硅烷偶联剂改性木粉/HDPE复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木塑复合材料(WPC)是以生物质纤维材料作为增强材料,与塑料复合而成的一类新型高性能、高附加值的绿色环保材料。然而,由于极性的生物质纤维与非极性的塑料基体之间缺乏良好的相容性,导致二者的界面不能有效结合,从而不能充分利用纤维的强度,致使所得的复合材料性能受到影响。因此,改善二者的相容性,增强其界面结合强度,是提高木塑复合材料性能的关键点之一。本文选用六种分子结构具有递变规律、代表性的硅烷偶联剂(分别为A-151、A-171、DB-550、DB-560、DB-570及DB-580)对杨木木粉进行改性处理,然后与高密度聚乙烯(HDPE)混合挤出制备木粉/HDPE复合材料,通过对比复合材料的力学及耐水性能,分析断面微观形态、傅里叶变换红外光谱(FTIR)及流变性能等,优选出改性效果最佳的硅烷偶联剂。最后针对最佳硅烷偶联剂的改性工艺进行优化,具体包括偶联剂的添加量、偶联剂的溶液浓度及自由基引发剂过氧化二异丙苯(DCP)的添加量等参数。
     与未处理的木粉/HDPE复合材料相比,采用硅烷偶联剂处理木粉制备的复合材料的力学强度和耐水性能得到不同程度的提高,其中A-171的处理效果最好。扫描电子显微镜(SEM)观察表明,经硅烷偶联剂处理后,复合材料的断面微观形态发生变化,木粉与基体之间的结合增强,两相的界面相容性得到了有效改善。对比经A-171处理前后木粉的FTIR谱图可知,用A-171处理后的木粉的红外谱图在770cm-1处出现硅烷醇白聚产生的Si-O-Si键的特征吸收峰;另外1108cm-1处吸收峰加强,归因于Si-O-C吸收峰的出现,说明A-171和木粉之间可能发生了缩聚接枝反应。
     随着DCP含量和A-171含量的增加,复合材料的力学强度逐渐增大,耐水性逐渐提高;当DCP的含量为0.13%、A-171含量为4%时,弯曲、拉伸强度及耐水性达到最大值;再继续增加DCP含量,复合材料的力学强度和耐水性开始下降,这可能与DCP用量较高时引发HDPE降解有关;当A-171含量超过4%时,随着A-171含量的增加,复合材料的力学强度和耐水性增加不明显;冲击强度增加的程度却仍然很大,添加量超过6%后冲击强度增长缓慢;A-171的溶液浓度对复合材料的力学强度的影响不大,但随着A-171溶液浓度的增加,耐水性降低。
     流变学研究表明,不同种类硅烷偶联剂及不同用量的A-171对复合材料的线性粘弹性范围基本没有影响,但随着应变幅度的继续增大,存储模量G'开始下降,表现出非线性粘弹性行为;与未处理的木粉,HDPE复合材料相比,经过不同种类硅烷偶联剂及不同用量的A-171处理后,复合材料的储能模量G'和粘度η*均有所降低,而损耗角正切值tanδ却有所增加,但差异不大;随着频率增大,黏度均不断下降,表现出剪切变稀行为。
Wood plastic composites (WPC), made from various plastics and biomaterials as reinforced materials, are a new type of green environmental composites with high performance and added value. However, due to the poor interfacial compatibility between the polar biomaterials and the nonpolar plastics matrix, the interfacial bonding between the two components is not effective, and it can't make full use of the fiber strength, which in turn influence the performance of composites. Therefore, to improve the interfacial compatibility and enhance the interfacial bonding between biomaterial and plastics are key points for evaluating the performance of the composite. In this paper, poplar wood fibers were modified with six kinds of representative silane coupling agents (A-151, A-171, DB-550, DB-560, DB-570 and DB-580, respectively) with different molecule structure, then blended with high density polyethylene (HDPE) to prepare composites by extrusion. The most effective silane coupling agent was selected out by comparing the mechanical performances and water resistance properties, and analyzing the morphology of the fracture surface, FTIR spectra and rheological properties of the composites. Then optimized the modification technology of this best silane coupling agent, included the amount and solution concentration of the silane and the amount of dicumyl peroxide (DCP), which used as free radical initiator.
     Compared to the untreated wood flour/HDPE composite, the mechanical properties and water resistance were all improved after treated with the six different silane coupling agents, and A-171 was the most effective. The observation of scanning electron microscope (SEM) indicated that the morphology of the fracture surface of the composites after treated was changed and the interfacial bonding between wood flour and matrix was reinforced, the interfacial compatibility of the two phases was effective improved. Compared to the FTIR. spectra of untreated wood flour, there was a new characteristic absorption peak at 770cm-1 belongs to Si-O-Si bond generated by self-polymerization of silanol and a reinforced one at 1108cm-1 belongs to the covalent bond Si-O-C after treated with A-171, which indicated the possible polycondensation grafting reaction between A-171 and wood flour.
     The mechanical strength and water resistance of the composites were all increased with increasing the amount of DCP and A-171. When the amount of DCP was 0.13% and A-171 was 4%, the flexural and tensile strength and water resistance were all maximum. Continue to increase the amount of DCP, the mechanical strength and water resistance were begin to decrease, which may attributed to the HDPE degradation caused by higher amount of DCP. When the amount of A-171 was exceeded 4%, the increasing extent of flexural and tensile strength of the composites was smaller with the increase of the amount of A-171, but the impact strength increasing obviously until the amount of A-171 exceeded 6% The solution concentration of A-171 had slight effects on mechanical properties of composites, but the water resistance of composites was decreased with the increase of solution concentration of A-171.
     Rheology study indicated that different kinds of silane coupling agents and different amount of A-171 had little effect on the linear viscoelastic regions (LVR), but the storage modulus G' of composites was decreased with the increasing of strain amplitude, exhibited nonlinear viscoelastic properties. The G' and viscosityη*of the composites treated with different kinds of silane coupling agents and different amount of A-171 were decreased compared to the untreated wood flour/HDPE composite, but the loss tangent tan8 of the treated wood flour/HDPE composites were all increased with little difference. The viscosity of the composites was continuously decreased with the increase of frequency, showed the shear thinning behavior.
引文
[1]肖泽芳,赵林波,谢延军,王清文.木材-热塑性塑料复合材料的进展[J].东北林业大学学报,2003,31(1):39-41
    [2]黄臻,程秀才,赵颖峰,薛涛.木塑复合材料的发展与应用前景展望[J].木材工业,2008,(10):38-40
    [3]王伟宏.木-塑复合材在美国的发展[J].国外林产工业文摘,2003,33(11):19-22
    [4]Cai X L, Riedl B, Ait-Kadi A. Cellulose fiber/poly(ethylene-co-methacrylic acid) composites with ionic interphase[J]. Composites Part A,2003,34:1075-1084
    [5]殷小春,任鸿烈.对改善木塑复合材料表面相容性因素的探讨[J].塑料,2002,31(4):25-28
    [6]Canche-Escamilla G, Rodriguez-Laviada J, Cauich-Cupul J I, et al. Flexural, impact and compressive properties of a rigid-thermoplastic matrix/cellulose fiber reinforced composites[J]. Composites Part A,2002,33:539-549
    [7]Canche-Escamilla G, Cauich-Cupul J I, Mendizabal E, et al. Mechanical properties of acrylate grafted henequen cellulose fibers and their application in composites[J]. Composites Part A,1999,30:349-359
    [8]肖泽芳,赵林波,谢延军等.木材-热塑性塑料复合材料的进展[J].东北林业大学学报,2003,31(1):39-41
    [9]Pickering K L, Abdalla A, Ji C, et al. The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites[J]. Composites Part A,2003,34:915-926
    [10]Pickering K L, Abdalla A, Ji C, et al. The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites[J]. Composites Part A,2003,34:915-926
    [11]王清文,王伟宏等.木塑复合材料与制品[M].北京:化学工业出版社,2007,10-150
    [12]秦特夫.改善木塑复合材料界面相容性的途径[J].世界林业研究,1998,(3):46-50
    [13]郑玉涛,陈就记,曹德榕.改进植物纤维/热塑性塑料复合材料界面相容性的技术进展[J].纤维素科学与技术,2005,13:(1).46-55
    [14]聂昌颉.硅烷偶联剂的应用[J].热固性树脂,1992,(4):43-48
    [15]白世义,张震,杜丽萍等.乙烯基硅烷偶联剂[J].有机硅材料,2000,14(2):23-25
    [16]B.V. Kokta, D. Maldas, C. Daneault, P. Beland. Composites of polyvinyl chloride-wood fibers. Ⅲ:Effect of silane as coupling agent[J]. Journal of Vinyl Technology.1990,12(3): 146-153
    [17]M.Abdelmouleh, S.Boufi, M.N.Belgacem, et al. Modification of cellulose fibers with functionalized silanes:Effect of the fiber treatment on the mechanical performances of cellulose-thermoset composites[J]. Journal of Applied Polymer Science,2005,98:974-984
    [18]L.M.Matuana, R.T.Woodhams, J.J.Balatinecz, et al. Influence of interfacial interactions on the properties of PVC/cellulosic fiber composites[J]. Polymer Composites,1998,19(4): 446-455
    [19]C.Mai, H.Militz. Modification of wood with silicon compounds. Treatment systems based on organic silicon compounds-a review[J]. Wood Science and Technology,2004,37:453-461
    [20]C.A.S. Hill, M.R.Masterz Farahani, M.D.C.Hale. The use of organo alkoxzsilane coupling agents for wood preservation[J].2004,58:316-325
    [21]F.M.B.Coutinho, T.H.S.Costa, D.J.Carvalho. PolyProPylene wood fiber comPosites:Effeets of treatment and mixing conditions on meehanical properties[J]. Appl Polym Sci.1997, (65): 1227-1238
    [22]Pizhong Qiao, Julio RDavalos, Miehael GZipfel. Modeling and optimal design of composite-reinforced wood railroad crosstie[J]. Composite Strueture,1998, (41):87-96
    [23]John Zhu, Wu Qinglin, Harold S. Chemical Coupling in Wood Fiber and Polymer Composites: A Review of Coupling Agents and Treatments[J]. Wood Science and Technology,2000,32(1): 88-104
    [24]赵子,王澜,王佩璋.木塑复合材料的研究开发进展[J].塑料制造,2007,(3):35-39
    [25]程晓春,张强华.木塑复合材料及其产业化现状[J].新材料产业,2007,(11):51-54
    [26]M.N.Iehazo.Albano, J.Gonzalez, R.Perera, M.V.Candal. PolyProPylene/Wood flour Wood/PVC composites: treatments and properties[J]. Wood/PVC composite Struetures,2001,(54):207-214
    [27]杨鸣波,李忠明,冯建民等.秸秆/聚氯乙烯复合材料的初步研究[J].材料科学与工程,2000,18(4):27-29
    [28]杨庆贤.木塑复合材料性能与相关因素的研究[J].世界林业研究,1998,(3):46-51
    [29]杨庆贤,柯瑞荣.复合新材料—木质塑料[J].化学世界,1989,30(4):158
    [30]中国林科院木工所木质纤维复合材料专题组.PP纤维对木/塑纤维复合材料性能影响的初步研究[J].木材工业,1997,11(6):5-11
    [31]南方都市报.节能环保木塑复合材料前景看好.
    [32]王烨,王庆.大力发展木塑产业,促进木材节约代用[J].节能与环保,2008,(8):44-46
    [33]方明锋,黄华.木塑复合材料的研究及应用[J].现代农业科技,2009,(3):8-10,14
    [34]崔益华,周叶青.木纤维增强热塑性复合材料的界面研究现状[J],纤维复合材料,2006,(1):53-57,36
    [35]Makki Abdelmouleh, Sami Boufi, Mohamed Naceur Belgacem. Modification of Cellulose Fibers with Functionalized Silanes:Effect of the Fiber Treatment on the Mechanical Performances of Cellulose-Thermoset Composites[J]. Journal of Applied Polymer Science, 2005,98:974-984
    [36]M. Abdelmouleha, S. Boufia, M.N. Belgacem, et al. Modification of cellulosic fibres with functionalised silanes: development of surface properties[J]. International Journal of Adhesion & Adhesives,2004,24:43-54
    [37]Anatole A. Klyosov. Wood plastic composites[M]. WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION,2007
    [38]薛平,贾明印,温安华,祁宗.塑木复合材料的研究与发展趋势[J].中国塑料,2007,21(8):1-6
    [39]王立,宋国君,王海龙,李培耀等.热塑性木塑复合材料研究进展[Jr].化学推进剂与高分子材料,2006,4(3):10-12,16
    [40]郑玉涛,陈就记,曹德榕.改进植物纤维/热塑性塑料复合材料界面相容性的技术进展[J].纤维素科学与技术,2005,13(1):45-55
    [41]OKSMAN K, CLEMONS C. Mechanical properties and morphology of impact modified polypropylene2wood flour composites[J]. J Appl Polym Sci,1998,67(9):1503-1513
    [42]WU J S, YU D M, CHAN CM, et al. Effect of fiber pretreatment condition on the interfacial strength and mechanical properties of wood fiber/PP composites[J]. J Appl Polym Sci,2000, 76 (7):1000-1010
    [43]RAJ R G, KOKTA B V, DANEAULT C. Effect of chemical treatment of the fibers on the mechanical properties of polyethylene-wood fiber composites [J]. Journal of Adhesive Science Technology,1989,3(1):55-64
    [44]史孝群,肖久梅,马文江等.硅烷偶联剂在聚合物基复合材料增容改性中的应用[J].工程塑料应用,2002,30(7):54-56
    [45]廖俊,陈圣云,康宇峰等.硅烷偶联剂及其在复合材料中的应用[J].化工新型材料,2001,29(9):26-28
    [46]刘亚青,刘亚军.有机硅烷偶联剂[J].华北工学院学报,1997,18(4):328-333
    [47]杜仕国.塑料用有机硅烷偶联剂的研究与开发动向[J].塑料,1996,25(6):14
    [48]高红云,张招贵.硅烷偶联剂的偶联机理及研究现状[J].江西化工,2003,(2):30-34
    [49]Arkles B. Taliloring Surafce with silnaes[J]. Chemical Technology,1977,(7):766
    [50]R.C.HooPer, Proc.SPIConf. Reinforced Plastics, Div.11th Sect8-B (1956)
    [51]W.A.Zisman. Surface chemistry of plastics reinforced by strong fibers[J]. IEC Product Research and Development,1963,8(2):98-111
    [52]E.P.Plueddeman. Interface on polymer Matrix Composites[J].Acadmemic Press,1974,18:1-10
    [53]Bledzki A K, Reihmane S, Gassan J. Thermoplastics reinforced with wood fillers:a literature review[J]. Technology and Engineering,1998,37(4):451-468
    [54]纪占敏,杜侍国,施冬梅等.硅烷偶联剂在复合材料中的应用研究[J].现代涂料与涂装,2006,(12):44-46
    [55]廖俊,陈圣云,刘英伟等.硅烷偶联剂在涂料中的应用及其研究进展[J].精细与专用化学品.2006,14(19):1-19
    [56]胡萍,姜明,黄畴等.硅烷偶联剂的界面性能研究[J].表面技术.2004,33(5):19-21
    [57]渡边谦哉.硅烷偶联剂的最新进展[J].橡胶参考资料1993,23(4):1-5
    [58]王淑荣.硅烷偶联剂的开发现状及发展趋势[J].精细石油化工,1995,(5):33-37
    [59]宋焕成,赵时熙.聚合物及其复合材料[J].北京:国防工业出版社,1986,(5):200~273
    [60]Abdelmouleh M, Boufi S, Belgacem M.N, et al. Short natural-fibre reinforced polyethylene and natural rubber composites:Effect of silane coupling agents and fibers loading[J]. Composites science and technology,2007,67:1627-1639
    [61]胡发亭,郭奕崇.聚乙烯交联处理研究进展[J].现代塑料加工应用,2002,14(2):61-64
    [62]俞强,李锦春,林明德等.硅烷接枝交联聚乙烯的研究[J].高分子材料科学与工程,1999,15(4):48-51
    [63]王燕,张保利,朱柯等.丙烯酸有机硅共聚物乳液聚合及性能研究[J].试验研究,2000,(10):2-5
    [64]左瑞霖,张光成,何宏伟等.聚乙烯的硅烷交联技术进展[J].塑料,2000,6(29):41-46
    [65]刘春林.过氧化物交联聚乙烯的研究[J].现代塑料加工应用,1998,10(2):14-17
    [66]Donath S, Militz H, Mai C. Creating Water-repellent effects on wood by treatment with silanes[J]. Holzforschung,2006,60:40-46
    [67]谢刚,历荣,崔丹等.硅烷交联聚丙烯的研究Ⅰ——引发剂用量、接枝剂用量和反应温度对凝胶率和熔体流动速率的影响[J].黑龙江大学自然科学学报,2002,19(1):99-102
    [68]Valadez-Gonzalez A, Cervantes-Uc J M, Olayo R, et al. Chemical modification of heneque'n fibers with an organosilane coupling agent[J]. Composites:part B,1999,30:321-331
    [69]周持兴.聚合物流变实验与应用[M].上海:上海交通大学出版社,2003.50-54
    [70]周持兴.聚合物流变实验与应用[M].上海:上海交通大学出版社,2003:5-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700