纳/微米增强材料增韧环氧胶粘剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧树脂胶粘剂具有收缩率低、尺寸稳定、电性能优良、耐化学介质等优点,对多种材料具有良好的粘接能力。但同时也存在粘接强度不高、脆性大、耐热性差等缺点。本论文针对普通双酚A型环氧和酚醛环氧混合的粘料树脂与胺类固化体系配合使用的室温/中温固化双组分胶粘剂,采用具有不同微观形态的纳米二氧化硅(nano-SiO2,零维)、钛酸钾晶须(PTW,一维)和有机纳米蒙脱土(OMMT,二维)分别对胶粘剂进行改性。探讨了胶粘剂最佳固化工艺条件,并研究了不同增强材料对胶粘剂的粘接性能、粘度和热性能的影响。另外,对三者增韧改性环氧树脂的逾渗理论模型进行了初步探索。
     研究结果表明:增强材料对环氧胶粘剂的改性效果显著。胶粘剂的最佳工艺条件为稀释剂含量为15%,DDM+593为固化剂,80℃/4h固化。表面经砂纸打磨并酸洗后,粘接强度明显提高。胶粘剂的适用期与增强材料的种类和用量无关,与施胶的环境温度有关,温度越高,适用期越短。当添加量为2%(wt%)时能有效降低体系的粘度,且表现出一定的触变性能。增强材料的加入能极大提高胶粘剂的耐热性、剪切强度和冲击强度。SEM分析表明三种材料对胶粘剂的增韧机理各不相同。nano-SiO2主要是引发银纹和微裂纹增韧;PTW主要是裂纹偏转、晶须拔出和晶须脱粘增韧;OMMT受冲击时则产生大量不同层次的断裂面使应力分散而增韧。
     针对三种增强材料改性环氧树脂的冲击性能,建立了逾渗理论模型,证明三者的增韧行为均符合逾渗理论。说明三种增强材料在胶粘剂中起交联点的作用,并在毗邻的聚合物基体中形成了增强区,以致于相互连接贯通形成无限大的逾渗集团,从而达到整体增韧聚合物的效果。用增强材料改性后的环氧胶粘剂综合性能优良,改性工艺简单可行,成本较低,在胶粘剂改性领域有积极的推广和应用价值。
Epoxy resin adhesive are widely used for its excellent performance such as low shrinkage, dimensional stability, excellent electrical properties, resistance to chemical media, good bonding ability to a variety of material, etc. But there are also some disadvantages of low adhesive strength, brittleness, heat resistance. This thesis focuses on two-component adhesives which the mixture of common bisphenol A epoxy resin and phenolic epoxy resin was to be the component A. Adhesives cured on the conditions of room/medium temperature with the amine curing system. Using nano/micron reinforced materials with different morphology to modified epoxy resin adhesive, which are nano-SiO2 (zero-dimensional), potassium titanate whiskers (one-dimensional) and nano-organic montmorillonite (two-dimensional). Disused the best adhesive curing process conditions, and studied the effect to adhesive properties, viscosity and thermal properties by three kinds of reinforced materials. In addition, the percolation theory model of three reinforced materials toughened on epoxy resin is preliminarily explored.
     The results show that:The effect of reinforced materials modified epoxy adhesive is remarkable. The optimum conditions for adhesive is as follows:15wt% diluent content, DDM+593 as curing agent,80℃/4 hours curing. The bond strength of steel pickling treatment after sanding is significantly higher than untreated surface. And the heat-resistant of adhesive is also improved when reinforced materials added. The application of adhesives is unrelated to the type and the amount of reinforced materials. But related to the temperature of sizing, as the environmental temperature of sizing increased, the application shorted. When the addition of 2wt% can lower the viscosity, and show some of the thixotropic property. Reinforced materials can greatly improve the steel-steel shear strength and impact strength of adhesive. SEM pictures of impact fracture showed that the three kinds of reinforced materials have different mechanisms on toughening of adhesive. Nano-SiO2 is mainly by causing crazes and microcracks in the resin matrix to absorb some part of impact energy to toughening. When adding PTW, the crack deflection, whisker pull-out and whisker debonding phenomenons emerged, so the toughening mechanisms is passivating crack tip and preventing crack propagation. And cured resin content with OMMT formed a number of different levels of fracture surfaces when shocked, so the stress can be dispersion and then toughed the adhesive.
     The paper established a model of percolation theory according to the impact properties of three kinds of reinforced materials modified epoxy resin. The calculations proved that the toughening behavior all of three reinforced materials are in line with percolation theory. It suggesting that three kinds of reinforced materials in the adhesive play a role of crosslinks, then formed the enhanced areas in adjacent to the polymer matrix. So these areas interconnected and impenetrated then form an infinite percolation cluster, ultimately achieved the effect of toughening polymer. Epoxy adhesive modified with reinforced materials have excellent comprehensive properties, the technics is simple and low cost. So the method which reinforced materials modified epoxy adhesive has a positive promotion and application value in the field of structural adhesives.
引文
[1]李光宇,李子东,吉利,等.环氧胶黏剂与应用技术.北京:化学工业出版社,2007,6-22
    [2]韩青龙.高性能环氧树脂胶粘剂的研究:[中国海洋大学硕士学位论文].青岛:中国海洋大学,2007,6-7
    [3]陈浩.耐高温环氧树脂胶粘剂的研究:[武汉理工大学硕士学位论文].武汉:武汉大学,2009,7-9
    [4]李光宇,李子东,吉利,等.环氧胶黏剂与应用技术.北京:化学工业出版社,2007,445-447
    [5]常鹏善,左瑞霖,王汝敏,等.环氧树脂增韧研究进展.材料导报,2002,16(2):54-60
    [6]陈平,孙明,唐忠鹏,等.环氧树脂增韧技术研究进展及发展方向.纤维复合材料,2003,12(2):12-15
    [7]张龙彬,朱光明.环氧树脂增韧的研究进展.塑料科技,2004,12(6):57-61
    [8]Imanaka M, Motohashi S, Nishi K. Crack-growth behavior of epoxy adhesives modified with liquid rubber and cross-linked rubber particles under mode I loading. International Journal of Adhesion & Adhesives,2009,29(1):45-55
    [9]涂春潮,齐暑华,周文英,等.环氧树脂增韧研究.化学推进剂与高分子材料,2005,3(3):12-15
    [10]Mirmohseni A, Zavareh S. Preparation and characterization of an epoxy nanocomposite toughened by a combination of thermoplastic, layered and particulate nano-fillers. Materials and Design,2010,31(6):2699-2706
    [11]Wetzel B, Rosso P, Haupert F, et al. Epoxy nanocomposites-fracture and toughening mechanisms. Engineering Fracture Mechanics,2006,73(16): 2375-2398
    [12]刘尚乐,韩定国.环氧胶粘剂.太原:山西人民出版社,1978,116-140
    [13]刘志中,王新灵,唐小真,等.环氧树脂增韧改性研究进展.中国塑料,1998,12(6):12-18
    [14]史孝群,肖久梅.环氧树脂增韧研究进展.绝缘材料,2002(1):31-34
    [15]Klug J H, Seferis J C. Phase separation influence on the performance of CTBN-toughened epoxy adhesives. Polymer Engineering and Science,1999, 39(10):1873-1848
    [16]Ramos V D, Costa H M, Soares V, et al. Hybrid composites of epoxy resin modified with carboxyl terminated butadiene acrilonitrile copolymer and fly ash microspheres. Polymer Testing,2005,24(2):219-226
    [17]张建,韩孝族.液体橡胶增韧环氧树脂/咪唑体系的形态与力学性能.应用化学,2005,22(12):1333-1337
    [18]Frohlich J, Thomann R, Mulhaupt R. Toughened epoxy hybrid nanocomposites containing both an organophilic layered silicate filler and a compatibilized liquid rubber. Macromolecules,2003,36(19):7205-7211
    [19]Auad M L, Borrajo J, Aranguren M I. Morphology of rubber-modified vinyl ester resins cured at different temperatures. Journal of Applied Polymer Science,2003, 89(1):274-283
    [20]Bonnet A, Lestriez B, Pascault J P, et al. Intractable high-Tg thermoplastic processed with epoxy resin:Interfacial adhesion and mechanical properties of the cured blends. Journal of Polymer Science Part B:Polymer Physics,2000,39(3): 363-373
    [21]甘文君,李华,李善君.温度效应对氟链封端聚醚酰亚胺改性环氧树脂相分离的影响.高等学校化学学报,2004,25(11):2161-2165
    [22]郭宝春,贾德民,傅伟文,等.聚醚酰亚胺对氰酸酯树脂/环氧树脂共混物的增韧作用.材料研究学报,2002,16(1):99-104
    [23]Varley R J, Hodgkin J H, Simon G P. Toughing of a trifunctional epoxy system: part Ⅵ. Structure property relationships of the thermoplastic toughened system. Polymer,2001,42(8):3847-3858
    [24]Mimura K, Ito H, Fujioka H. Improvement of thermal and mechanical properties by control of morphologies in PES-modified epoxy resins. Polymer,2000, 41(12):4451-4459
    [25]韦亚兵,张玲,李军.互穿网络法增韧环氧树脂胶粘剂的研究.中国胶粘剂,2002,11(1):6-8
    [26]张玲,韦亚兵.环氧树脂胶粘剂的丙烯酸丁酯增韧研究.高等化学工程学报,2005,19(5):720-723
    [27]熊艳丽,王汝敏,郑刚,等.环氧树脂增韧改性研究进展.中国胶粘剂,2005,14(7):27-32
    [28]刘柏松,刘国栋,张留成.液晶双马来酰亚胺改性环氧树脂的研究.工程塑料应用,2006,34(3):20-22
    [29]杨小王,陆绍荣,虞锦洪,等.新型酯类环氧液晶的合成及应用.高分子材料科学与工程,2008,24(2):39-42
    [30]蒋玉梅,陆绍荣,龚永洋,等.联苯型液晶聚氨酯增韧改性环氧树脂的制备与性能.高分子材料科学与工程,2009,25(9):150-153
    [31]罗凯.超支化聚酯的合成及固化环氧树脂的研究:[四川大学硕士学位论文].成都:四川大学,2004,15-16
    [32]Varley R J, Tian W D. Toughening of an epoxy anhydride resin system using an epoxidized hyperbranched polymer. Polymer International,2004,53(1):69-77
    [33]Varley R J. Toughening of epoxy resin systems using low-viscosity additives. Polymer International,2004,53(1):78-84
    [34]Cicala G, Recca A, Restuccia C, et al. Influence of hydroxyl functionalized hyperbranched polymers on the thermomechanical and morphological properties of epoxy resins. Polymer Engineering and Science,2005,45(2):225-237
    [35]陈玉坤,张道洪,贾德民.超支化环氧树脂增韧增强双酚A型环氧树脂.湖南大学学报(自然科学版),2008,35(11):57-60
    [36]朱超,林丽娟,戚豹.超支化聚合物改性环氧树脂的研究.化学与黏合,2007,29(4):261-264
    [37]周佳麟,范和平.环氧树脂柔性固化剂研究综述.化学推进剂与高分子材料,2006,4(3):13-16
    [38]赵立英,马会茹,刘培,等.室温固化端脂肪氨基聚醚/环氧树脂胶粘剂性能的研究.中国胶粘剂.2007,16(9):15-17
    [39]Meziani M J, Liu P, Pathak P, et al. Stable suspension of crystalline Fe3O4 nanoparticles from in situ hot-fluid annealing. Industrial & Engineering Chemistry Research,2006,45(4):1539-1541
    [40]Naous W, Yu X Y, Zhang Q X, et al. Morphology, tensile properties, and fracture toughness of epoxy/Al2O3 nanocomposites. Journal of Polymer Science Part B: Polymer Physics,2006,44(10):1466-1473
    [41]Zhou Y X, Pervin F, Biswas M A, et al. Fabrication and characterization of montmorillonite clay-filled SC-15 epoxy. Materials Letters,2006,60(7): 869-873
    [42]Kim B C, Park S W, Lee D G. Fracture toughness of the nano-particle reinforced epoxy composite. Composite Structures,2008,86(1-3):69-77
    [43]Chen Z K, Yang J P, Ni Q Q, et al. Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties. Polymer,2009,50(19):4753-4759
    [44]Mirmohseni A, Zavareh S. Preparation and characterization of an epoxy nanocomposite toughened by a combination of thermoplastic, layered and particulate nano-fillers. Materials and Design,2010,31(6):2699-2706
    [45]Choi J, Yee A F, Lairie R M. Toughening of cubic silsesquioxane epoxy nanocomposites using core-shell rubber particles:A three-component hybrid system. Macromolecules 2004,37(9),3267-3276
    [46]陈小庆,王岚,黄培,等.一种螺环原碳酸酯膨胀单体的合成及其与环氧树脂热固化.南京工业大学学报,2005,27(2):9-12
    [47]王复兴,林洪碧.CA型环氧树脂固化剂性能的研究,粘接,2000,21(3):15-18
    [48]Morita Y, Tajima S, Suzuki H, et al. Thermally initiated cationic polymerization and properties of epoxy siloxane. Journal of Applied Polymer Science,2006, 100(3):2010-2019
    [49]姚海松,刘伟区,侯孟华,等.高分子硅烷偶联剂改性环氧树脂性能研究.高分子材料科学与工程,2006,22(2):133-136
    [50]姚金甫,田守信,王峰,等.无机填料对环氧树脂胶粘剂强度的影响.粘接,2004,25(4):38-39
    [51]Dean J M, Verghese N E, Pham H Q, et al. Nanostructure toughened epoxy resins. Macromolecules,2003,36(25):9267-9270
    [52]曾正明.实用工程材料技术手册.北京:机械工业出版社,2002,1001-1002
    [53]李光宇,李子东,吉利,等.环氧胶黏剂与应用技术.北京:化学工业出版社,2007,44-45
    [54]Song Z Q, Poehlein G W. Particle nucleation in emulsifier-free Aqueous-phase polymerization:Stage 1. Journal of Colloid and Interface Science.1989,128(2): 486-500
    [55]李朝阳.纳米二氧化硅增韧改性环氧树脂的研究:[机械科学研究总院武汉材料保护研究所硕士学位论文].武汉:机械科学研究总院武汉材料保护研究所,2007,9-11
    [56]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001,25
    [57]徐修成.高分子工程材料.北京:航天航空大学出版社,1989,201
    [58]何颖,李春忠,干路平,等.纳米二氧化硅补强硅橡胶的结构及性能.华东理工大学学报(自然科学版),2005,31(4):456-459
    [59]陈健聪,彭勃.有机蒙脱土改性环氧树脂结构胶黏剂的性能研究.热固性树脂,2006,21(2):25-29
    [60]胡福增.材料表面与界面.上海:华东理工大学出版社,2008,1-3
    [61]杜磊,邓剑如,李洪旭.表界面化学原理在复合固体推进剂中的应用.推进技术,2000,21(1):64-66
    [62]范克雷维伦 D W,许元泽,赵得禄译.聚合物的性质性质的估算及其与化学结构的关系.北京:科学出版社,1982,127
    [63]郑亚萍 宁荣昌.纳米SiO2环氧树脂复合材料性能研究.玻璃钢/复合材料,2001,(3):34-36
    [64]刘竞超,李小兵,张华林,等.纳米二氧化硅增强增韧环氧树脂的研究.胶体与聚合物,2000,18(4):15-17
    [65]孙丽虹,朱其芳,王瑞坤,等.SiC纳米及晶须增强Si3N4基复相陶瓷断裂行为的研究.稀有金属,2000,24(5):330-334
    [66]刘玲,殷宁,亢茂青,等.晶须增韧复合材料机理的研究.材料科学与工程,2000,18(2):115-119
    [67]王杏,关荣锋,田大垒,等.蒙脱土改性环氧树脂的研究.化学推进剂与高分子材料,2009,7(1):46-48
    [68]傅万里,刘竞超.有机蒙脱土改性环氧树脂的研究.工程塑料应用,2002,30(5):1-4
    [69]彭勃,陈健聪,陈健明.纳米材料改性环氧树脂结构胶粘接强度的研究.湖南大学学报(自然科学版),2007,34(8):11-15
    [70]Broadbent S R, Hammersley J M. Percolation processes I.crystals and mazes. Proceedings of the Cambridge Philosophical Society,1957,53(3): 629-641
    [71]Hsu W Y, Wu S. Percolation behavior in morphology and modulus of polymer blends. Polymer Engineering and Science,1993,33(5):293-302
    [72]彭自正,王殚业,许云延,等.逾渗与岩石破裂的计算机模拟研究.西北地震学报,1996,18(1):22-29
    [73]Danescu R I, Zumbrunnen DA. Computational simulation of controllable structure formation among particle additives in a continuous-flow chaotic mixer, Powder Technology,2002,125(2-3):251-259
    [74]Jiang W, Tjong S C, Li R K Y. Brittle-tough transition in PP/EPDM blends: effects of interparticle distance and tensile deformation speed. Polymer,2000, 41(9):3479-3482
    [75]Sahimi M. Linear and nonlinear, scalar and vector transport processes in heterogeneous media:Fractals, percolation, and scaling laws. The Chemical Engineering Journal and the Biochemical Engineering Journal,1996,64(1): 21-44
    [76]罗延龄,王庚超,张志平.PTC特性的复合导电体系中炭粒子分布的逾渗模型与电阻率的计算.高分子通报,1998,(4):23-33
    [77]Wu S, Margolina A. Letter:Reply to comments. Polymer,1990,31 (5):972-974
    [78]Wu X, Zhu X G, Qi Z N. In:proceeding of the 8th international conference on Deformati on Yield and Fracture of Polymers. London,1991,1:78
    [79]Xie X L, Zhou X P, Tan J, et al. Effect of maleic anhydride grafted SEBS on properties of polypropylene/carbon nanotube composites.合成橡胶工业,2002, 25(1):46
    [80]黄锐,王旭,张玲,等.熔融共混法制备聚合物/纳米无机粒子复合材料.中国塑料,2003,17(4):20-23
    [81]彭静,乔金粱,魏根拴.橡胶增韧塑料机理.高分子通报,2001,(5):13-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700