光折变波导阵列的结构光写入方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新千年伊始,人类社会已步入高速传输数据、语音、影像等信息的多媒体因特网时代。作为因特网发展基石的微处理器速度以及通信带宽正以Moore定律飞速发展,光通信系统中关键光电子器件的传统制造技术受到极大挑战。目前市场上还没有低成本的集成光学器件,因此人们必须寻求新的制作技术以适应发展的需求。近年来光辐照法被认为是一种直接、快速、低成本、高效益的集成光波导器件制作技术,备受关注。
     本文主要研究利用不同的结构光在光折变晶体中写入各种波导结构的方法。所开展的工作以及得到的结论如下:①从光折变动力学方程组出发对光折变晶体中光致折射率变化进行了理论分析,并建立了由写入光的强度分布得到光致折射率变化分布的数值模拟方法。②在功率密度为毫瓦量级的连续激光辐照下,对LiNbO_3:Fe晶体中的光致折射率变化规律进行了详细的实验研究,并对实验结果进行了理论分析及数值模拟。结果表明:利用不同的结构光辐照LiNbO_3:Fe晶体可以在其中有效的写入波导结构。③对利用柱透镜和光学二元掩模板形成的结构光在光折变晶体中写入平面光波导、Y型光波导以及通道光波导的方法进行了详细的实验研究。并首次提出了利用空间光调制器制作光学掩模板,在光折变晶体中写入具有各种形状以及不同折射率分布的波导乃至整个集成光路的方法。研究结果表明:仅利用SLM形成的结构光辐照可以在薄片晶体或薄膜材料中写入高质量的波导器件。④从理论和实验两个方面对利用双光束和四光束干涉形成的光场在SBN:Cr、LiNbO_3:Fe和KNSBN:Ce晶体中写入平面波导阵列和通道波导阵列的方法进行了详细的研究。并提出了利用一个双光束干涉场以不同的角度两次辐照晶体,在光折变晶体中写入不同通道波导阵列结构的方法。研究结果表明:采用合适的光场强度分布以及合适的外加电场可以在不同光折变晶体中写入平面波导阵列和通道波导阵列。⑤基于马赫-曾德干涉仪光路研究了利用切片干涉法测量光折变晶体中光致折射率变化的方法,并首次提出了利用数字全息术对光折变晶体中光致折射率变化进行可视化的方法。此外,成功地利用上述方法对光写入波导结构的折射率分布进行了测量。
     利用不同的结构光辐照光折变晶体,可以制作具有不同结构的光波导以及光波导阵列。这种方法对仪器条件要求很低,而且随着电/热固定以及光/热擦洗等技术的不断成熟,既可以得到永久的波导结构,也可以得到瞬时的波导结构。因此光折变晶体中结构光写入的波导器件可以被用于现有的光通信系统,并且有望被用于动态光互连以及光学神经网络系统。
At the beginning of a new millennium, humanity enters into a multimedia internet age with information (e.g. data, sound, and videos) transmitted at a high speed. As the basis of the internet, the microprocessor speed and the amount of available bandwidth increase as Moore's Law, the traditional fabrication techniques of the key photonics and electronics components face a critical challenge. Currently, there exists no low-cost integrated optical component in commercial systems. Recently, light-induced optical waveguide formation attracts much research interest as a recognized technology for direct, rapid, and cost-effective fabricating of various integrated optical waveguides.
    This dissertation mainly investigates writing various waveguide structures in photorefractive (PR) crystals by structure light irradiation method. The main contents of this dissertation are as follows: (1)According to the set of equations governing the PR process, index changes in PR crystals induced by writing beams with different intensity profiles are theoretically analyzed and numerically simulated. (2)The index changes induced by cw laser at milliwatt in LiNbO3:Fe crystals are studied experimentally in detail. Furthermore the experimental results are theoretically analyzed and numerically simulated. The results show that waveguide structures can be effectively induced employing structure light irradiation in LiNbO3:Fe crystals. (3) Fabrication methods of planar, Y-branches, and channel waveguides employing structure lights formed by cylindrical lenses and optical binary masks are investigated experimentally in detail. And a novel approach to prepare optical masks by using spatial light modulator for light-induced various waveguides, even a whole circuits is proposed. (4)Fabricating planar and channel waveguide arrays in SBN:Cr, LiNbO3:Fe and KNSBN:Ce crystals under illuminations of two-beam and four-beam interferograms are detailedly investigated both theoretically and experimentally. Moreover a novel approach to fabricate array of three-dimensional waveguides in PR crystals employing illuminations of a pair of mutually coherent or incoherent two-beam interference fields is proposed. Employing writing beams with appropriate intensity distributions and external electric fields along proper directions, arrays of planar and channel waveguides can be fabricated in various PR crystals. (5) Based on Mach-Zehnder interferometer setup, slice-interferometry for measuring light-induced index changes in PR crystal is investigated. And employing digital holography for visualizations of the index changes in PR crystal is first proposed. Additionally, the two approaches are used for measuring the index distributions of light-induced waveguides successfully.
    Various optical waveguides and waveguide arrays can be fabricated by irradiations of different structure lights. This technique is very convenience, and combines with the electrical/thermal fixing and optical/thermal erasing techniques both permanent and instantaneous waveguides can be obtained. Structure-light-induced waveguide devices in PR crystals can be used for the current optical communication systems, and may be used for optical dynamic interconnection and optical neural network systems.
引文
1.赵策洲.半导体导波光学器件理论及技术.国防工业出版社,北京,1998.
    2.马少杰,姜明洙,高颉,鲁力.高密度列阵光纤一光波导耦合技术的最新进展.http://www.ccsuruga.tom/tech/align.htm.
    3.陈益新.集成光学.上海交通大学出版社,上海,1985.
    4. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao. Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett. 71, 3329-3331 (1997).
    5. M. Kagami, T. Yamashita, and H. Ito. Light-induced self-written three-dimensional optical waveguide. Appl. Phys. Lett. 79, 1079-1081 (2001).
    6. S. Shoji, S. Kawata, A. A. Sukhorukov, and Y. S. Kivshar. Self-written waveguides in photopolymerizable resins. Opt. Lett. 27, 185-187 (2002).
    7. E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman. Three-dimensional control of light in a two-dimensional photonic crystal slab. Nature 407, 983-986 (2000).
    8. S. Mingaleev and Y. Kivshar. Nonlinear photonic crystals toward all-optical technologies. OPN 13, 48-51 (2002).
    9. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816-819 (2003)
    10. R. G Hunsperger. Integrated optics: theory and technology. Springer-Verlag, Berlin, 1985.
    11. J. F. Giuliani, K. H. Kim, and J. E. Butler. Fabrication of an integrated optical waveguide chemical vapor microsensor by photopolymerization of a bifunctional oligomer. Appl. Phys. Lett. 48, 1311-1313(1986).
    12. K. B. Rochford, R. Zanoni, Q. Gong, and G. I. Stegeman. Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching. Appl. Phys. Lett. 55, 1161-1163 (1989).
    13. S. J. Frisken. Light-induced optical waveguide uptapers. Opt. Lett. 18, 1035-1037 (1993).
    14. S. S. Lee, S. Garner, A. Chen, V. Chuyanov, W. H. Steier, L. Guo, L. R. Dalton, and S. Y. Shin. Patterned birefringence by photoinduced depoling in electro-optic polymers and its application to a waveguide polarization splitter. Appl. Phys. Lett. 73, 3052-3054 (1998).
    15. M. P. Joshi, H. E. Pudavar,.J. Swiatkiewicz, P. N. Prasad, and B. A. Reianhardt. Three-dimensional optical circuitry using two-photon-assisted polymerization. Appl. Phys. Lett. 74, 170-172 (1999).
    16. I. Assa(?)d, I. Hardy, and D. Bose. Controlled refractive index of photosensitive polymer: towards photo-induced waveguide for near infrared wavelengths. Opt. Comm. 214, 171-175 (2002).
    17. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao. Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729-1731 (1996).
    18. K.Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao. Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett. 71, 3329-3331 (1997).
    19. T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian. Observation of self-trapping of light in a self-written channel in a photosensitive glass. Phys. Rev. Lett. 80, 4072-4075 (1998).
    20. C. Contardi, E. R. Taylor, and A. Fu. Study of UV-written channels in lead silicate glasses. J. Non-Cryst. Solids. 291, 113-120 (2001).
    21. A. M. Ljungstrm and T. M. Monro. Observation of light-induced refractive index reduction in bulk glass and application to the formation of complex waveguides. Opt. Express 10, 230-235 (2002).
    22. K. Itoh, O. Matoba, and Y. Ichioka. Fabrication experiment of photorefractive three-dimensional
    
    waveuides in lithium niobate. Opt. Lett. 19, 652-654 (1994).
    23. M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde. Waveguides induced by photorefractive screening solitons. JOSA B 14, 3091-3101 (1997).
    24. Ph. Dittrich, G. Montemezzani, P. Bernasconi, and P. G(?)nter. Fast, reconfigurable light-induced waveguides. Opt. Lett, 24, 1508-1510 (1999).
    25. O. Matoba, K. Itoh, and K. Kuroda. Photorefractive optics in dynamic interconnection. Proc. IEEE 87, 2030-2049 (1999).
    26. O. Matoba, K. ltoh, and Y. lchioka. Photo-induced waveguide for optical dynamic 3-D intercormections in LiNbO_3. Proc. Int. Joint Conf. Neural Networks 825-828 (1993).
    27. O. Matoba, K. Itoh, and Y. Ichioka. Analysis of photo-induced waveguide in lithium niobate crystal. Opt. Rev. 1, 73-75 (1994).
    28. O. Matoba, K. Ikezawa, K. Itoh, and Y. lchioka. Modification of photorefractive waveguides in lithium niobate by guided beam for optical dynamic interconnection. Opt. Rev. 2, 438-443 (1995).
    29. K. Itoh, O. Matoba, and Y. Ichioka. ODINN in LiN; Optical dynamic interconnections for neural networks in lithium niobate. Proc. SPIE 2529, 71-81 (1995).
    30. O. Matoba, K. Itoh, and Y. lchioka. Nonuniform and off-axis structures for photorefractive waveguides in lithium niobate. Opt. Eng, 35, 2175-2181 (1996).
    31. O. Matoba, K. Itoh, and Y. Ichioka. Optical learning neural network using photorefractive waveguides. Opt. Rev. 4, 465-470 (1997).
    32. O. Matoba, T. Shimura, T. Shimura, K. Kuroda. Periodically segmented photorefractive waveguides in LiNbO_3:Fe. Proc. 6th Microoptics Conf. 256-259 (1997). See also Proc. Topical Meeting on Photorefractive Materials, Eeffects and Devices 192-195 (Optical Society of America, Washington, D. C., 1997).
    33. O. Matoba, T. Inujima, T. Shimura, and K. Kuroda. Segmented photorefractive waveguides in LiNbO_3:Fe. JOSA B 15, 2006-2012 (1998).
    34. O. Matoba, T. Inujima, T. Shimura, and K. Kuroda. Optical dynamic transformation of segmented photorefractive waveguide structure. Proc. CLEO 174-175 (1998).
    35. K. Kuroda and O. Matoba. Optical interconnections using photorefractive segmented waveguides. Proc. SPIE 3804, 42-50 (1999).
    36. F. Yu and S. Yin. Photorefractive optics. Academic, San Diego, 2000.
    37. P. Zhang, J. Zhao, D. Yang, B. Li, and C. Xu. Optically induced photorefractive waveguides in KNSBN:Ce crystal. The 8th IUMRS International Conference on Electronics Materials, 2002.6, Xi'an. Opt. Mat. 23, 299-303 (2003).
    38. D. Yang, C. Xu, P. Zhang, J. Zhao, and X. Feng. Refractive index distributions in LiNbO_3:Fe crystals illuminated by structure lights. The 8th IUMRS International Conference on Electronics Materials, 2002.6, Xi'an.
    39.杨德兴,赵建林,张鹏,李碧丽,冯锡淇.LiNbO_3:Fe晶体中光写入波导时折射率的变化规律.物理学报,52,1179-1183(2003).
    40.张鹏,赵建林,杨德兴,王美蓉,孙一栋.LiNbO_3:Fe晶体中光写入平面光波导的导光特性研究.物理学报,2004(in press).
    41. P. Zhang, D. Yang, J. Zhao, J. Zhou, M. Wang, and D. S. Yang. Photo-written waveguides in iron-doped lithium niobate employing binary optical masks. Submitted to Appl. Opt. 2004.
    42. P. Zhang, J. Zhao, D. Yang, B. Li, and D. S. Yang.Optical masks prepared by using liquid crystal light valve for light-induced photorefractive waveguides. Appl. Opt. 42, 4208-4211 (2003).
    
    
    43.张鹏,杨德兴,赵建林,徐宏来,苏坤.LiNbO_3:Fe晶体中白光写入的具有任意折射率分布的光波导.中国光学学会2004年学术大会,2004.4.杭州.
    44. J. Zhao, P. Zhang, D. Yang and B. Li. Light-induced photorefractive waveguides in iron-doped lithium niobate crystals. The 8th OptoElectronics and communication conference, 2003.10, Shanghai. Acta Opt. Sin. 23, 171-172 (2003).
    45. O. Matoba, T. Itano, K. Itoh, and Y. Ichioka. Fabrication of two-dimensional array of photorefractive waveguides. Proc. SPIE 2778, 527-528 (1996).
    46. O. Matoba, K. Itoh, and Y. Ichioka. Array of photorefractive waveguides for massively parallel optical interconnections in lithium niobate. Opt. Lett. 21, 122-124 (1996).
    47. O. Matoba, K. Kuroda, and K. Itoh. Fabrication of a two-dimensional array of photorefractive waveguides in LiNbO_3:Fe using non-diffracting checkered pattern. Opt. Commun. 145, 150-154 (1998).
    48.杨立森,陈晓虎,刘思敏,汪大云,赵红娥,张万林.(2+1)维光折变波导阵列的制作.光子学报 31,1200-1204(2002).
    49.赵建林,李碧丽,杨德兴,张鹏,冯锡淇.LiNbO_3:Fe晶体中光写入阵列平面波导的实验实现.光子学报 32,421-424(2003).
    50.赵建林,李碧丽,张鹏,杨德兴,李振伟.用光辐照法在SBN:Cr晶体中写入动态阵列平面光波导.物理学报 53(2004).
    51. C. Meneghini and A. Villeneuve. As_2S_3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides. JOSA B 15, 2946-2950 (1998).
    52. A. M. Kamuz, P. Ph. Oleksenco, Y. U. Ovsyannikov, S. D. Kiyashko, and O. N. Strilchuk. New technologies of integrated optics elements fabrication: monolith integrated-optical device. Proc. SPIE 2213, 278-286 (1994).
    53. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau. Optically-induced refractive index inhomogeneities in LiNbO_3 and LiTaO_3. Appl. Phys. Lett. 9, 72-74, (1966).
    54. P. G(?)nter and J. P. Huignard. Photorefractive materials and their applications I. Springer-Verlag, Berlin, 1988.
    55.刘思敏,郭儒,凌振芳.光折变非线性光学.中国标准出版社,北京,1992.
    56. J. Hukriede, D. Runde, and D. Kip. Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides. J. Phys. D: Appl. Phys. 36, R1-R16 (2003).
    57. S. W. James, K. E. Youden, P. M. Jeffrey, R. W. Eason, P. J. Chandler, L. Zhang, and P. D. Townsend. BaTiO_3 waveguide self-pumped phase conjugator. Opt. Lett. 18, 1138-1140 (1993).
    58. D. Kip, M. Wesner, V. Shandarov, P. Moretti. Observation of bright spatial photorefractive solitons in a planar strontium barium niobate waveguide. Opt. Lett. 23, 921-923 (1998).
    59. D. J. Brady, D. Psaltis. Holographic interconnections in photorefractive waveguides. Appl. Opt. 30, 2324-2333 (1991).
    60. D. Kip. Photorefractive waveguides in oxide crystals: fabrication, properties, and applications. Appl. Phys. B 67, 131-150(1998).
    61. R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, M. D. Ewbank, and W. F. Hall. Development and modification of photorefractive properties in the tungsten bronze family crystals. Opt. Eng. 26, 392-405 (1987).
    62. P. Zhang, D. Yang, J. Zhao, K. Su, J. Zhou, B. Li, and D. S. Yang. Light-induced array of three-dimensional waveguides in lithium niobate employing a pair of two-beam interference fields.
    
    Submitted to Opt. Commun. 2004.
    63. M. Segev, B. Crosignanim, A. Yariv, and B. Fischer. Spatial solitons in photorefractive media. Phys. Rev. Lett. 68, 923-926 (1992).
    64. G. C. Duree, Jr. J. L. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp and R. R. Neurgaonkar. Observation of self-trapping of an optical beam due to the photorefractive effect. Phys. Rev. Lett. 71, 533-536 (1993).
    65. G. I. Stegeman and M. Segev. Optical spatial solitons and their interactions: universality and diversity. Science 286, 1518-1523 (1999).
    66. M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Di Porto. Observation of two-dimensional steady-state photorefractive screening solitons. Electron. Lett. 31, 826-827 (1995).
    67. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley. Observation of dark photovoltaic spatial solitons. Phys. Rev. Lett. 52, 3095-3100 (1995).
    68. P. Di. Trapani, W. Chinaglia, S. MInardi, A. Piskarskas, and G. Baliulis. Observation of quadratic optical vortex solitons. Phys. Rev. Lett. 84, 3843-3846 (2000).
    69. T. Carmon, R. Uzdin, C. Pigier, Z. H. Musslimani, M. Segev, and A. Nepomnyashchy. Rotating propeller solitons. Phys. Rev. Lett. 87, 143901 (2001).
    70. H. S. Eisenberg, R. Morandotti, Y. Silberberg, J. M. Arnold, G. Pennelli, and J. S. Aitchison. Optical discrete solitons in waveguide arrays. JOSA B 19, 2938-2944 (2002).
    71. M. Morin, G. Duree, G. Salamo, and M. Segev. Waveguides formed by quasi-steady-state photorefractive spatial solitons. Opt. Lett. 20, 2066-2068 (1995).
    72. S. M. Liu, G. Q. Zhang, Q. Sun, J. J. Xu, and G. Y. Zhang. Waveguides written and stored by photovoltaic dark spatial solitons in LiNbO_3:Fe crystals. Chin. Phys. Lett. 13, 737-740 (1996).
    73.刘思敏,张国权,张光寅,许京军,孙骞,方淇音.由光折变空间孤子写入并存储波导的研究.物理 26,217-220(1997).
    74. A. Bekker, A. Peda'el, N. K. Berger, M. Horowitz, and B. Fischer. Optically induced domain waveguides in Sr_xBa_(1-x)Nb_2O_6 crystals. Appl. Phys. Lett. 72, 3121-3123 (1998).
    75. A. Guo, M. Henry, G. J. Salamo, M. Segev, and G. L. Wood. Fixing multiple waveguides induced by photorefractive solitons: directional couplers and beam splitters. Opt. Lett. 26, 1274-1276 (2001).
    76.刘继芳,忽满利,李家立,李育林,刘雪梅.光折变晶体中光诱导波导的折射率分布.光子学报 30,406-409(2001).
    77. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev. Discrete solitons in photorefractive optically induced photonic lattices. Phys. Rev. E 66, 046602 (2002).
    78. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides. Observation of discrete solitons in optically induced real time waveguide arrays. Phys. Rev. Lett. 90, 023902 (2003).
    79. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147-150 (2003).
    80. D. N. Christodoulides, F. Lederer, and Y. Silberberg. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 424, 817-823 (2003).
    81. Z. Chen, H. Martin. Waveguides and waveguide arrays formed by incoherent light in photorefractive materials. Opt. Mat. 23, 235-241 (2003).
    82.岳学锋,邵宗书.光折变材料及其应用.山东科学技术出版社,山东,1994.
    83. J. J. Amodei and D. L. Staebler. Holographic pattern fixing in electro-optic crystals. Appl. Phys. Lett. 08, 540-542 (1971).
    84. G. A. Rakuljic. Prescription for long-lifetime, high-diffraction-efficiency fixed holograms in Fe-doped
    
    LiNbO_3. Opt. Lett. 22, 825-827 (1997).
    85. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Kr(?)tzig. Origin of thermal fixing in photorefractive lithium niobate crystals. Phys. Rev. B 56, 1225-1235 (1997).
    86. X. An, D. Psaltis, and G. W. Burr. Thermal fixing of 10,000 holograms in LiNbO_3:Fe. Appl. Opt. 38, 386-393 (1999).
    87. N. Park, B. Yang, H. S. Lee, and B. Lee. Photorefractive waveguide formation with refractive reversal by use of thermal fixing. Electron. Lett. 36, 429-430 (2000).
    88. L. Arizmendi. Thermal fixing of holographic gratings in Bi_(12)SiO_(20). J. Appl. Phys. 65,423-425 (1989).
    89. G. Montemezzani and P. G(?)nter. Thermal hologram fixing in pure and doped KNbO_3 crystals. JOSA B 7, 2323-2328 (1990).
    90. F. Micheron and G. Bismuth. Electrical control of fixing and erasure of holographic patterns in ferroelectric materials. Appl. Phys. Lett. 20, 79-81 (1972).
    91. F. Micheron and G. Bismuth. Field and time thresholds for the electrical fixation of holograms recorded in (Sr_(0.75)Ba_(0.25))Nb_2O_6 crystals. Appl. Phys. Lett. 23, 71-72 (1973).
    92. J. Ma, T. Chang, J. Hong, and R. Neurgaonkar, Electrical fixing of 1000 angle-multiplexed holograms in SBN:75. Opt. Lett. 22, 1116-1118 (1997).
    93. M. Wesner, C. Herden and D. Kip. Electrical fixing of waveguide channels in strontium-barium niobate crystals. Appl. Phys. B 72, 733-736 (2001).
    94. M. Klotz, M. Crosser, A. Guo, M. Henry, G. J. Salamo, M. Segev, and G. L. Wood. Fixing solitonic Y junctions in photorefractive strontium-barium-niobate. Appl. Phys. Lett. 79, 1423-1425 (2001).
    95.李振伟,赵建林.铁电晶体中光致折射率栅的畴反转定影技术.第2届全国青年光学会议,2002.5,绵阳.
    96. K. Buse. Light-induced charge transport processes in photorefractive crystals I: models and experimental methods. Appl. Phys. B 64, 273-291 (1997).
    97. M. Gao. Optical investigation of light-induced charge transport in SBN crystals. Ph. D. Dissertation, University of Osnabr(?)ck, 1998.
    98. L. Holtmarm, M. Unland, E. Kr(?)tzig, and G. Godefroy. Conductivity and light-induced absorption in BaTiO_3. Appl. Phys, A 51, 13-17 (1990).
    99. L. Holtmann, K. Buse, A. Gr(?)ll, and E. Kr(?)tzig. Photoconductivity and light-induced absorption in KNbO_3:Fe. Appl Phys. A 53, 81-86 (1991).
    100. E. Jermann and J. Otten. Light-induced change transport in LiNbO_3:Fe at high light intensity. JOSA B 10, 2085-2092 (1993).
    101. G. A. Brost, R. A. Motes, and J. R. Rotge. Intensity-dependent absorption and photorefractive effects in barium titanate. JOSA B 5, 1879-1884 (1998).
    102. K. Buse and E. Kr(?)tzig. Three-valence charge-transport model for explanation of the photorefractive effect. Appl. Phys. B 61, 27-32 (1995).
    103.赵建林.高等光学.国防工业出版社,北京,2002.
    104. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinctskii. Holographic storage in electrooptic crystals. I. Steady state. Ferroelectrics 22, 949-960 (1979).
    105. A. A. Zozulya and D. Z. Anderson. Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field. Phys. Rev. A 51, 1520-1531 (1995).
    106. F. S. Chen. Optically induced change of refractive indices in LiNbO_3 and LiTaO_3. J. Appl. Phys. 40, 3389-3396 (1969).
    
    
    107. K. Peithmann, A. Wiebrock, K. Buse, and E. Kr(?)tzig. Low-spatial-frequency refractive-index changes in iron-doped lithium niobate crystals upon illumination with a focused continuous-wave laser beam. JOSA B. 17, 586-592 (2000).
    108. A. Shiratori, R. Aida, R. Hagari, and M. Obara. Two-dimensional visualization of photoinduced refractive index change in photorefractive lithium niobate crystal. Jpn. J. Appl. Phys. 37, 225-227 (1998).
    109.秦秉坤,孙雨南.介质光波导及其应用.北京理工大学出版社,北京,1991.
    110. L. Yu and L. Cai. Iterative algorithm with a constraint condition for numerical reconstruction of a three-dimensional object from its hologram. JOSA A 18, 1033-1045 (2001).
    111. U. Schnars. Direct phase determination in hologram interferometry with use of digitally recorded holograms. JOSA A 11,2011-2015 (1994).
    112. T.R. Judge and P. J. Bryanston-Cross. A review of phase unwrapping techniques in fringe analysis. Opt. Laser. Eng. 21, 199-239 (1994).
    113. A.A. Ballman and H. Brown. The Growth and properties of strontium barium metaniobate, Sr_(1-x)Ba_xNb_2O_6, a tungsten bronze ferroelectric. J. Cryst. Growth 1, 311-314 (1967).
    114. A.M. Glass. Investigation of the electric properties of Sr_(1-x)Ba_xNb_2O_6 with special reference to pyroelectric detection. J. Appl. Phys. 40, 4699-4713 (1969).
    115. J.B. Thaxter. Electric control of holographic storage in strontium-barium-niobate. Appl. Phys. Lett. 15, 210-212 (1969).
    116. R. R. Neurgaonkar and W. K. Cory. Progress in photorefractive tungsten bronze crystal. JOSA B 3, 074-282 (1986).
    117. G. Salamo, M. J. Miller, W. W. Clark Ⅲ, G. L. Wood, and E. J. Sharp. Strontium barium niobate as a self-pumped phase conjugator. Opt. Commun. 59, 417-422 (1986).
    118.李铭华,杨春晖,徐玉恒.光折变晶体材料科学导论.科学出版社,北京,2003.
    119. M.D. Ewbank, R. R. Neurgaonkar, W. K. Cory, and J. Feinberg. Photorefractive properties of strontium-barium niobate. J. Appl. Phys. 62, 374-380 (1987).
    120. L. Arizmendi. Photonic applications of lithium niobate crystals. Phys. Stat. Sol. (a) 201, 253-283 (2004).
    121.徐琛.光折变波导的制作和特性研究.硕士学位论文.西北工业大学,2001.
    122.M.波恩,E.沃夫.光学原理(上册).科学出版社,北京,1978.
    123. Y. Xu and H. Chen. Single crystal growth and determination of physical properties of (K_(1-x)Na_x)_(0.4)(Sr_(1-y)Ba_y)_(0.8)Nb_2O_6. Ferroelectrics 54, 123-126 (1984).
    124. J. Xu, S. Liu, Y. Wu, G. Zhang, Y. Song, and H. Chen. Observation of self-pumped phase conjugation wave in Cu-KNSBN crystal. Opt. Commun. 80, 239-241 (1991).
    125. Y. Li, S. Liu, M. Yang, K. Yang, K. Xu, and F. Hou. Superior real-time holographic storage properties in doped potassium sodium strontium barium niobate crystal. Opt. Lett. 22, 212-214 (1997).
    126. F. Lu, M. Q. Meng, K. M. Wang, X. D. Liu, H. C. Chen, and D. Y. Shen. Planar optical waveguide in cu-doped potassium sodium strontium niobate crystal formed by Mega-Electron-Vot He-Ion implantation. Opt. Lett. 22, 163-165 (1997).
    127. A. G. Chynoweth. Surface space-charge layers in barium titanate. Phys. Rev. 102, 705-714 (1956).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700