光致聚合物材料中位相调制参考光全息存储性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息存储技术发展是信息社会进步的基础,也是研究的热点。传统磁存储技术存储密度已经接近理论极限,光盘存储技术也因为衍射效应的限制,进一步提升存储密度空间逐渐缩小。而基于光致聚合物材料的体全息存储技术因为其更大的存储密度潜力以及相对较低的成本,成为一种具有竞争力的信息存储备选技术。
     光致聚合物是一种大幅面厚度相对较薄的材料,适用于全息图部分重叠的复用存储技术,国际上各个研机构和公司已经开展基于聚合物材料的全息存储系统研究。美国Inphase公司研制出采用polytopic复用方法的存储系统、斯坦福大学和日本Optware公司提出采用散斑调制光束位移复用的同轴系统。但是散斑调制光束存储全息图噪声很大,严重干扰存储信息。而使得重叠在一起记录的全息图,以均匀的衍射效率读出也是一个重要问题。
     为了实现有效信息记录的全息存储,有必要对参考光进行优化。我们先前的研究表明振幅分布符合平面波特点,而位相受到一定调制的参考光可以获得较好的存储质量;而且虽然位相调制参考光全息存储基本原理基于与材料厚度正相关的布拉格体光栅,但是复用特性不再受限于材料厚度,可以获得更高的复用密度。因此我们需要对这种位相调制参考光的全息存储性能进行研究,全息图部分重叠复用的等衍射效率问题也在位相调制参考光全息存储性能研究过程中得到解决。
     对于随机位相调制参考光,其复用特性已经得到充分的研究,我们进一步研究了随机位相调制光束全息记录图像质量的动态变化。在进行实验研究之前有必要对中科院理化所提供的自由基双单体光致聚合物材料全息性能进行测试。我们进行了全息记录和暗反应的实验,结合简化扩散理论模型进行了数据拟合,得到了反映材料全息性能的各个参量。接着,模拟随机位相调制参考光复用存储的情形,进行了光致聚合物中全息存储再现图像质量的动态特性研究。以信噪比损失作为图像质量变化的衡量指标,进行了暗增长和均匀后曝光过程监测图像实验,记录参考光和均匀照明光均采用随机位相调制参考光。实验结果表明,在暗增长和均匀后曝光过程中,再现图像强度和质量经历先增长后下降的动态过程。以噪声光栅的形成和发展对实验结果进行了初步的解释。用信噪比损失不大于3dB作为判据考察了全息图对暗反应和均匀后曝光过程的宽容度,对于不同的记录条件确定了暗反应和均匀后曝光过程的特征时间。在特征时间内,图像强度下降不到20%,图像质量也是可以接受的。可以根据特征时间控制全息存储过程时间,进行能够读出有效信息的全息存储。也可以根据对全息存储质量的不同要求,经材料测试实验得到相应的特征时间,提供了一种控制全息存储质量的途径。
     接着,以随机相调制参考光位移复用存储为例,我们建立了适用于全息图部分重叠复用存储的等衍射效率曝光时序模型。首先,利用简化扩散模型推导出描述全息图部分重叠复用存储过程折射率调制度随时间变化的解析式;接着,将等衍射效率问题转化为具有三个限制条件的优化问题,计算出了曝光时序等衍射效率曝光时序并且对读出图像衍射效率进行数值模拟,最后我们在双单体光致聚合物材料中进行了随机位相调制参考光位移复用存储实验,考察最终读出的全部图像的强度。数值模拟计算结果和实验结果都表明,在等衍射效率曝光时序的引导下,复用存储全息图衍射效率均匀一致,使得最终读出图像的强度达到均匀相等的效果,证明了曝光时序的有效性。
     对于确定性位相调制参考光,一般指正交位相编码参考光,传统复用方式实际上是在用正交位相编码参考光的傅里叶谱进行全息存储。数值模拟表明,在这种复用方式下,参考光波面振幅有剧烈起伏,位相在-到之间有连续分布,这会导致将额外噪声带入记录全息图中,影响存储质量,同时参考光正交性受到削弱。为此,我们提出正交位相编码参考光成像方式用于复用存储,即将受到位相码调制的光束通过4f系统成像到记录介质平面,保持振幅符合平面波特点,位相仅有0、位相分布。我们对这种成像方式应用的正交位相编码参考光全息性能进行了研究。在0位置处记录一幅全息图,参考光位移扫描读出。数值模拟和实验结果都表明,当正交位相编码参考光偏离记录位置时,读出图像强度急剧下降,随后趋于水平,得到了位移读出扫描峰。数值模拟和实验结果充分表明正交位相编码参考光具有位移复用特性。
The improvement of data storage technology is the base of the progress ofinformation society, and also research focus today. The traditional magnetic recordingtechnology has come to its limit. Also the optical disc is going to its recording densitylimit gradually because of the effect of diffraction. By contrast, the holographicstorage technology with photopolymer has become the most competitive reserve datarecording method because of its great potential in storage density and relatively lowcosts.
     Photopolymer is a large area and relatively thin material, so it is suitable to apply inpartially-overlapping holograms storage with multiplexing method. And theholographic data storage systems based on the photopolymer have developed byinstitutes and companies all over the world. The Inphase Inc. has released its storagesystem by polytopic method. Stanford University and the Optware Inc. individuallyreleased their own coaxial system by speckle modulator. But there is much noise inthe system with the speckle modulated beams which influences the quality ofrecorded data. Additionally, it is also important to obtain the reconstructed images inuniform diffraction efficiency for all the overlapping recorded holograms.
     In order to implement high-density holographic storage with high reconstruct quality,the reference beam must be optimized. Our previous work has shown that thephase-modulated reference beams with amplitude distribution as plane wave recordedand reconstructed holograms in a high quality. And the multiplexing degree of phasemodulated reference beam is not confined by the thickness of the material, though itsbasic recording principle is based on the volume Bragg gratings which is positivelycorrelated to the thickness of the material. So it is meaningful to do research on theholographic storage properties of phase-modulated reference beams, and also theuniform diffraction holographic storage is going to be realized in the research on thephase modulated reference beam.
     For the random-phase modulated reference beam, the multiplexing properties havebeen discussed widely. We did further research to discuss about the recorded images’quality dynamic changes in the process of holographic storage. But before theexperimental research, it is necessary to test the holographic properties of the noveldual-monomer photopolymer based on the free-radical photopolymerization providedby the technical institute of physics and chemistry, Chinese Academy of Sciences (IPC_CAS). We did dark enhancement and holographic recording experiment. Andwith the simplified diffusion model, a data fitting has been done to obtain theparameters reflecting the holographic recording properties of the material with theexperimental data. Then we did research to the quality dynamic changes of hologramsrecorded in the material with random-phase modulated reference beam. The quality ofthe reconstructed images is evaluated by the loss of signal to noise (LSNR). Theexperimental results showed that the intensity and quality of the reconstructed imagesexperienced a dynamic change that the intensity and quality raised for a while andthen fell down until the images faded to disappear. It can be explained by the formingand developing of the scattering gratings. And it is defined that the time before thequality being less than3dB is character time of the material in dark enhancement anduniform post exposure. In the character time the quality and the intensity of thereconstructed images are acceptable and the intensity is descending less than20%. Soit is able to adjust and control the recording time to realize effective holographicstorage according to the character time. And it is also allowed to obtain the propercharacter time according to different demands of recording quality by material testexperiment, which also offers a method to adjust and control the quality ofholographic storage.
     After the research about the reconstructed images’ quality dynamic changes, takingshift-multiplexing by random-phase modulated reference beam for an example, webuilt up a uniform diffraction efficiency exposure schedule model for recordingpartially-overlapping holograms. Firstly we obtained the analytic expressionsdepicting the refractive index modulation and deduced the exposure schedule modelfor dual-monomer photopolymer. Then, the uniform diffraction efficiency model istransformed to an optimization problem with three constrictions. The exposureschedule was calculated by solving this problem through computer and we didnumerical simulation to calculate the diffraction efficiency of the recorded holograms.Then with the calculated schedule, multiplexing experiment was done to observe theintensity of the reconstructed images in the dual-monomer photopolymer. The resultsof numerical simulation and the experiments showed that following the exposureschedule, diffraction efficiency of all the recorded holograms were uniform, soreconstructed images also had a uniform intensity, which proved the exposureschedule model was effective.
     For the deterministic phase modulated reference beam, generally the orthogonalphase code modulated reference beam, the traditional multiplexing method actuallyapplied the Fourier transform of the reference beam to recording holograms. Thenumerical simulation results showed that there was a complex and serious fluctuationin both intensity and phase distribution. Moreover, the phase was no longer binary (0or) but varying continuously between–and, which would reduce the phaseorthogonality. Also the additional intensity distribution will influence the quality ofthe beam. A solution we suggested was an imaging setup applied for the orthogonalphase coded reference beam. And we have tested the holographic storage properties ofthe orthogonal phase code imaging reference beam. The numerical simulation andexperimental results showed that with orthogonal phase-coded reference beamposition shifting, the intensity of the reconstructed images is falling down very fastand becoming closely to a straight line, leading to a scanning peak. These come to aconclusion that the orthogonal phase code imaging reference beam has shiftselectivity.
引文
[1]陈家璧,苏显渝.光学信息技术原理及应用[M].第2版.高等教育出版社,2009:217~218.
    [2]陶世荃,王大勇,江竹青,袁泉.光全息存储[M].北京工业大学出版社,1998:19-20.
    [3] P. J. V. Heerden. Theory of Optical Information Storage in Solid[J]. Appl. Opt,1963,(2):393-400.
    [4] F. H. Mok, M. C. Tackitt, H. M. Stoll. Storage of500High-Resolution Holograms in ALiNbO3Crystal[J]. Opt. Lett.1991,16(8):605-607.
    [5] F. H. Mok, D. Psaltis, G. Burr. Spatially and Angle-Multiplexed Holographic Random AccessMemory[C]. W. J. Miceli, J. A. Neff, S. T. Kowel. Photonics for Computers, Neural Networks,and Memories, San Diego USA,1992. USA, Proceeding of SPIE,1992:1773:334-345.
    [6] J. H. Hong, et. al. Volume Holographic Memory Systems: Techniques and Architectures[J].Opt. Eng.1995,2604:2-10.
    [7] S. S. Orlov, W. Phillips, E. Bjornson, et. al. High Data Rate (10Gbit/Sec) Demonstration inHolographic Disk Digital Data Storage System[C]. OSA. Technical Digest, Califonia,2002.Califonia, OSA,2002:1:70~71.
    [8] J. F. Heanue, M. C. Bashaw, L. Hesselink. Volume Holographic Storage and Retrieval ofDigital Data[J]. Sci.1994,265(5):749-752.
    [9] G. W. Burr, C.M. Jefferson, H. Coufal, et al. Volume Holographic Data Storage at an ArealDensity of250Gigepixels/in2[J]. Opt. Lett.2001,26(7):444-446.
    [10] S. Tao, D. R. Selviah. Angular Selectivity of Holographic Gratings in BSO[C]. OSA. Effectsand Devices Conference, USA,1991. USA, OSA,1991:138-150.
    [11] C. Denz, G. Pauliat, G. Roosen, et. al. Volume Hologram Multiplexing Using a DeterministicPhase Encoding Method[J]. Opt. Commun.1991,(85):171-176.
    [12] R. John, J. Joseph, K. Singh. Holographic Digital Data Storage Using Phase-ModulatedPixels[J]. Opt. Laser. Eng.2005,43(2):183-194.
    [13] S. Tao, D. R. Selviah, J. E. Midwinter. Spatioangular Multiplexed Storage of750Hologramsin a Fe:Linbo3Crystal[J]. Opt. Lett.1993,18:912-914.
    [14] K. Curtis, A. Pu, D. Psaltis. Method for Holographic Storage Using PeristrophicMultiplexing[J]. Opt. Lett.1994,19(13):993.
    [15] D. Psaltis, M. Levene, A. Pu, et. al. Holographic Storage Using Shift Multiplexing[J]. Opt.Lett.1995,20(7):782-784.
    [16] G. J. Steckman, A. Pu, D. Psaltis. Storage Density of Shift-Multiplexed HolographicMemory[J]. Appl. Opt.2001,40(20):3387-3394.
    [17] A. Pu, D. Psaltis. Holographic3-D Disks Using Shift Multiplexing[C]. OSA. Lasers andElectro-Optics, Anaheim USA,1996. USA, Opt. Soc. America,1996:165.
    [18] A. M. Darskii, V. B. Markov. Angular Sensitivity of Holograms with a Reference SpeckleWave[C]. Proc. SPIE. Diffraction and Related Phenomenon, Kiev,1989. Ukraine, Proc. SPIE,1991:54-61.
    [19] A. Pu, D. Psaltis. High-density Recording in Photopolymer-based HolographicThree-dimensional Disks[J]. Appl. Opt.1996,35(14),2389-2398.
    [20] H. Zhou, J. Morozov, V. Neff, et. al. Characterization of Dupont Photopolymers in InfraredLight for Free-space Optical Interconnects[J]. Appl. Opt.1995,34(32):7457-7459.
    [21] K. Curtis, A. Pu, H. Y. S. Li, et. al. Three-Dimensional Disks Using Photopolymer Films[C].Proc. SPIE. Diffractive and Holographic Optics Technology, Los Angeles,1994. USA, Proc.SPIE,1994,2152:185-196.
    [22] A. Pu, D. Psaltis. High-Density Recording in Photopolymer-Based HolographicThree-Dimensional Disks[J]. Appl. Opt.1996,35(14):2389-2398.
    [23] D. A. Waldman, C. J. Butler, D. H. Raguin. CROP Holographic Storage Media for OpticalData Storage at Greater than100Bits/m2[C]. Proc. SPIE. Organic Holographic Materialsand Applications, San Diego,2003. USA, Proc. SPIE,2003,5216:5-20.
    [24] G. Barbastathis, M. Levene, D. Psaltis. Shift Multiplexing with Spherical Reference Waves[J].Appl. Opt.1996,35(14):2403-2417.
    [25] S. S. Orlov, W. Phillips, E. Bjornson, et. al. High-Transfer-Rate High-Capacity HolographicDisk Data-Storage System[J]. Appl. Opt.2004,43(25):4902-4914.
    [26] V. Markov, J. Millerd, J. Trolinger, et. al. Multilayer Volume Holographic Optical Memory[J].Opt. Lett.1999,24(4):265-267.
    [27] V. B. Markov, Y. N. Denisyuk, J. D. Trolinger, et. al.3D Speckle-Shift Hologram and itsStorage Capacity[C]. Proc. SPIE.3rd Iberoamerican Optics Meeting and6th Latin AmericanMeeting on Optics, Lasers, and Their Applications, Cartagena de Indias,1998. USA, Proc.SPIE,1999,3572:111-114.
    [28] K. H. Kim, Y. H. Kang, B. Lee. Recording of Volume Hologram Using a Beam Pattern fromTapered Optical Fiber[J]. IEEE Photonics Technology Letters.1997,9(12):1610-1612.
    [29] K. H. Kim, Y. H. Kang, B. Lee. Angular and Speckle Multiplexing of PhotorefractiveHolograms by use of Fiber Speckle Patterns[J]. Appl. Opt.1998,37(29):6969-6971.
    [30] Y. Byungchoon, J. Seungjune, L. Byoungho. Holographic Data Storage on Photopolymer byUse of Fiber Speckle Referencing[C]. OSA. Lasers and Electro-Optics, South Korea,1999.South Korea, OSA,1999,4:1177-1178.
    [31] J. Zhang, S. Yoshikado, T. Aruga. Shift Multiplexing for Holographic Storage System UsingFiber Bundle Referencing[J]. Appl. Phys. Lett.2003,82(1):25-27.
    [32] M. Miura, Y. Yokohama, O. Matoba, et. al. Numerical Evaluation of Storage Density inReflection-Type Holographic Memory by Shift Multiplexing with Random PhaseModulation[C]. OSA, Tokyo Japan,2005. USA, OSA,2005:979-980.
    [33] T. Shimura, Y. Ashizuka, M. Terada. What Limits the Storage Density of the CollinearHolographic Memory in Optical Data Storage[C]. OSA. ODS, Portland,2007. USA, OSA,2007: TuD1.
    [34] T. Shuji, B. Masatoshi, F. Hirosuke, et. al. Spatial Arrangement of Speckle-MultiplexedHolograms Using Directional Control of Shift Selectivity with Holographic Diffuser [C].IEEE. IEEE Region10Annual International Conference, Fukuoka,2010. USA, IEEE,2010:1625-1628.
    [35] M. Osamu, Y. Yusuke, N. Kouichi. Improvement of storage capacity using confocal schemein reflection-type holographic memory system with speckle shift multiplexing[J]. Japan. J.Appl. Phys..2011,50(9):09ME08-09ME08-5.
    [36] Z. Chen, W. Jia, T. Chung, et. al. Novel multiplexed coaxial holographic storage technique[C].Proc. SPIE. Visual Information Processing XXI, Baltimore,2012. USA, Proc. SPIE,2012,8399,:83990U-1~83990U-7.
    [37] C. Denz, G. Pauliat, G. Roosen, et. al. Volume Hologram Multiplexing Using a DeterministicPhase Encoding Method[J]. Opt. Comm.1991,85:171-176.
    [38] C. Denz, G. Pauliat, G. Roosen, et. al. Potentialitied and Limitations of HologramMultiplexing by using the Phase-encoding Technique[J]. Appl. Opt.1992,31:5700-5705.
    [39] H. Lee, Y. Kim, D. Han, et. al. Cross-talk Noise Analysis in Hologram Memory with HybridMultiplexing of the Hadamard Phase Code and Wavelength[J]. J. Opt. Soc. Am. A.1999,16(3):563-567.
    [40] F. Gonte, R. Daendliker. Phase Coding for Holographic Memory using a DeformableMembrane Mirror[C]. Proc. SPIE. High-Resolution Wavefront Control: Methods, Devices,and Applications III, San Diego,2001. USA, Proc. SPIE,2002,4493:46-54.
    [41] S. Honma, S. Muto, A. Okamoto. Shift-phase Code Multiplexing Technique for HolographicMemories and Optical Interconnection[C]. Proc. SPIE. Holography and Diffractive Optics III,Beijing,2008. USA, Proc. SPIE,2008,6832:68322P-1-68322P-11.
    [42] J. Li, M. He, T. Zheng, et. al. Two-Dimensional Shift-Orthogonal Random-InterleavingPhase-Code Multiplexing for Holographic Data Storage[J]. Opt. Commun.2011,284(24):5562-5567.
    [43] J. Li, L. Cao, H. Gu, et. al. Orthogonal Reference Pattern Modulated Shift Multiplexing forCollinear Holographic Data Storage[J]. Opt. Lett.2012,37(5):936-938.
    [44] S. S. Orlov, E. Bjornson, W. Phillips, et. al. High Transfer Rate (1Gbit/sec) High CapacityHolographic Disk Digital Data Storage System[C]. OSA. Lasers and Electro-Optics, SanFrancisco,2000. USA, OSA,2000,39:190–191.
    [45] W. Phillips, S. S. Orlov, E. Bjornson, et. al. Video Demonstration of High Data RateHolographic Disk Data Storage System[C]. OSA. OSA Annual Meeting, Washington,2000.USA, OSA,2000:22–25.
    [46] S. S. Orlov, E. Bjornson, W. Phillips, et. al.6Gbit/sec Transfer Rate Demonstration inHolographic Disk Digital Data Storage System[C]. OSA. ODS, Canada,2000. USA, OSA,2000:14-17.
    [47] S. S. Orlov, W. Phillips, E. Bjornson, et. al. High Data Rate (10Gbit/sec) Demonstration inHolographic Disk Digital Data Storage System[C]. OSA. Lasers and Electro-Optics,California,2002. USA, OSA,2002,1:70–71.
    [48] D. A. Waldman, C. J. Butler, D. H. Raguin. CROP Holographic Storage Media for OpticalData Storage at Greater than100bits/μm2[C]. Proc. SPIE. Organic Holographic Materialsand Applications, San Diego,2003. USA, Proc. SPIE,2003,5216:10-25.
    [49] H. Horimai, X. D. Tan. Collinear Technology for A Holographic Versatile Disk[J]. Appl. Opt.2006,45(5):910-914.
    [50] H. Horimai, X. D. Tan. Holographic Information Storage System: Today and Future[J]. IEEET. Magn.2007,43(2):943-947.
    [51] H. Horimai, X. D. Tan, J. Li. Collinear Holography[J]. Appl. Opt.2005,44(13):2575-2579.
    [52] H. Horimai, X. D. Tan. Advanced Collinear Holography[J]. Opt. Rev.2005,12(2):90-92.
    [53] H. F. Shih. Integrated Optical Unit Design for The Collinear Holographic Storage System[J].IEEE T Magn.2007,43(2):948-950.
    [54] T. Shimura, S. Ichimura, R. Fujimura, et. al. Analysis Of A Collinear Holographic StorageSystem: Introduction Of Pixel Spread Function[J]. Opt. Lett.2006,31(9):1208-1210.
    [55] T. Shimura, S. Ichimura, Y. Ashizuka, et. al. Shift Selectivity Of The Collinear HolographicStorage System[C]. Proc. SPIE. Optical Data Storage2006, Canada,2006. USA, Proc. SPIE,2006,6282:62820S-1-62820S-8.
    [56] T. Imura, H. Koga, P. B. Lim, et. al. Collinear Holography with Magneto-Optic Spatial LightModulator[C]. Proc. SPIE. International Society For Opt. Eng, San Diego,2006. USA, Proc.SPIE,2006,6311:631115-1-631115-8.
    [57] W. L. Wilson, K. R. Curtis, K. Andersen, et. al. Realization of High Performance HolographicData Storage: The InPhase Technologies Demonstration Platform[C]. Proc. SPIE. OrganicHolographic Materials and Applications, San Diego,2003. USA, Proc. SPIE,2003,5216:178-191.
    [58] L. Dhar, K. Curtis, T. F cke. Holographic Data Storage: Coming of Age[J]. Nat. Photonics.2008,2:403-405.
    [59] W. L. Wilson, K. Anderson, K. Curtis, et. al. Toward the Commercial Realization of HighPerformance Holographic Data Storage[C]. OSA. Lasers and Electro-Optics/InternationalQuantum Electronics Conference and Photonic Applications Systems Technologies, SanFrancisco,2004. USA, OSA,2004,5521:29-37.
    [60] M. Schnoes, B. Ihas, L. Dhar, et. al. Photopolymer Use for Holographic Data Storage[C].Proc. SPIE. Advanced Optical Data Storage, USA,2003. USA, Proc. SPIE,2003,4988:68-76.
    [61] Inpase Technology’s Products: Drives&. Media, http://www.inphase-tech.com/products/mediaf486. html? subn=3_2.
    [62] K. Anderson, K. Curtis. Polytopic multiplexing[J]. Opt. Lett.2004,29:1402-1404.
    [63] L. C. Cao, Q. S. He, H. Y. Wei, et. al. Miniaturized Volume Holographic Optical Data Storageand Correlation System with a Storage Density of10.5Gb/cm3[J]. Chin. Sci. Bull.2004,49(22):2429-2434.
    [64]申岩,孙秀冬,张国权,许京军,赵业权.连续光条件下对LiNbO3:Fe:Mn晶体全息存储性能的理论研究[J].光学学报.2008,28(8):1450-1456
    [65]申岩,孙秀冬,赵业权.对LiNbO3∶Fe∶Mn晶体非挥发全息存储的理论研究[J].中国激光.2009,36(1):166-171.
    [66]申岩,张国庆,于文斌,郭志忠,赵业权. LiNbO3:Cu:Ce晶体非挥发全息存储性能的理论研究[J].物理学报.2012,61(18):184205-1-184205-7.
    [67]刘鹏飞.光致聚合物全息性能的检测方法与系统[D].北京工业大学,硕士论文.2009:9-18.
    [68]敦书波,贾克敦,覃鸣燕,陶世荃,吴会丛.适用于体全息存储系统的调制-阵列码的研究[J].中国激光.2002,.A29(10):935-940.
    [69] H. Wang, S. Tao, Y. Wan, et. al. Elimination of Intra-page Crosstalk Noise in HolographicData storage by Using Pixel-matched Spread Function[C]. Proc. SPIE. Electronic Imagingand Multimedia Technology V, Beijing,2007. USA, Proc. SPIE,2007,6833:68330D-1-68330D-7.
    [70]宋伟.光致聚合物材料中的高质量高密度数字数据全息存储方案研究[D].北京工业大学,硕士论文.2010:26-30,37.
    [71]万玉红,陶世荃等.高密度盘式全息存储及其热固定的实验研究[J].中国激光.2005,32(2):361-364.
    [72]陶世荃,江竹青,王也,万玉红,王大勇,贾克斌.三维盘式全息存储方法及系统:中国,CN200510070880.0[P].2005-11-06.
    [73]黄明举等.厚度对光聚物高密度全息存储记录参量的影响[J].光子学报.2002,31(2):246-249.
    [74]姚华文等.多种单体的全息光致聚合物材料组分的优化[J].光学学报.2002,22(5):632-635.
    [75]黄明举等.基于丙烯酰胺基单体的光聚物的全息特性[J].光电子激光.2002,13(11):1138-1140.
    [76]姚华文,黄明举,陈仲裕,侯立松,干福熹.光致聚合物材料中引发剂浓度的优化和全息存储性能研究[J].中国激光.2002,29(11):972-974.
    [77]刘国栋,王建敏,骆守俊,汪胜前,邹道文.光致聚合材料收缩对谱面全息存储的影响[J].北京理工大学学报.2005,25(12):1096-1098.
    [78] H.Y. Wei, L. C. Cao, G. Claire, et. al. Holographic Grating Formation in CationicPhotopolymers with Dark Reaction[J]. Chin. Phys. Lett.2006,23(11):2960-2963.
    [79] C. Li, L. Cao, J. Li, et. al. Improvement of volume holographic performance byplasmon-induced holographic absorption grating[J]. Appl. Phys. Lett.2013,102:061108.
    [80]赵磊,王龙阁,胡宾,黄明举.掺杂TiO2纳米颗粒的抗缩皱光致聚合物全息特性的研究[J].物理学报.2010,60(4):044213-1-044213-8.
    [81]何飞,海富生,薛晓渝,黄明举.有机-无机ZrO2纳米复合光致聚合物的全息特性[J].光电子激光.2012,23(4):712-717.
    [82]闻猛,章鹤龄,赵瑞渠,杨强.新型非水溶性绿敏光致聚合物全息材料的研究[J].红外与激光工程.2006,35(suppl.):164-168.
    [83]胡服全,章鹤龄,杨微,隋燕.一种非水溶性的蓝敏光致聚合物材料各组分的优化[J].首都师范大学学报(自然科学版).2007,28(4):16-19.
    [84]李展华,章鹤龄,黎全,王雁桂,邵继宝,徐向敏,石磊.双波长敏感的非水溶性光致聚合物特性研究[J].应用光学.2009,20(3):350-354.
    [85]邢敬婷,章鹤龄,赵付丽,冯秀梅.双波长敏感的非水溶性光致聚合物全息存储性能和应用研究[J].首都师范大学学报(自然科学版).2010,31(4):9-14.
    [86]陈中贤,章鹤龄.非水溶性绿敏光致聚合物的研究[J].首都师范大学学报(自然科学版).2012,33(1):16-20.
    [87] W. Haoyun, L. Cao, Z. Xu, et. al. Orthogonal polarization dual-channel holographic memoryin cationic ring-opening photopolymer[J]. Opt. Express.2006,14(12):5135-5142.
    [88] L. Cao, Z. Zhao, H. Gu, et. al. Enhancement of recording and readout for the photopolymerholographic disk system by using a conjugate structure[C]. Proc. SPIE. Quantum Optics,Optical Data Storage, and Advanced Microlithography, Beijing,2007. USA, Proc. SPIE,2007,6827:6827X-1-6827X-7.
    [89]刘鹏飞.光致聚合物全息性能的检测方法与系统[D].北京工业大学,硕士论文.2009:9-18,30-33.
    [90]周臣明,晏爱琴,陶世荃,王大勇,施盟泉,吴飞鹏.一种新型光致聚合物的全息存储特性研究[J].光子学报.2002,31(Z2):33-39.
    [91] S. Luo, G. Liu, Q. He, et. al. Holographic grating formation in dry photopolymer film withshrinkage[J]. Chin. Phys.2004,13(9):1428-1431.
    [92] T. Zhang, S. Tao, Y. Wan, et. al. Research on the Dark Diffusion Transient for a Blue-greenSensitized Holographic Photopolymer material[C]. Proc. SPIE. Photonics North2007,Ottawa,2007. USA, Proc. SPIE,2007,6796:67961M-1-67961M-8.
    [93]张韬,陶世荃,翟千里,万玉红,王大勇,施盟泉,吴飞鹏.全息存储用光致聚合物材料的暗增长现象研究[J].光子学报.2008,37(11):2227-2230.
    [94] Q. Zhai, S. Tao, D. Wang. The Study on Mechanism of Holographic Recording inPhotopolymer with Dual Monomer[C]. Proc. SPIE. Optical Data Storage2010, Boulder,2010. USA, Proc. SPIE,2010,7730:77301L-1-77301L-7.
    [95] Q. Zhai, S. Tao, T. Zhang, et. al. Investigation on Mechanism of Multiple HolographicRecording with Uniform Diffraction Efficiency in Photopolymers[J]. Opt. Express.2009,17(13):11217-11229.
    [96]万晓君,糕渡华,施盟泉,陶世荃,赵榆霞,吴飞鹏.双固化型全息用光致聚合物的研制及其全息性质研究[J].功能材料.2007,38:429-432.
    [97]万晓君,薛建强,王焕勇,刘鹏飞,赵榆霞,吴飞鹏,陶世荃.新型全息用光致聚合物的研究[J].影像科学与光化学2008,26(5):343-348.
    [98] S. Tao, Y. Zhao, Y. Wan. Dual-wavelength Sensitized Photopolymer for Holographic DataStorage[J]. Japan. Jour. Appl. Phy.2010,49:08KD01-1.
    [99]禚渡华,陶世荃,施盟泉,薛建强,赵榆霞,吴飞鹏.全息记录材料光致聚合物的收缩率[J].中国激光.2007,34(11):1543-1547.
    [100] Y. Wan, S. Tao, D. Zhuo, et. al. Coherent Scattering Noise Properties of a Blue LaserSensitized Holographic Photopolymer Material[C]. Proc. SPIE. Quantum Optics, OpticalData Storage, and Advanced Microlithography, Beijing,2007. USA, Proc. SPIE,2007,6827:682711-1-682711-7.
    [101] S. Tao, H. Wan, X. Wan, et. al. Scattering Noise Properties of Holographic Photopolymersby Means of Real-Time Transmittance Analysis[J]. Chin. Phys. Lett.2008,25(8):2896-2899.
    [102] H. Wang, S. Tao, Y. Wan, et. al. Elimination of Intra-page Crosstalk Noise in HolographicData Storage by Using Pixel-matched Spread Function[C]. Proc. SPIE. Electronic Imagingand Multimedia Technology V, Beijing,2007. USA, Proc. SPIE,2007,6833:68330D-1-68330D-7.
    [103]王焕勇.光致聚合物材料中的数字数据全息存储[D].北京工业大学,硕士论文.2008:41-45,50-51.
    [104] M. BUNSEN, A. OKAMOTO. Experiment on Hologram Multiplexing with PhotorefractiveBeam-fanning Speckle[J]. T. Opt. Networks.2003,01(29):287-290.
    [105]王洪涛,王佳,李达成.近场光学在高密度存储中的应用[J].光学技术.2001,27(13):255-259.
    [106]朱一超,张家森,龚旗煌.物光和参考光双加密的数字全息系统[J].科学通报.2008,53(11):1241-1245.
    [107] W. Song, S. Tao, D. Wang. Investigation on Influence of Wavefront Property of ReferenceBeams on the Quality of Images Reconstructed from Holograms[C]. Proc. SPIE. OpticalData Storage2010, Boulder,2010. USA, Proc. SPIE,2010,7730:77301V-1-77301V-7.
    [108] A. Pu, C. Kurtis, D. Psaltis. Exposure Schedule for Multiplexing Holograms inPhotopolymer Films[J] Opt. Eng.1996,35(10):2824-2829.
    [109] E. Fernández, M. Ortu o, S. Gallego, et. al. Comparison of peristrophic Multiplexing and aCombination of Angular and Peristrophic Holographic Multiplexing in a ThickPVA/Acrylamide Photopolymer for Data Dtorage[J]. Appl. Opt.2007,46(22):5368-5373.
    [110] M. Ortuno, A. Marquez, E. Fernandez, et. al. Hologram Multiplexing in AcrylamideHydrophilic Photopolymers[J]. Opt. Commun.2008,281(6):1354-1357.
    [111] S. Gallego, C. Neipp, M. Ortuno, et. al. Analysis of Monomer Diffusion in Depth inPhotopolymer Materials[J]. Opt. Commun.2007,274(1):43-49.
    [112] J. T. Sheridan, F. T. O'Neill, J. V. Kelly. Holographic Data Storage: Optimized SchedulingUsing the Nonlocal Polymerization-driven Diffusion Model[J]. J. Opt. Soc. Am.2004:21(8):1443-1451.
    [113] J. V. Kelly, M. R. Gleeson, C. E. Close, et. al. Optimized Scheduling Technique forHolographic Data Storage[C]. Proc. SPIE. Organic Holographic Materials and ApplicationsIV, San Diego,2006. USA, Proc. SPIE,2006,6335:63350J-1-63350J-8.
    [114]陶世荃,王大勇,江竹青,袁泉.光全息存储[M].北京工业大学出版社,1998:58-67.
    [115]段晓亚,朱建华,魏涛等.绿敏聚乙烯醇/丙烯酰胺体系光致聚合物的配方优化及全息存储特性[J].中国激光.2009,36(4):984-988.
    [116] H. Lu, R. Li, C. Sun, et. al. Holographic property of photopolymers withdifferent aminephotoinitiators[J]. Chin. Phys. B.2010,19(2):024212-1-024212-7.
    [117]王龙阁,李飞涛,赵磊等.掺杂TiO2纳米颗粒的光致聚合物全息特性的研究[J].中国激光.2010,37(12):3013-3017.
    [118] H. Ito, Y. Ohe, N. Watanabe. Novel Photopolymer System for Holograms[C]. Proc. SPIE.Holographic Materials II, San Jose,1996. USA, Proc. SPIE,1996,2688:2-10.
    [119] J. P. Fouassier, F. Morlet-Savary. Photopolymers for Laser Imaging and HolographicRecording: Design and Reactivity of Photosensitizers[J]. Opt. Eng.1996,35(1):304-312.
    [120] D. A. Waldman, R. T. Ingwall, P. K. Dhal, et. al. Cationic Ring-OpeningPhotopolymerization Methods for Volume Hologram Recording[C]. Proc. SPIE.Diffractive and Holographic Optics Technology III, San Jose,1996. USA, Proc. SPIE,1996,2689:127-141.
    [121] P. K. Dhal, M. G. Homer, R.T. Ingwall, et al.[P]. U.S.P.,5759721,1998.
    [122] E.F. Haugh,[P]. U.S.P.,3658526,1972.
    [123] E.A. Chandross, V. R. Raju, K. R. Curtis, et al.[P]. U.S.P,6160654.2000.
    [124] K. R. Curtis, L. Dhar, et al.[P]. U.S.P.6650447.2003.
    [125] E. A. Cetin, R. A. Minns, et al.,[P]. U. S. P.,6784300.2004.
    [126] H. Horimai.[P]. U. S. P.7002891.2006.
    [127]潘祖仁等.自由基聚合[M].北京化学工业出版社,1981:36-45.
    [128] J. A. Frantz, R. K. Kostuk, D. A. Waldman. Coherent Scattering Properties of a CationicRing-Opening Volume Holographic Recording Material[C]. Proc. SPIE. Society ofPhoto-Optical Instrumentation Engineers, San Jose,2001. USA, Proc. SPIE,2001,4296:267-273.
    [129]施盟泉,吴飞鹏,赵榆霞,王大勇,陶世荃.全息用光致聚合物中双单体组分对材料性能的影响[J].影像科学与光化学.2008,26(5):410-416.
    [130] G. Zhao, P. Mouroulis. Diffusion Model of Hologram Formation in Dry PhotopolymerMaterials[J]. J. Mod.Opt.1994,41:1929-1939.
    [131] S. Piazzolla, B. K. Jenkins. First-Harmonic Diffusion Model for Holographic GratingFormation in Photopolymers[J]. J. Opt. Soc. Am. B.2000,17(7):1147–1157.
    [132]张韬.新型光致聚合物的全息存储性能评价及存储机理研究[D].北京工业大学,硕士论文.2008:16-20.
    [133]翟千里.基于光致聚合物的盘式全息存储[D].北京工业大学,博士论文.2011:45-47.
    [134] Q. Zhai, S. Tao, W. Song, Y. Wan. Fabrication and Properties of Random Phase-Shifter forHolographic Speckle-Shift Multiplexing[C]. Proc. SPIE. Information Optics and OpticalData Storage, Beijing,2010. USA, Proc. SPIE,2010,7851,78510F-1-78510F-6.
    [135] C. Denz, et. al. Potentialitied and limitations of hologram multiplexing by using thephase-encoding technique[J]. Appl. Opt.1992,31:5700-5705.
    [136]陶世荃,王大勇,江竹青,袁泉.光全息存储[M].北京工业大学出版社,1998:278-282.
    [137] A. K. Jain. Fundamentals of Digital Image Processing[M]. Prentice-Hall. Englewood Cliffs,1988:155.
    [138]张洪鑫.相位型液晶空间光调制器特性测试方法及波前校正研究[D].哈尔滨工业大学,博士论文.2009:21-26.
    [139] G. P. Nordin, P. Asthana. Effects of Cross Talk on Fidelity in Page-Oriented VolumeHolographic Optical Data Storage[J]. Opt. Lett.1993,18(18):1553-1555.
    [140] M. Qin, S. Tao, G. Liu, et. al. Effect of Scattering Noise on the Data Fidelity of HologramsRecorded in Photorefractive Crystals[J]. Mater. Res. Soc. Proc.2001,674: V2.6-1-V2.6-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700