褐煤热解定向转化的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐煤提质是低阶煤加工利用的重要途径之一。热解产物中焦油及其中的酚类化合物尤其是低级酚(苯酚、甲基苯酚、二甲基苯酚)的含量相当可观且工业利用价值高。本论文利用电加热固定床反应装置对云南昭通褐煤进行了热解实验,考察了热解反应条件对热解液态产物(焦油及低级酚)产率的影响,在此实验基础上优化了热解反应条件,同时采用与加氢催化实验相结合的热解反应条件提高低级酚产率,对拓宽焦油的非燃料油用途有现实意义。
     在固定床反应装置上,结合热重分析仪、气相色谱、气质联用仪等分析手段,对云南昭通褐煤的热解及加氢催化热解过程中焦油及酚类化合物分布进行了定向转化的实验研究,考察了固定床热解实验条件对低级酚产率的影响规律,通过实验条件的改进以提高低级酚的产率。首先,通过加氢热解反应提高低级酚产率,基于降低氢耗及提高加氢效率的原则采用分段加氢的反应路径,降低了氢耗的同时提高了低级酚产率;其次,通过改变加料方式和提高升温速率以提高加氢热解中低级酚的产率;最后,结合氢溢流原理及加氢催化裂化工艺,将云南昭通褐煤快速加氢热解与催化反应相结合,采用在线催化的反应路径,改变催化剂的配比、催化方式等条件,焦油产率及焦油中轻质组分(BTX(苯、甲苯、二甲苯)、低级酚(酚、甲基酚、二甲基酚)、低分子萘(萘、甲基萘))的含量均有不同程度的改变。
     主要研究内容及结果如下:
     (1)在固定床反应装置上以氮气为载气,考察了热解反应温度200~800℃、停留时间0~30min、载气流量100~400m1/min、升温速率5~30℃/min等反应条件,对云南昭通褐煤热解过程中焦油及酚类化合物产率的影响。实验结果表明:焦油产率在热解反应温度550℃、热解终温停留时间20min、载气流量200ml/min、升温速率为20℃/min的条件下达到最大值;随热解反应温度升高,总酚产率先升后降,在520℃时达到最大值;低级酚产率随热解反应温度的升高而增加;总酚产率随着停留时间的增加而增加,在10min后变化不明显;随着升温速率的提高,低级酚产率和高级酚产率均呈现上升趋势。
     (2)在选取的热解反应条件下,通入氢气以提高低级酚的产率,为了提高加氢效率,采用350℃后再引入氢气并在450℃时停留10min的分段加氢反应路径,此反应路径较传统加氢热解工艺具有降低氢耗、提高焦油及酚类化合物产率的优点。
     (3)根据提高升温速率可以提高热解过程中的低级酚产率的规律,在固定床热解反应器中,通过改变加料方式提高升温速率。在快速热解过程中,考察了热解反应温度、载气流量及停留时间等对焦油产率及酚类化合物分布的影响。实验结果表明:随着热解反应温度的升高,焦油产率先升高后降低,在520℃附近达到最大值;总酚产率呈现出与焦油产率相同的反应趋势,并在540℃左右为最大值;较慢速热解反应过程相比,快速热解过程中低级酚的产率明显提高。
     (4)在快速热解反应条件下,结合氢溢流原理及加氢催化裂化工艺,考察了不同催化剂含量及催化方式(催化剂前置、后置)对加氢催化热解产物中焦油及轻质组分(BTX、低级酚、低分子萘类)含量的影响规律。首先利用热重分析仪对煤样催化热解转化率及反应过程进行了分析研究,选用Ni、Mo为活性中心的催化剂进行加氢催化热解实验。在固定床实验装置上进行了加氢快速热解实验,不同的催化剂浸渍液浓度及催化方式对于焦油中轻质组分具有不同的催化效果:对于低级酚、BTX的产率,后置9#催化剂效果最明显,对于低分子萘则后置3#催化剂效果最佳。采用自制催化剂进行的加氢催化热解反应,对于提高加氢效率、实现催化剂与半焦的分离、回收及再生、定向热解以提高焦油中高价值组分的产率有重要的意义。
The upgrading of lignite is one of the important ways of low rank coal utilization. The industrial value of tar and phenolic compounds in the pyrolysis products, especially the low-level phenols (such as phenol, cresol and xylenol) is rather high, and the simple phenols content is considerable. In the dissertation, a series of pyrolysis experiments with Yunnan Zhaotong lignite were conducted in an electricity heated fixed-bed in order to investigate the effect of reaction condition on the yield, composition and distribution of the tar and low-level phenolic compounds. Based on the experiments, the experimental conditions are optimized, and meanwhile the catalyst is used to improve the yield of tar and low-level phenolic compounds. It is realistically significant to broaden the way of coal tar utilization.
     In the dissertation, directional conversion experiments with the tar and phenolic compounds from lignite and catalytic pyrolysis in the fixed-bed with the thermogravimetric analyzer, gas chromatography and GC-MS analysis were conducted in order to investigate the effect of experiment conditions on the low-level phenolic compounds yield. First, in the fixed-bed pyrolysis, the path of piecewise hydrogenation was proposed to reduce the hydrogen consumption and improve the hydrogenation efficiency. Second, changing the fuel-feeding method and increasing heating rate were adopted to increase the low-level phenolic compounds yield. Finally, in the fast pyrolysis process, combing the hydrogen spillover mechanism and catalytic cracking hydrogenation process, online catalysis was used. Changing the catalyst ratio and catalytic method can affect the contents of tar yield of and the important components (BTX, PCX, simple naphthalene) in different degree.
     The main research contents and results are as follows.
     (1) The effect of the reaction conditions with the reaction temperature of200-800℃, carrier gas flow rate of100-400ml/min, residence time of0-30min, heating rate of 5-30℃/min on the yield of tar and phenolic compounds in the lignite pyrolysis process were explored in the fixed-bed taking nitrogen as carrier gas. The tar yield reaches the maximum at the reaction temperature of550℃, residence time of20min, carrier gas flow rate of200ml/min, heating rate of20℃/min. With the increase in the reaction temperature, the total phenolic compounds yield increases first and then decreases, reaching the maximum at the reaction temperature of520℃. The yield of simple phenols increase with the increase in the pyrolysis temperature. The yield of the total phenolic compounds shows the same tendency with that of the tar, reaching the maximum at the residence time of10min. The yields of the simple phenols and the complicated phenolic compounds increase with the increase in the heating rate.
     (2) The contents of tar and the simple phenolic compounds increase in the process of pyrolysis hydrogenation. In the dissertation, the method of piecewise hydrogenation reaction is applied. Hydrogen was introduced at the reaction temperature of350℃and then stayed for10minutes at the reaction temperature of450℃. The method can reduce the hydrogen consumption and improve the yield of tar and the phenolic compounds.
     (3) In the fixed-bed, changing the fuel-feeding method and increasing heating rate were adopted to increase the low-level phenolic compounds yield. The effects of the reaction temperature, the carrier gas flow rate and the residence time on the tar and phenolic compounds distribution were explored in the fast pyrolysis reaction. The experimental results reveal that with the increase in the reaction temperature, the tar yield tends to increase first and then decrease, reaching the maximum at the reaction temperature of520℃. The yield of total phenolic compounds has the same variation tendency with that of tar, reaching the maximum at the reaction temperature of540℃. The yield of the simple phenols in the fast pyrolysis is obviously higher than that in the slow pyrolysis.
     (4) In order to improve hydro-pyrolysis efficiency and enhance the quality of tar, in the fast pyrolysis process, combing the hydrogen spillover mechanism and catalytic cracking hydrogenation process, online catalysis was used to investigate the effects of catalyst contents and catalytic method on the contents of tar and the important components (BTX, low-level of phenols, simple naphthalene). The conversion rate of coal catalytic pyrolysis was investigated by thermogravimetric analyzer, and Ni and Mo are taken as active centers. The experimental results in the fixed-bed demonstrate that the different catalytic impregnation liquid concentration and the placement of the catalysts display different catalytic effects. The effect of post9#catalyst shows the best effect to PCX and BTX, the post3#catalyst improves the simple naphathlene best. The catalytic pyrolysis reaction with self-prepared catalyst is important to improve the hydrogenation efficiently in the catalytic pyrolysis, realize the catalyst separation, recovery and regeneration of coal catalytic pyrolysis, increase the yield of tar components with high value.
引文
[1].能源发展“十一五”规划.国家发展改革委员会.
    [2].中国的能源政策(2012)》白皮书.国务院新闻办公室.
    [3].林伯强.2012中国能源发展报告.北京大学出版社,2013年1月.
    [4].能源发展“十二五”规划.国家发展改革委员会.
    [5]. http://news.xinhuanet.com/energy/2012-05/24/c_123186084.htm.
    [6].石文秀.浅谈褐煤研究的必要性及褐煤的性质.化工进展,2012,31:203-207.
    [7].赵振新.中国褐煤的综合优化利用.洁净煤技术,2008,14(1):28-31.
    [8]. Kim, Y. J. Coal gasification characteristics in a downer reactor. Fuel,2001,80(13):191-192.
    [9]. Peter, F. N. Pyrolysis of coal at high temperature. Energy and Fuel.1988,2:391-400.
    [10]. Peter, R. S. Very rapid coal pyrolysis. Fuel,1986,65(2):182-194.
    [11]. Li, X. J. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis
    of a Victorian brown coal. Fuel,2006,85(12):1700-1707.
    [12]. Koichi, M. The physical character of coal char formed during rapid pyrolysis at high pressure. Fuel,2005,84(1):63-69.
    [13].高晋生.煤的热解、炼焦和煤焦油加工.现代煤化工技术丛书,2010.
    [14]. http://wenku.baidu.com/view/8caea96ca98271fe910ef9ac.html.
    [15]. Patel, M. M. Combustion rates of lignite char by TGA, Fuel,1988,67(2):165-169.
    [16]. Paul, R. E. Distribution and characterization of Phenolics in distillates derived from two- stage Coal liquefaction. Energy and Fuel,1990,4(3):236-242.
    [17]. Mohan, T. Determination of total phenol concentration in coal liquefaction resids by phosphorus -31NMR spctroscoy.1993,7(2):222-226.
    [18]. Sharypov, V. Modification of iron ore catalysts for lignite hydrogenation and hydrocarcking of
    coal-derived liquids. Fuel,1996,75(1):39-42.
    [19].水恒福.煤焦油分离与精制.北京:化学工业出版社,2007.
    [20]. http://news.dichan.sina.com.cn/2012/06/06/505032.html
    [21].孙会青.低温煤焦油生产加工利用的现状.洁净煤技术,2008,14(5):35-38.
    [22].俞珠峰.中国洁净煤技术的发展现状.经济研究参考,2005.
    [23]. Solomon, P. R. Models of tar formation during coal devolatilization. Combustion and flame, 1988,71(2):137-146.
    [24], Christiansen, J. V. Flash pyrolyis of coals. Temperature-dependent product distribution. Journal of analytical and applied pyrolysis,1995,32:51-63.
    [25]. Young, B. C. Temperature measurements of Beulah lignite char in a novel laminar-flow reactor. Fuel,1988,67(1):40-44.
    [26]. Sun, S. Z. Experimental and numerical study of biomass flash pyrolysis in an entrained flow reactor. Bioresource technology,2010,101(10):3678-3684.
    [27]. Chen, L. Gas evolution kinetics of two coal samples during rapid pyrolysis. Fuel processing technology,2010,91(8):848-852.
    [28]. Thomas, P. G. An experimental and modeling study of heating rate and particle size effects in bituminous coal pyrolysis. Energy Fuels,1993,7(2):291-305.
    [29].邵俊杰.褐煤提质技术现状及我国褐煤提质技术发展趋势探讨.神华科技,2009,7(2):17-22.
    [30]. Paul, T. W. Influence of process conditions on the pyrolysis of pakistani oil shales. Fuel,1999, 78(6):653-662.
    [31]. Rammler, R. W. Synthetic fuels from Lurgi coal pyrolysis. Energy Progress,1982,2(2): 121-129.
    [32].郭树才.煤和油页岩新发干馏技术LR固体热载体快速热解法.煤炭化工设计,1986,4:59-71.
    [33].陈钢.LCC低阶煤转化体制技术的开发与应用.化肥设计,2011,49(5):7-11.
    [34]. Collin, P. J. Study of tars form flash pyrolysis of three Australian coals. Fuel,1980,59(7):479-486.
    [35]. Atwood, M. T. Toscoal process-pyrolysis of western coals and lignites for char and oil production. Preprint of Papers American Chemical Society Division of Fuel Chemical,1977,22: 233-252.
    [36]. http://www.mhgcy.ibicn.com/news/d31069.html.
    [37]. Cortex, D. H. Production of synthetic crude oil from coal using the Toscoal pyrolysis process. 16th Intersociety Energy Coversion Engineering Conference,1981,1:2178-2183.
    [38]. http://wenku.baidu.com/view/2570a610a8114431b90dd883.html.
    [39].郭树才.褐煤新法干馏.煤化工,2000,3:6-8.
    [40].戴秋菊.采用多段回转炉热解供热综合利用年青煤.煤炭加工与综合利用,1993,3:22-23.
    [41].罗鹏.我国褐煤热解技术现状及发展趋势.广州化工,2013,41(16):32-34.
    [42].陈俊武.石油替代综论.中国石化出版社,2009.
    [43]. Schweighardt, F. K. Trimethylsilyl ether formation to quantitate hydroxyls by nuclear magnetic resonance spectrometry. Analytical chemistry,1978,50(2):368-371.
    [44]. Fillo, J. P. Understanding of phenolic-compound production in coal gasification processing. DOE/ET/10.1979:101-249.
    [45]. Stephanie, G. M. Determination of polycyclic aromatic sulfer heterocycles in fossil fuel-related samples. Analytical chemistry,1999,71(1):58-69.
    [46].庞雁原.煤热解过程中酚类化合物生成机理及数学模型.煤炭转化.1995,1:75-81.
    [47].葛宜掌.煤低温热解液体产物中的酚类化合物(Ⅰ)生成机理.煤炭转化,1997,20(1):14-20.
    [48].何佳佳.升温速率对煤热解特性的影响的TG/DTG分析.节能技术,2007,25(144):321-325.
    [49].李海滨.二次反应对煤热解产品组成的影响.化学工业与工程,1997,14(4):45-62.
    [50].王鹏.煤热解特性研究.煤炭转化,2005,28(1):8-13.
    [51]. Fallon, P. T. The flash hydropyrolysis of lignite and sub-bituminous coals to both liquid and gaseous hydrocarbon products. Fuel processing technology,1980,3(3):155-168.
    [52]. Tyler, R. J. Flash pyrolyis of coals.1. devolatilization of a Victorian brown coal in a small fluidized-bed reactor. Fuel,1979,58(9):680-686.
    [53]. Tatterson, D. F. Coal flash pyrolysis in a free-jet reactor. Ind. Eng. Chem. Res.1988,27(9): 1606-1613.
    [54].何国锋.低温热解煤焦油产率、组成性质与热解温度的关系.煤炭学报,1994,19(6):591-597.
    [55].金海华.煤快速热解获得液态烃和气态烃的研究-热解温度和压力的考察.化工学报,1992,43(6):726-732.
    [56].崔银萍.煤热解产物的组成及其影响因素分析.煤化工,2007,2:10-13.
    [57], Tyler, R. J. Flash pyrolysis of coals devolatilization of a bituminous coals in a small fluidized-bed reactor. Fuel,1980,59(4):218-226.
    [58]. Chihiro, F. Steam gasification characteristics of coal with rapid heating. Journal of analytical and applied pyroysis,2003,70(2):185-197.
    [59]. Suuberg, E. M. Rapid pyrolysis and hydropyrolysis of coal. Massachusetts Institute of Technology.1978.
    [60].李保庆.煤-焦炉气共热解特性研究.燃料化学学报,1998,26(1):7-12.
    [61].谢克昌.煤的结构与反应性.北京科学出版社,2002.
    [62]. Hortel, H. The second reaction in coal pyrolysis. Fuel,1976,55(2):121-124.
    [63]. Seshadri, K. S. Effects of temperature, pressure, and carrier gas on the cracking of coal tar over a char-dolomite mixture and calcined dolomite in a fixed-bed reactor. Ind. Eng. Chem. Res.1998, 37(10):3830-3837.
    [64].王金国.煤颗粒脱挥发分的数学模拟研究.燃料化学学报,1996,24(2):181-185.
    [65]. Niksa, S. Flashchain theory for rapid coal devolatilization kinetics.1. formulation. Energy fuels, 1991,5(5):647-665.
    [66]. Tomeczek, J. Volatiles release and porosity evolution during high pressure coal pyrolysis. Fuel, 2003,82(2):285-292.
    [67]. Karcz, A. Kinetics of the formation of C1-C3 hydrocarbons in pressure pyrolysis of coal. Fuel Processing Technology,1990,26(1):1-13.
    [68]. Okumura, Y. Evolution prediction of coal-nitrogen in high pressure pyrolysis processes. Fuel, 2002,81(18):2317-2324.
    [69]. Eric, M. S. Product compositions in rapid hydropyrolysis of coal. Fuel,1980,59(6):405-412.
    [70].廖洪强.煤-焦炉气共热解特性研究热解焦油分析.燃料化学学报,1998,26(1):7-12.
    [71]. Antony, D. B. Rapid devolatilization and hydrogasification of bituminous coal. Fuel,1976, 55(2):121-128.
    [72]. Mrstafa, V. K. Effect of particle size on coal pyrolysis. Journal of analytical andapplied pyrolysis,1998,45(2):103-110.
    [73]. Gavalas, G. R. Intraparticle mass transfer in coal pyrolysis. AICHE Journal,1980,26:201-212.
    [74]. Ibrahim, S. M. A. Pyrolysis of Egyptian Maghara pulverized coal particles. Fuel processing technology,1997,50(1):1-17.
    [75].张翠珍.煤热解特性及热解反应动力学研究.基础研究,2006,4:17-21.
    [76]. MakI, T. Analysis of pyrolysis reactions of various coals including Argonne premium coals using a new distributed activation model. Energy and fuels,1997,11(5):972-977.
    [77].崔丽洁.喷动-载流床中粒径对内蒙古霍林河褐煤快速热解产物的影响.过程工程学报,2003,3(2):104-108.
    [78]. Hanson, S. The effect coal particle size on pyrolysis and gasification. Fuel,2002,81(5): 531-537.
    [79].李保庆.热解和加氢热解煤焦油的组成和煤结构的关系.燃料化学学报,1997,25(6), 560-564.
    [80]. Matsumoto, S. Catalyzed hydrogasification of yallourn char in the presence of supported hydrogenation nickel catalyst. Energy Fuels,1991,5(1):60-63.
    [81]. Suzuki, T. Influence of calcium on the catalytic behavior of nickel in low temperature hydrogasification of wood char. Fuel,1998,77(7):763-767.
    [82]. Ohtsuka, Y. Iron-catalyzed gasification of brown coal at low temperatures. Energy Fuels,1987, 1(1):32-36.
    [83]. Solomon, P. R. Process in coal pyrolysis. Fuel,1993,72(5):587-597.
    [84].王娜.煤多段加氢热解过程的研究-反应条件对产物的分布的影响.化学学报,1999,52(5):420-423.
    [85].刘弓.陕北地区低温煤焦油提酚探讨.广州化工,2011,39(8):18-20.
    [86]. Sylvia, A. F. Determination of low-rank coal liquefaction light oils by chromatography and nuclear magnetic resonance spectrometry. Analytical Chemiistry,1982,54(6):979-985.
    [87]. Snape, C. E. Estimation of oxygen group concentrations in coal extracts by nuclear magnetic resonance spectrometry. Analytical Chemistry,1982,54(1):20-25.
    [88]. Dadey, E. J. Determination of hydroxyl group concentration in coal liquids by phosphorus-31NMR. Energy fuels,1988,2(3):326-332.
    [89]. Esfandiar, R. Characterization of Phenols from coal liquefaction product s by tin-119 nuclear magnetic resonance spectrometry. Anaytical Chemistry,1985,57(14):2854-2858.
    [90]. White, C. M. Determination of phenols in a coal liquefaction product by gas chromatography and combined gas chromatography-mass spectrometry. Analytical Chemistry,1982,54(9): 1570-1572.
    [91].刘艳玲.热量法测定煤焦油中的混合馏分的酚含量.河北冶金,2002,4:62-63.
    [92].孙镇之.折光率法测定煤焦油中酚类的含量.太原工业大学学报,1989,20(3):94-97.
    [93]. Huang, T. C. Naphthalene Hydrogenation over Pt/A12O3 catalyst in a trickle bed reactor. Ind. Eng. Chem. Res.,1995,34(7):2349-2357.
    [94]. Liano, J. J. Catalytic hydrogenation of aromatic hydrocarbons in a bed reactor. Journal Chem. Technology,1998,72:70-81.
    [95]. Derbyshire, F. J. Coal liquefaction by molybdenum catalyzed hydrogenation in the absence of solvent. Fuel Processing technology,1986,12(20):127-141.
    [96]. Colin, B. Influence of carrier gas flow and heating rates in fixed bed hydropyrlysis of coal. Fuel,1987,66(10),1413-1417.
    [97]. Aubert, C. Factors affecting the hydrogenation of substituted benzenes and phenols over a sulfide NiO-MoO3 catalyst. Journal of Catalysis,1988,12(1):12-20.
    [98]. Shabtai, J. Effects in phenanthrene and pyrene hydrogenation catalyzed sulfide Ni-W/Al2O3. Fuel Chemistry,2002,23:102-110.
    [99]. Betancur, E. Magnesium oxide catalyzed steam gasification of naphthalene. Fuel and Energy Abstracts,1996,37(4):264-277.
    [100]. Yoshiyuki, N. Catalytic gasification of coals-features and possibilities. Fuel processing technology,1991,29(1):31-42.
    [101]. Yasuo, O. Highly active catalysts from inexpensive raw materials for coal gasification. Catalysis Today,1997,39(1):111-125.
    [102]. Dimple, M. Q. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Fuel,2003,8(2):143-149.
    [103]. Yeboah, Y. D. Catalytic gasification of coal using salts:identification of eutectics. Carbon, 2003,41(2):203-214.
    [104]. Nahas, N. C. Exxon catalytic coal gasification process:Fundamentals to flowsheets. Fuel, 62(2):239-241.
    [105]. Jong, M. L. Catalytic coal gasification in an internally circulating fluidized bed reactor with draft tube. Applied Thermal Engineering,1998,18(11):1013-1024.
    [106]. Lang, R. T. Behavior of Calcium steam gasification catalysts. Fuel,1982,61(7):620-628.
    [107]. Yasuo, O. Calcium catalysed steam gasification of Yallourn brown coal. Fuel,1986:65(12): 1653-1657.
    [108]. Yasuo, O. Steam gasification of coals with calcium hydroxide. Energy fuels,1995,9(6): 1038-1042.
    [109]. Yasuo, O. High active catalysts from inexpensive raw materials for coal gasification. Catalysis Today,1997,39(1):111-125.
    [110]. Dimple, M. Q. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian borwn coal. Part IV. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity. Fuel,2003,82(5):587-593.
    [111]. Yaw, D. Y. Catalytic gasification of coal using eutectic salts:identification of eutectics. Carbon,2003,41(2):203-214.
    [112]. Robert,J.L. Process for the catalytic gasification of coal. US4336034,1982.
    [113]. Jong, M. L. Catalytic coal gasification in an internally circulating fluidized bed reactor with draft tube. Applied Thermal Engineering,1998,18(11):1013-1024.
    [114]. Hofbauer, H. Six years experience with the FICFB gasification process. Industry and Climate Protection.2002.
    [115].Arnold, M. L. Catalytic gasification process and system for producing medium grade BTU gas. US 5641327,1997.
    [116]. Koji, K. Localized interaction between Coal-included minerals and Ca-Based CO2 Sorbents during the High-Pressure steam coal gasification Proeess. Ind. Eng. Chem.,2004 43(25):7989-7995.
    [117].冯杰.石灰石在煤的水蒸气气化中的催化作用.太原大学学报,1996,27(4):50-60.
    [118].朱廷玉.氧化钙催化煤温和气化研究.燃料化学学报,2000,28(1):36-39.
    [119]. Broderick, D. H. Hydrogenation of aromatic compounds catalyzed by sulfided CoO-MoO3/Al2O3. Journal of catalysis,1982,73(1):45-49
    [120].张孔远.不同方法制备的Co-Mo/Al2O3加氢脱硫催化剂的表征.催化学报,2005,26(8):639-644.
    [121]. Gutberlet, L. C. Inhibition of hydrodesulfurization by nitrogen compounds. Ind. End. Chem., 1983,22(2):235-241.
    [122].Vito, L. V. Poisoning of thiophene hydrodesulfurization by nitrogen compounds. Journal of Catalysis,1988,110(2):362-368.
    [123].曹光伟.加氢处理催化剂的制备和表征.MoNiP/Al2O3催化剂的制备及助剂的作用.催化学报,2001,22(2):145-147.
    [124].徐友明.加氢处理催化剂的制备和表征Ⅱ:制备方法对MoNiP/A1203催化剂性质的影响.催化学报,2001,6:575-578.
    [125].韩崇仁.加氢裂化工艺与工程[M].北京.中国石化出版社,2001.
    [126].戴宝琴.最大量生产中间馏分油的加氢裂化催化剂的研制.化工科技市场.2007,30(6):25-27.
    [127].许杰.蒽油加氢转化为轻质燃料油技术研究.煤化工,2008,5:21-24.
    [128].李斯琴.中低馏分油加氢精制催化剂研究进展.石化技术与应用,2001,19(1):39-44.
    [129]. Variant, M. L. The kinetics of the hydrodesulfurization process-a review. Applied Catalysis,1983,6(2):137-158.
    [130]. Ho, P. N. Effects of pore diameter and catalyst loading in hydroliquefaction of coal with CoO/MoO3/Al2O3 catalysts. Fuel processing technology,1981,4(1):21-29.
    [131]. Masuyama, T. A Ca-modified Ni-Mo catalyst for hydroprocessing of coal liquid bottoms in two-stage coal liquefaction. Fuel,1996,69(2):245-250.
    [132]. Chris, K. J. Nickel molybdate-catalysed hydrogenation of brown coal without solvent or added sulfur. Fuel,1996,75(12):1387-1392.
    [133]. Legarreta, J. A. Comparison of the effect of catalysts in coal liquefaction with tetralin and coal tar distillates. Fuel,1997,76(13):1309-1313.
    [134]. Kondo, K. Alumina plate-loaded ruthenium catalyst for coal liquefaction. Fuel,2001,80(7): 1015-1020.
    [135]. Houalla, M. Hydrodesulfrization of dibenzothiophene catalyzed by sulfided CoO-MoO3/Al2O3:the reaction network. AICHE Journal,1978,24(6):1015-1021.
    [136]. Kinya, S. Hydrodesulfurization kinetics and mechanism of 4,6-dimethyldibenzothiophene over Ni Mo catalyst supported on carbon. Journal of molecular catalysis A:Chemical,2000,155(1): 101-109.
    [137]. Masatoshi,N. Selectivity of molybdenum catalyst in hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation:effect of additives on dibenzothiophene hydrodesulfurization. Journal of catalysis,1983,81(2):440-449.
    [138]. Yuki,K. Hydrogenation catalyst for aromatic hydrocarbons contained in hydrocarbon oils. US 6524993.2003.
    [139]. Ding, L. HDS, HDN, HDA, and hydrocracking of model compounds over Mo-Ni catalysts with various acidities. Applied Catalysis A:General,2007,319:25-37.
    [140]. Muetterties, E. L. Catalytic hydrogenation of aromatic hydrocarbons. Acc. Chem. Res.,1979, 12(9):324-331.
    [141]. Vopa, V. L. Poisoning of thiophene hydrodesulfurization by nitrogen compounds. Joural of catalysis,1988,110(2):375-387.
    [142]. Houlla, M. Hydrodesulfurization of dibenzothiophene catalyzed by sulfide CoO-MoO3/Al2O3: the reaction network. AICHE. Journal,1978,24(6):1015-1021.
    [143]. Krichko, A. A. High-temperature hydrogenation of C9 hydrocarbons in the presence of chromium catalysts.1981,15(2):70-75.
    [144].王士文.Crz03聚集状态和助剂CeO2对Cr2O3/Al2O3催化剂性能的影响.催化学报,1992,2:103-109.
    [145]. John, C. B. Production of alkyl aromatic hydrocarbons. US:545645,1976.
    [146]. Broderick D.H. Study on hydrodesulfurization mechanism of 4,6-dimethyl- dibenzothiophene.1981,27:667-673.
    [147].艾尼股份公司.苯二酚加氢脱氧制备苯酚的方法,CN200310101073.
    [148]. Lemberton, J. L. Catalytic hydroprocessing of simulated coal tars:activity of a sulphided Ni-Mo/Al2O3 catalyst for the hydroconversion of model compounds. Applied catalysis,2003,54(15): 91-100.
    [149].邹献武.喷动-载流床中Co-ZSM-5分子筛催化剂对煤热解的催化作用.过程工程学报,2007,7(6):1107-1113.
    [150]. http://wenku.baidu.com/view/d952ea3e5727a5e9856a6125.html
    [151].毕作文.昭通褐煤中全水分含量的变化因素.中国煤田地质,1990,2(1):30-32.
    [152].陆津津.硕士论文.云南褐煤固体热载体法热解及其半焦燃烧特性的研究.2010.
    [153]. Eric, M. S. Temperature dependence of crosslinking processes in pyrolysing coals. Fuel,1985, 64(12):1668-1671.
    [154].郭崇涛.煤化学.北京化学工业出版社,1992.
    [155].周晨亮.胜利褐煤热解气态产物生成规律的研究.中国科技论文在线.
    [156].王欣荣.煤快速热解获得的液态烃和气态烃的研究:气体停留时间的考察.化工学报,1995,46(6):710-716.
    [157]. Dieter, L. Hydrodeoxygenation of heavy oils derived from low-temperature coal gasification over Ni-W catalysts-effect of pore structure. Energy and Fuels,2008,22(1):231-236.
    [158]Bolton, C. Influence of carrier gas flow and heating rates in fixed bed hydropyrolysis of coal. Fuel,1987,66(10):1413-1417.
    [159].王晋伟.升温速率对煤热解特性的影响.山西煤炭,2010,30(11):66-67.
    [160].金海华.煤快速热解获得液态烃和气态烃的研究:气氛影响的考察.化工学报,1992,43(6):719-725.
    [161].李文.煤催化多段加氢热解过程的产物分析.中国矿业大学学报,2002,31(3):246-251.
    [162].王娜.煤多段加氢热解过程的研究-反应条件对产物分布的影响.化工学报,2001,52(5); 420-423.
    [163].辛星.博士论文.生物质能利用与转化技术研究,2012.
    [164]. Gangwei Zhao. Study on Brown Coal Pyrolysis and Catalytic Pyrolysis. Advanced Materials Research,2011,236:660-663.
    [165].樊宏飞.活性组分配比对加氢裂化催化剂性能的影响.工业催化,2011,19(12):50-54.
    [166].张世万.煤焦油加氢裂化反应及其催化剂的研究.现代化工,2011,31(11):73-77.
    [167]. Delmon B. Selectivity in HDS, HDN, HDO and hydrocracking contribution of remote control and other new concepts. General and introductory chemistry.1995,104(4):173-187.
    [168],黄开辉.催化原理.北京科学出版社,1996.
    [169].王雪峰.Ni基金属催化剂加氢脱氧性能的研究.燃料化学学学报,2005,33(5):612-616.
    [170].李文.煤催化多段加氢热解过程的产物分析.中国矿业大学学报,2002,31(3):246-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700