天津大学学报,2010,43(04):309-314.
    [92]Manolakos D, Papadakis G, Kyritsis S, et al. Experimental evaluation of an autonomous low-temperature solar Rankine cycle system for reverse osmosis desalination[J]. Desalination,2007,203(1-3):366-374.
    [93]刘广彬,赵远扬,李连生,等.小型低温余热发电系统膨胀机输出特性试验研究[J].西安交通大学学报,2009,43(11):100-103.
    [94]王辉涛,王华.低温太阳能热力发电有机朗肯循环工质的选择[J].动力工程,2009,29(3):287-291.
    [95]Butcher C J, Reddy B V. Second law analysis of a waste heat recovery based power generation system[J]. International Journal of Heat and Mass Transfer,2007, 50(11-12):2355-2363.
    [96]Cayer E, Calanis N, Nesreddine H. Parametric study and optimization of a transcritical power cycle using a low temperature source[J]. Applied Energy,2010, 87(4):1349-1357.
    [97]Wang J, Sun Z, Dai Y, et al. Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network[J]. Applied Energy, 2010,87(4):1317-1324.
    [98]Wang J L, Zhao L, Wang X D. A comparative study of pure and zeotropic mixtures in low-temperature solar Rankine cycle[J]. Applied Energy,2010,87(11):3366-3373.
    [99]Zhanga X, Yamaguchia H, Unenoa D. Experimental study on the performance of solar Rankine system using supercritical CO2[J]. Renewable Energy,2007, 32(15):2617-2628.
    [100]陈信鑫.低温螺杆双循环发电实验研究[D].天津:天津大学,2010.
    [101]Lemort V, Quoilin S, Cuevas C, et al. Testing and modeling a scroll expander integrated into an Organic Rankine Cycle [J]. Applied Thermal Engineering,2009, 29(14):3094-3102.
    [102]Pei G, Li J, Li Y, et al. Construction and dynamic test of a small-scale organic rankine cycle[J]. Energy,2011,36(5):3215-3223.
    [103]Dorantes, R,Estrada, C A, Pilatowsky, I I P. Mathematical simulation of a solar ejector-compression refrigeration system[J]. Applied thermal engineering,1996,16(8): 669-675.
    [104]Llopis R, Cabelloa R, Torrellab E. A dynamic model of a shell-and-tube condenser operating in a vapour compression refrigeration plant[J]. International Journal of Thermal Sciences,2008,47(7):926-934.
    [105]Ruiz S M, Rigola J, Perez Segarra C D, et al. Numerical analysis of two-phase flow in condensers and evaporators with special emphasis on single-phase/two-phase transition zones[J]. Applied Thermal Engineering,2009,29(5-6):1032-1042.
    [106]Jia X, Tso C P, Chia P K. A distributed model for prediction of the transient response of an evaporator[J]. International Journal of Refrigeration,1995,18(5):336-342.
    [107]Jia X, Tso C P, Jolly P, et al. distributed steady and dynamic modelling of dry-expansion evaporators [J]. International Journal of Refrigeration,1999,22(2): 126-136.
    [108]Porkhial S,Khastoo B, Avval M S. Transient response of dry expansion evaporator in household refrigerators[J]. Applied thermal engineering,2004,24(10):1465-1480.
    [109]Porkhial S, Khastoo B, Razavi M R M. Transient response of finned-tube condenser in household refrigerators[J].Applied Thermal Engineering,2006,26(15):725-1729.
    [110]Tsoa C P, Chengb Y C, Lai A C K. Dynamic behavior of a direct expansion evaporator under frosting condition Part Ⅰ. Distributed model[J]. International Journal of Refrigeration,2006,29(4):611-623.
    [111]Willatzen M, Pettit N B O L, Sorensen L P. A general dynamic simulation model for evaporators and condensers in refrigeration. Part Ⅰ:moving-boundary formulation of two-phase flows with heat exchange[J]. International Journal of Refrigeration, 1998,21(5):398-403.
    [112]Pettit N B O L, Willatzen M, Sorensen L P. A general dynamic simulation model for evaporators and condensers in refrigeration. Part Ⅱ:simulation and control of an evaporator[J]. International Journal of Refrigeration,1998,21(5):404-414.
    [113]Bendapudia S, Braunb J E, Grollb E A. A comparison of moving-boundary and finite-volume formulations for transients in centrifugal chillers [J]. International Journal of Refrigeration,2008,31:1352-1437.
    [114]Mckinley T L, Alleyne A G. An advanced nonlinear switched heat exchanger model for vapor compression cycles using the moving-boundary method[J]. International Journal of Refrigeration,2008,31:1253-1264.
    [115]Jensen J M. dynamic modeling of thermo-fluid systems with focus on evaporators for refrigeration[D]. Denmark:Technical University of DenmarkDepartment of Mechanical Engineering,2003.
    [116]Li B, Alleyne A G. A dynamic model of a vapor compression cycle with shut-down and start-up operations [J]. International Journal of Refrigeration,2010,33(3): 538-552.
    [117]Rasmussen B. Dynamic Modeling and Advanced Control of Air Conditioning and Refrigeration Systems[D]. Urbana-Champaign:University of Illinois,2006.
    [118]Sami S M, Dahmani A. Numerical prediction of dynamic performance of vapour-compression heat pump using new HFC alternatives to HCFC-22[J]. Applied Thermal Engineering,1996,16(8):691-705.
    [119]Colonna P, Van P H. Dynamic modeling of steam power cycles Part Ⅰ—Modeling paradigm and validation[J]. Applied Thermal Engineering,2007,27(2):467-480.
    [120]Van P H, Colonna P. Dynamic modeling of steam power cycles:Part Ⅱ—Simulation of a small simple Rankine cycle system[J]. Applied Thermal Engineering,2007, 27(14):2566-2582.
    [121]Shin J Y, Jeon Y J, Maeng D J, et al. Analysis of the dynamic characteristics of a combined-cycle power plant[J]. Energy,2002,27(12):1085-1098.
    [122]Alobaid F, Postler R, Strohle J, et al. Modeling and investigation start-up procedures of a combined cycle power plant[J]. Applied Energy,2008,85(12):1173-1189.
    [123]Quoilin S, Aumann R, Grill A, et al. Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles [J]. Applied energy,2011,88(6): 2183-2190.
    [124]葛云亭,彦启森.冷凝器动态参数数学模型的建立与理论计算[J].制冷学报,1995(3):17-26.
    [125]常立家.空冷器性能的数值模拟[D].大连:大连海事大学,2000.
    [126]程向荣,种亚奇.换热器动态特性的研究与仿真[J].化工装备技术,2005,26(2):40-43.
    [127]Zhang W J, Zhang C L. A generalized moving-boundary model for transient simulation of dry-expansion evaporators under larger disturbances[J]. International Journal of Refrigeration,2006,29(7):1119-1127.
    [128]王武超,赵竞全.冷凝器动态性能仿真研究[J].工程热物理学报,2005,26(4):631-634.
    [129]张大发,殷虎,杨永新.核动力蒸汽发生器数字仿真模型改进研究[J].核动力工程,2002,23(4):83-86.
    [130]柴红阳.汽车空调系统两器(蒸发器和冷凝器)建模与仿真[D].重庆:重庆大学动力工程系,2007.
    [131]易维竞,李长顺,魏仁杰.固定边界与移动边界直流蒸汽发生器模型的比较[J].核科学与工程,2002,22(4):314-318.
    [132]魏东红,鲁雪生,顾建明,等.移动边界模型应用于废热驱动的有机朗肯循环系统的动态仿真[J].上海交通大学学报,2006,40(8):1394-1397.
    [133]Wei D H, Lu X S, Lu Z, et al. Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery[J]. Applied Thermal Engineering,2008,28(10):1216-1224.
    [134]Gao G J, Li L S, Zhao Y Y, et al. Research on a Scroll Expander Used for Recovering Work in a Fuel Cell[J]. international journal of thermodynamics,2004, 17(1):1-8.
    [135]杨涛,陈江平,陈芝久.跨临界二氧化碳汽车空调系统的动态仿真与实验研究[J].上海交通大学学报,2006,40(8):1365-1368.
    [136]梅源.制冷系统动态特性研究[D].南京:南京航空航天大学,2002
    [137]蒋德志.船舶制冷仿真系统的研究与开发[D].大连:大连海事大学,2009.
    [138]韩汉平,肖睿,何世辉,等.基于移动边界模型的变频空调系统动态仿真[J].流体机械,2008,36(6):71-76.
    [139]梁楠,邵双全,田长青.蒸发器出口两相时制冷系统动态特性模拟[J].流体机械,2009,37(10):57-62.
    [140]Lei Z, Zaheeruddin M. Dynamic simulation and analysis of a water chiller refrigeration system[J]. Applied Thermal Engineering,2005,25(14):2258-2271.
    [141]Ding G, Zhang C, Lu Z. Dynamic simulation of natural convection bypass two-circuit cycle refrigerator-freezer and its application Part Ⅰ:Component models[J]. Applied Thermal Engineering,2004,24(10):1513-1524.
    [142]Lu Z, Ding G, Zhang C. Dynamic simulation of natural convection bypass two-circuit cycle refrigerator-freezer and its application Part Ⅱ:System simulation and application[J]. Applied Thermal Engineering,2004,24(10):1525-1533.
    [143]Liu Z, Tang G, Zhao F. Dynamic simulation of air-source heat pump during hot-gas defrost[J]. Applied Thermal Engineering,2003,23(6):675-685.
    [144]王伟,马最良,姚杨.空气源热泵机组动态仿真数学模型[J].太阳能学报,2007,28(8):881-886.
    [145]张荣荣.燃气发动机驱动热泵机组的运行特性及动态仿真[D].上海:上海交通大学,2005.
    [146]殷素芳,王广军.直流锅炉蒸汽发生器的模块化建模与仿真[J].计算机仿真,2009,26(4):271-275.
    [147]杨世铭,陶文铨.传热学[M].陕西:西北工业大学出版社,2006.
    [148]钱颂文.换热器设计手册[M].北京:化学工业出版社,2002.
    [149]郝敏,陈保东.RKS方程在天然气热物性计算中的应用[J].油气储运,2003,22(10):22-28.
    [150]张吉礼,张淑彦,马志先.高温工质HFC236ea热物性数学模型及其lgp-h图[J].制冷学报,2007,28(4):37-44.
    [151]Poling B E, Prausnitz J M, O'Connell J P. The properties of gases and liquids(fifth edition)[M]. McGraw-Hill Professional Publishing,2000.
    [152]丁国良.制冷空调新工质:热物理性质的计算方法与实用图表[M].上海:上海交通大学出版社,2003.
    [153]Liu D H, Qiao C P, Yuan S C. Optimization design of driving head based on simulated annealing algorithm[J]. Journal Xi'an university of architechture and technology,2007,39(6):878-885.
    [154]江加和,宋子善,沈为群.模拟退火算法在连续变量全局优化问题中应用[J].北京航空航天大学学报,2001,27(5):556-559.
    [155]周龙,牟怿,尤新革.模拟退火算法在粮虫图像分割中的应用[J].华中科技大学学报(自然科学版),2010,38(5):72-74.
    [156]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001.
    [157]Uehara H, Ikegami Y. Optimization of a closed-cycle OTEC plant system[J]. Journal of Solar Energy,1990(112):247-256.
    [158]Campo A. A capstone senior design project:thermal design of insulated pipes that carry hot single-phase fluids and are immersed in atmospheric air[J]. International Journal of Mechanical Engineering Education,2002,30(4):340-350.
    [159]丁国良,欧阳华,李鸿光.制冷空调装置数字化设计[M].北京:中国建筑工业出版社,2008.
    [160]王冰圣,赵远扬,李连生,等.低温余热回收用涡旋膨胀机模拟及性能测试[J].流体机械,2008,36(9):52-56.
    [161]刘广彬,赵远扬,李连生,等.低温余热回收用涡旋膨胀机性能模拟研究[J].西安交通大学学报,2009,43(7):88-92.
    [162]陈波,沈永年.两相涡旋膨胀机的性能及实验研究[J].深冷技术,2004(2):10-13.
    [163]Quoilin S, Lemort V, Lebrun J. Experimental study and modeling of an Organic Rankine Cycle using scroll expander [J]. Applied Energy,2010,87(4):1260-1268.
    [164]黄文梅,杨勇,熊桂林,等.系统仿真分析与设计:MATLAB语言工程应用[M].长沙:国防科技大学出版社,2001.
    [165]刘志刚,刘成定,赵冠春.工质热物理性质计算程序的编制及应用[M].北京:科学出版社,1992.
    [166]丁国良.制冷空调装置的计算机仿真技术[J].科学通报,2006,51(9):998-1010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700