基于遥感与CFD仿真的城市热环境研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国的夏热冬冷地区,夏季炎热的气候条件使不少城市难以达到宜居环境的标准,城市热环境成为关注的焦点。城市热环境问题包括城市气候、城市规划、城市下垫面组成等多方面的因素,涉及多学科的研究领域。本文在夏热冬冷地区的气候条件下,以武汉市为例,采用RS(Remote Sensing)遥感技术、CFD(Computational Fluid Dynamics)仿真技术等数字化的城市研究手段,探讨城市热环境运行状况,解析城市热岛结构,并在城市规划层面找到相应的热环境改善措施。RS遥感技术具有全面、周期性观测的优势,其热红外反演技术可以较好的通过相关卫星影像反演地表温度、蒸散量、植被指数等热环境相关参数,并结合下垫面的性质和组成情况进行热环境分析。此外,该技术还可以为后续的CFD模拟研究进行修正参数、对比修正模拟结果等工作。CFD流体力学仿真技术具有流体分析的优势,借助对城市风环境的模拟研究,可以分析城市大气边界层与热环境的关系,了解热环境运行状态。还可以针对概念性设计方案和优化方案进行模拟研究与评估。两种技术相结合进行的城市热环境研究可以相互支持、相互弥补不足,成为紧密的热环境研究体系。本文以上述思想为基础,着重研究了以下主要内容:
     (1)首先研究了热环境研究的缘起、研究背景及研究意义等问题。然后通过对国内外相关研究进展的研究,发现本研究目前是学科发展中具有创新性的重要课题。现阶段虽然应用数字化方法的研究较多,但是多限于单一学科的研究,缺乏交叉学科、多技术手段的综合研究,这也是本文的出发点和创新点。
     (2)讨论了与城市热环境相关的各类因素:气候、城市边界层、城市下垫面、热环境指标。城市热环境在城市边界层产生,受气候、下垫面等因素的影响。对城市的热环境问题进行系统和详细的分析,找出城市的热环境与城市气候、城市下垫面之间的关系,为后续的数字化研究确立研究基础。
     (3)建构了城市热环境研究的数字化方法。该方法在收集了数据资料的基础上,采用遥感技术、CFD仿真技术进行结合研究。遥感技术主要通过对地表温度、蒸散量的反演结合下垫面参数进行城市热环境的研究;CFD仿真技术通过建立城市数字模型和流体模拟,进行相关的城市热环境模拟。
     (4)利用上述数字化方法,进行了基于遥感技术的城市热环境研究。通过遥感影像选择、数据预处理、地表温度反演等过程介绍了城市热岛反演的方法。此外进行了城市热岛与植被等城市下垫面关系的研究。然后以武汉市为例,进行城市热岛结构、典型地物及区域的分析等范例研究。为了使研究更全面,还进行了不同时间段城市热岛变化研究和夏热冬冷地区其它城市的城市热岛对比研究。其后进行了城市自然下垫面的蒸散量研究。蒸散值虽然不能直接反映热环境状况,却能结合地表温度体现蒸散吸收热量,改善城市热环境的作用,并可以借用来提高CFD模拟的准确度。文中介绍了蒸散的求取模型、求取过程和与地表温度的相互关系。
     (5)然后本文根据遥感研究的相关结论,研究CFD模拟的参数设置方法。参数设置是CFD模拟的核心,传统的参数设置方法设置简单,但结果不准确。本文利用遥感技术修正CFD的参数设置,使其更符合城市热岛的结构和特征,各相关因子更为合理。(6)利用经过遥感技术的部分结果和因子对CFD模拟的参数设置改进后的数字模型模拟分析城市热环境状况。在通过流体力学分析了城市整体热环境的基础上,进行了城市水体与热环境关系研究、城市通风道研究等热环境子项分析。通过上述研究发现,CFD运动流体力学技术适合于分析研究有关流体运动的问题,应用其来分析城市的风环境状况,进而探讨城市的温度场、居住环境、热岛状况等问题,是一种非常新颖而有效的研究方式。
     基于数字化空间信息集成技术的城市热环境研究,是城市环境管理和调控的有效手段,也是城市规划及环境科学研究的一个崭新领域和重要方向。本文所提到的遥感技术和CFD仿真技术在目前的实际规划项目中应用还比较少,在目前国家着重提出科学规划方式的前提下,大力发展这套研究方法并推动其与实际规划项目相结合具有非常重要的意义。
In hot-summer and cold-winter zone in our country, Human in quite some cities is confronting the challenge of living difficulty due to the dramatically changing climate. Related problems including living situations ( especially in summer ) and heat environments are becoming a focus. The problems of city heat environment include city climate, city planning, city underlying surface and so on and are related to multidisciplinary fields. Basing on Wuhan, a typical city in hot-summer and cold-winter zone, the research presents the digit technologies on remote sensing (RS) and computational fluid dynamics (CFD) and a detail was shown in the running status of the heat environments and structure of heat islands. Other aspects including analyzing the structure of heat islands and seeking for corresponding measures in urban planning are also displayed.
     The RS technology shows the advantages of a comprehensive and periodical observation and the thermo-infrared of RS image using to inverse the surface temperature, the evapotranspiration and the vegetation index, as well as to conduct the environment analysis in accordance with the property and structure of underlying surfaces. Furthermore, the RS technology is capable of reversing the parameters and results for the CFD technology. The CFD has the advantage of conducting fluid analysis. It can present the relationship of a distinct boundary layer in the city atmosphere, the heat environment and the running status of heat islands using the simulation of wind. Additionally, it can evaluate the design of the conception and optimization via simulation. Combing both technologies on studying heat environments would support with one another and thus is a tight research system. Basing on such a thought, the main work of the dissertation is show as follows.
     (1)Firstly, the derivation, background and definition of the heat environments are studied, followed by summarizing relevant literatures. It can be concluded that such a research has its unique. Though there have been some digitization methods available, some are limited to the single subject and thus are lack of comprehensive studies with multidisciplinary backgrounds and comprehensive technologies. This is one of flashpoints in this dissertation.
     (2)Quite some issues relating to the heat environment are mentioned, such as the climate, atmospheric boundary-layer, underlying surface and the index of heat environments. The heat environment can be derived from the boundary layer and is influenced by the climate, underlying surface and so on. We are trying to find the relationship among the heat environment, city climate and the underlying surface using a systematic analysis and correspondingly establishing a foundation for the subsequent digitization.
     (3)A digitization method for the research of city environment is established. Such a method combines the RS with the CFD expect for the data collection. The RS is used to study the heat environment by inversing the land-surface temperature and the evapotranspiration, and by combining underlying surface’s parameters into research. Meanwhile, the CFD is used to simulate the heat environment by setting up a digital and fluid model.
     (4)Basing on the digitization method, the RS-based heat-environment research is conducted. Such studies include these steps such as the choice of RS images, data pretreatment and land-surface temperature inversion. The relation between heat island and underlying surfaces are discussed, including the underlying-surface index and extraction. Moreover, the structure of the heat island and the typical surface are also presented using Wuhan as the reference. As a result, there are complete researches on various stages and cities which cover in hot-summer and cold-winter zone. The evapotranspiration of the natural surface is also carried out. Although the evapotranspiration can not directly reflect the heat situation, it absorbs heat and thus improves the heat environment. Thus, such a method can be used to increase the accuracy of the CFD simulation. The model of acquiring the evapotranspiration, the running process and relationship with the surface temperature is discussed.
     (5)Based on related conclusions, the study examines boundary condition settings of CFD simulation, which is the key of the CFD simulation. The setting of traditional boundary conditions is simple but is lack of precision. To overcome such drawbacks, we have modified the setting by using the RS technology, thus making the simulation better matching to the structure and characteristic of heat islands.
     (6)Using the digital model reversed by the RS technology, the study also surveys the heat situation, the relation between the water body and the heat environments, and the ventilation panel basing on the study results of flowing in the motion of atmosphere. The CFD is found suitable for the problem well in terms of flowing and thus is a new and efficient way regarding the analysis of the wind environment, the temperature field, the living environment and the heat-island condition.
     The study of the heat situation basing on the spatial information technology is efficient in city environmental management and control. It is an important field in city planning and environmental sciences. The RS and the CFD technologies using in the study are less used for real planning projects. In the precondition of scientific planning methods mentioned greatly by local government, promoting this research method and combing it with real planning project appear to be meaning.
引文
[1]郑一军.建筑节能刻不容缓.环境经济杂志, 2005(11): 25-26
    [2]郝兴明,陈亚宁,李卫红.塔里木河流域近50年来生态环境变化的驱动力分析.地理学报, 2006, 61(03): 262-272
    [3]陈崇成.基于空间信息集成技术的城市环境时空分析研究.中国科学院地理科学与资源研究所, 2000: 1
    [4]付祥钊.夏热冬冷地区建筑节能技术.北京:中国建筑工业出版社, 2002
    [5]杨波.夏热冬冷地区多层住宅凸阳台气候适应性设计研究.华中科技大学, 2004
    [6]武汉市林业局.武汉湿地保护规划. 2005年4月16日通过
    [7]黄金海.杭州市热岛效应与植被覆盖关系的研究.浙江大学, 2006
    [8]陈述彭,城市化与城市地理信息系统,北京:科学出版社, 1999
    [9]陈云浩、李京、李晓兵,城市空间热环境遥感分析,北京:科学出版社, 2004
    [10]吴良镛,建筑·城市·人居环境,石家庄:河北教育出版社, 2003
    [11]徐昉.计算流体力学(CFD)在可持续设计中的应用.建筑学报, 2004(8): 65-67
    [12]江亿.超低能耗建筑技术及应用.北京:中国建筑工业出版社, 2005
    [13]谷现良,赵加宁,高军等. CFD商业软件与制冷空调.制冷学报, 2003(4): 45-49
    [14]师奇威,贾代勇,杜雁霞. CFD技术及其应用.制冷与空调, 2005, 5(6): 14-17
    [15] [EB/OL]www. fluentusers. com
    [16]梅安新,彭望碌,秦其明等.遥感导论.北京:高等教育出版社, 2001
    [17] Bernard Rudofsky. the architecture without architects. London: Academy Press, 1964
    [18] G. Z. Brown, Mark Dekay. Sun, wind& light: architectural design strategies. John Wiley& Sons, Inc. 2001
    [19] Michael Hough. City Form and Natural Process. Beckenkan: Croomhelm Ltd, 1984
    [20] Claude Allegre. Ecologie Des Villes, Ecologie Des Champs. Librairie ArthemeFayard, 1993
    [21] Dominique Gauzin, Muller. Sustainable Architecture and Urbanism. Switzerland: Birkhauser–publishers, 2002
    [22] Randall Thomas. Sustainable Urban Design. Spon press, 2003
    [23] Hanna, K. C. , Culpepper, R. B. . GIS in Site Design. John Wiley&sons, Inc, 1998
    [24] Oak T. R. The heat island of the urban boundary layer: characteristics, causes and effects. In: Cermak. J. E. wind climate in cities. Kluwer Academic Publishers, 81-107
    [25]钱乐祥.城市热岛研究中地表温度与植被丰度的耦合关系.广州大学学报(自然科学版), 2005, 5(5): 62-68
    [26] Aniello, C. , Morgan, K. , Busbey, A. , Newland, L. . Mapping microurban heat islands using Landsat TM and a GIS. Computers and Geosciences, 1995, 21 (8): 965–969
    [27] Christopher Small. Comparative analysis of urban reflectance and surface temperature. Remote Sensing of Environment, 2006, 104(2): 168-189
    [28] Soushi Kato and Yasushi Yamaguchi. Analysis of urban heat-island effect using ASTER and ETM+ Data: Separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux. Remote Sensing of Environment, 2005, 99(1-2): 44-54
    [29] Hung Tran, Daisuke Uchihama, Shiro Ochi, et al. Assessment with satellite data of the urban heat island effects in Asian mega cities. International Journal of Applied Earth Observation and Geoinformation, 2006, 8(1): 34-48
    [30] Janet Nichol and Man Sing Wong. Modeling urban environmental quality in a tropical city. Landscape and Urban Planning, 2005, 73(1): 49-58
    [31] Dousset, B. , Gourmelon, F. . Satellite multi-sensor data analysis of urban surface temperatures and landcover. Isprs Journal of Photogrammetry and Remote Sensing, 2003, 58 (1–2): 43–54
    [32] Prata, A. J. , Caselles, V. , Coll, C. , et al. Thermal remote sensing of land surface temperature from satellites: current status and future prospects. Remote Sensing Reviews, 1995, 12: 175–224
    [33] Wukelic, G. E. Radiometetric calibration of landsat Thematic mapper bound.Remote Sensing of Environment,2003, 28: 338-347
    [34] Sospedra, F. , Casells, V. , Valor, E. Effective wave number for thermal infrared bands application to landsat-TM. Int. J. Remote Sensing,2002, 19(11): 2105-2117
    [35] Sing, S. M. Brightness temperature algorithms for landsat thematic mapper data. Remote Sensing of Environment,2002, 24: 509-512
    [36] Prakash, A. , Gupta, R. P. , Saraf, A. K. A Landsat TM based comparative study of surface and subsurface fires in the jharia coalfield, India. Int. J. Remote Sensing, 2006,18(11): 2463-2469
    [37] Weng Q. A remote sensing—GIS evaluation of urban expansion and its impact on surface temperature in the ZhujiangDelta, China. International Journal of Remote Sensing, 2001, 22: 1999-2014
    [38] Byrne G F. Remotely sensed land cover temperature and soilwater status—a brief review. Remote Sensing of Environment, 1979, 8: 291-305
    [39] Walter H. Carnahan, Robert C. Larson. An analysis of an urban heat sink. Remote Sensing of Environment, 1990, 33: 65-71
    [40] Marina Stathopoulou and Constantinos Cartalis. Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Solar energy, 2007, 81(3): 358-368
    [41] Kim H H. Urban heat island. International Journal of Remote Sensing, 1992, 13: 2319-2336
    [42] Nichol J E. A GIS based approach to microclimate monitoring in Singapore’s high rise housing estates. Photogrammetric Engineering and Remote Sensing, 1994, 60: 225- 232
    [43] Goward, S. N. Thermal behavior of urban landscapes and the urban heat island. Physical Geography, 2004, 2(1): 19-23
    [44] Carlson, T. N. Regional-scale estimates of surface moisture availability and thermal inertia using remote thermal measurements. Remote Sensing Reviews, 1986(1): 197-247
    [45] Ben-Dor, E. , Saaron, H. Airborne video thermal radiometry as a tool for monitoring microscale structures of the urban heat island. Int. J. Remote Sensing, 1997, 18(4): 3039-3053
    [46] Streuker D. R. A remote sensing study of the urban heat island of Huston, Texas.International Journal of Remote Sensing, 2002(23):2595-2608
    [47] Goward, S. N. Thermal behavior of urban landscapes and the urban heat island. Physical Geography, 1981, 2: 19-33
    [48] Gitelson, A. , Y. J. Kaufman, and M. N. Merzlyak. Use of a grean channel in remote sensing of globe vegetation from EOS-MODIS. Remote sens. Environ, 1996
    [49] Christopher Small and Jacqueline W. T. Lu. Estimation and vicarious validation of urban vegetation abundance by spectral mixture analysis. Remote Sensing of Environment, 2006, 100(4): 441-456
    [50] Qihao Weng, Dengsheng Lu and Jacquelyn Schubring. Estimation of land surface temperature– vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 2004, 89(4): 467-483
    [51] Gallo K P, Tarpley J D. The comparison of vegetation index and surface temperature composites for urban heat-island analysis. Int J of Remote Sensing, 1996, 17: 3071~3076
    [52] Lambin, E. F. , Ehrlich, D. . The surface temperature–vegetation index space for land cover and land-cover change analysis. Int. J. Remote Sens, 1996(17): 463–487
    [53] Weng Q, Lu D S, Jacquel Yn S. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 2004 (89) :467-483
    [54] Gallo, K. P. L. , Mcnab, A. , Karl, T. R. et al. The use of a vegetation index for assessment of the urban heat island effect. Int. J. Remote Sensing, 1993, 14(11): 2223-2230
    [55] Gupta, R. K. , Prasad, S. , Seshasal, M. V. R. The estimation of surface temperature over an agriculture area in the state of Haryana and Panjab, India, and its relationship with the Normalized Difference Vegetation Index (NDVI), using NOAA-AVHRR data. Int. J. Remote Sensing, 1997, 18(18): 3729-3741
    [56] Rebecca L. Powell, Dar A. Roberts, Philip E. Dennison, et al. Hess Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sensing of Environment, 2007, 106(2): 253-267
    [57] Lo C. P, Faber J. Integration of landsat the matic mapper and census data forquality of life as sessment. Remote Sensing of Environment, 1997(62):133-157
    [58] Owen T W, Carlson T N, Gillies R R. An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. International Journal of Remote Sensing, 1998, 19(9): 1663-1681
    [59] Masek J. G, Lindsay F. E, Goward S. N. Dynamics of urban growth in the Washington DC metropolitan area, 1973-1996, From landsat observation[J]. International Journal of Remote Sensing, 2000, 21(18):3473-3486
    [60] Fei Yuan and Marvin E. Bauer. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 2007,106(3): 375-386
    [61] Linda B. Stabler, Chris A. Martin and Anthony J. Brazel. Microclimates in a desert city were related to land use and vegetation index. Urban Forestry & Urban Greening, 2005, 3(3-4): 137-147
    [62] Jackson, P. S. The evaluation of windy environments. Build. Environ, 1978, 13: 251–260
    [63] Blocken, B. , Stathopoulos, T. , Carmeliet, J. . CFD simulation of the atmospheric boundary layer-wall function problems. Atmospheric Environment, 2007, 41 (2): 238–252
    [64] Bert Blocken, Jan Carmeliet, Ted Stathopoulos. CFD evaluation of wind speed conditions in passages between parallel buildings—effect of wall-function roughness modifications for the atmospheric boundary layer flow. Journal of Wind Engineering. 2007: 941-962
    [65] Baskaran, A. , Kashef, A. . Investigation of air flow around buildings using computational fluid dynamics techniques. Eng. Struct. , 1996, 18 (11): 861–875
    [66] Willemsen, E. , Wisse, J. A. . Accuracy of assessment of wind speed in the built environment. Wind Eng. Ind. Aerodyn. , 2002: 1183–1190
    [67] Stathopoulos, T. , Storms, R. , 1986. Wind environmental conditions in passages between buildings. Wind Eng. Ind. Aerodyn, 1986, 24: 19–31
    [68] N. S. Dixon, J. W. D. Boddy, R. J. Smalley, et al. Evaluation of a turbulent flow and dispersion model in a typical street canyon in York, UK . Atmospheric Environment. 2006, 2
    [69] Martin Skote, Mats Sandberg, Ulla Westerberg , et al. Numerical and experimental studies of wind environment in an urban morphology. Atmospheric Environment, 2005, 8
    [70] Asami, Y. , Iwasa, Y. , Fukao, Y. , et al. Full-scale measurement of environmental wind on New-Shinjuku-Center—characteristics of wind in built-up area (part 2). In: Proceeding of Fifth Symposium on Wind Effects on Structures, 1978: 83–90
    [71] Meng, Y. , Hibi, K. Turbulent measurements of the flow field around a high-rise building. Wind Eng, 1998(76): 55–64
    [72] Tominaga, Y. , Mochida, A. , Murakami, S. , Large eddy simulation of flowfield around a high-rise building. In: 11th International Conference on Wind engineering, 2003
    [73] Yoshida, M. , Sanada, S. , Fujii, K. , et al. Full-scale measurement of environmental wind on New-Shinjuku-Center—characteristics of wind in built-up area (part 1). In: Proceeding of Fifth Symposium on Wind Effects on Structures, 1978: 75–82
    [74] Lawson, T. V. , Penwarden, A. D. . The effects of wind on people in the vicinity of buildings. In: Proceedings of the 4th Conference on Buildings and Structures, Heathrow, UK, 1975: 605–622
    [75] Tominaga, Y. , Mochida, A. , Shirasawa, T. et al. Cross comparisons of CFD results of wind environment at pedestrian level around a high-rise building and within a building complex. Asian Archit. Build. Eng, 2004, 3(1): 63–70
    [76] R. Yoshie, A. Mochida, Y. Tominaga, et al. Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan. Journal of Wind Engineering, 2007: 1551-1578
    [77] Franke, J. , Hirsch, C. , Jensen A. G. , et al. Recommendations on the use of CFD in predicting pedestrian wind environment, COST Action C14 Impact of Wind and Storms on City Life and Built Environment, 2004
    [78] Murakami, S. , Iwasa, Y. , Morikawa, Y. . Study on acceptable criteria for assessing wind environment at ground level based on residents’diaries. J. Wind Eng. Ind. Aerodyn, 1986, 24 (1): 1–18
    [79] Blocken, et al. . Modification of pedestrian wind comfort in the Silvertop Tower passages by an automatic control system. J. Wind Eng. Ind. Aerodyn, 2004, 92 (10):849–873
    [80] Koss, H. H. , Sahlmen, J. . Methods in pedestrian wind comfort assessment: Theoretical and practical comparisons. In: Proceedings of COST Action C14 Workshop, Nantes, 2002: 70–89
    [81] Kazuya Takahashi, Harunori Yoshida, Yuzo Tanaka, et al. Measurement of thermal environment in Kyoto city and its prediction by CFD simulation . Energy and Buildings, 2004, 8
    [82] Argiro Dimoudi and Marialena Nikolopoulou. Vegetation in the urban environment: microclimatic analysis and benefits. Energy and Buildings, 2003, 1
    [83] S. Yoshida, Study on effect of greening on outdoor thermal environment using three dimensional plant canopy model. Journal of Architectural Planning and Environmental Engineering, AIJ 536. 2000: 87–94
    [84] T. J. Williamson, E. Evyatar, Thermal performance simulation and the urban microclimate: measurement and prediction, in: Proceedings of the Seventh Internal IBPSA Conference, Rio de Janeiro, Brazil, 2001
    [85] Eddy Willemsen, Jacob A. Wisse. Design for wind comfort in The Netherlands: Procedures, criteria and open research issues. Journal of Wind Engineering, 2007: 1541-1550
    [86]李升峰,朱继业.城市人居生态环境.贵州:贵州人民出版社, 2002
    [87]王超,王沛芳.城市水生态系统建设与管理.北京:科学出版社, 2004
    [88]宋德萱.建筑环境控制学.北京:南京大学出版社, 2003
    [89]刘熙明,胡非,李磊.北京市夏季城市热岛特征及其近地层气象场分析, 2005
    [90]北京城市规划建设与气象条件及大气污染关系研究课题组.城市规划与大气环境,北京:气象出版社, 2004
    [91]“首都北京及周边地区大气、水、土环境污染机理与调控原理”网站[EB/OL]: http://www. becapex. com/, 2006. 12. 19
    [92]李会知.城市建筑风环境的风洞模拟研究.华北水利水电学院学报, 1999, 20(3):32-34
    [93]李磊,胡非,程雪玲等. Fluent在城市街区大气环境中的一个应用[J].中国科学院研究生院学报, 2004, 21(4): 476~480
    [94]刘辉志,姜瑜君,梁彬等.城市高大建筑群周围风环境研究.中国科学D辑:地球科学, 2005 , 35(增刊):84~96
    [95]张宁,蒋维楣.城市街渠内气流的数值模拟与分析.南京大学学报(自然科学), 2000, 36(6): 760-772
    [96]徐树建.城市工业布局中的盛行风向.临忻师专学报, 1996, 18(3): 47-48
    [97]桑建国,刘辉志,王保民,街谷环流和热力结构的数值模拟.应用气象学报, 2002/S1
    [98]汪光焘,王晓云,苗世光等.现代城市规划理论和方法的一次实践——佛山城镇规划的大气环境影响模拟分析.城市规划学刊, 2005(6):18-22
    [99]苏伟忠,杨英宝,杨桂山.南京市热场分布特征及其与土地利用覆被关系研究.地理科学, 2005, 25(6): 697-703
    [100]岳文泽.基于遥感影像的城市景观格局及其热环境效应研究.华东师范大学, 2005
    [101]黄荣峰,徐涵秋.利用Landsat ETM+影像研究土地利用/覆盖与城市热环境的关系——以福州市为例.遥感信息, 2005, (5): 36-39
    [102]范心昕,刘继海,钱彬等.我国主要城市热岛现象动态监测研究.环境监测与作物的估产的遥感研究论文集.北京:北京大学出版社, 1991: 171-189
    [103]刘继韩,从树平,刘莉.用NOAA的AVHRR影像进行城市热岛动态监测.环境监测与作物的估产的遥感研究论文集.北京:北京大学出版社, 1991: 190-198
    [104]蔡孟裔,郑景春,王成道.气象卫星在上海市热岛现象监测中的应用.徐希孺主编,环境监测与作物的估产的遥感研究论文集.北京:北京大学出版社, 1991: 199-209
    [105]周淑贞,吴林.上海下垫面温度与城市热岛.环境科学学报, 1987(9): 261-267
    [106]周红妹,周成虎,葛伟强.基于遥感和GIS的城市热场分布规律研究.地理学报, 2001, 56(2): 189-197
    [107]钱炜.城市户外热环境舒适性研究.重庆大学, 2003
    [108]陈哲,魏昱.规划与设计中城市气候问题探讨.新建筑, 1999(1): 67-68
    [109]林波荣.绿化对室外热环境影响的研究.清华大学, 2004
    [110]杨志华.与气候相适宜的建筑节能--对传统民居的研究启示.华中建筑, 2006, 24(9): 32-33
    [111]郑洁.夏热冬冷地区居住小区户外空间气候适应性设计策略研究.华中科技大学, 2005
    [112]茅艳.人体热舒适气候适应性研究.西安建筑科技大学, 2006
    [113]李愉.应对气候的建筑设计——在重庆湿热山地条件下的研究.重庆大学, 2006
    [114]左力.适应气候的建筑设计策略及方法研究.重庆大学建筑城规学院, 2003
    [115]陈宇青.结合气候的设计思路——生物气候建筑设计方法研究.华中科技大学, 2005
    [116]林宪德.绿色建筑.北京:中国建筑工业出版社, 2007
    [117]吴良镛.广义建筑学,北京:中国建筑工业出版社, 1989
    [118]刘新.合肥市城区绿地系统小气候效应及景观生态建设研究.安徽农业大学, 2004
    [119]赵鸣.大气边界层动力学.北京:高等教育出版社, 2006
    [120]王金星,卞林根,高志球.城市边界层湍流和下垫面空气动力学参数观测研究.气象科技, 2002, 30 (2): 65-79
    [121]杨小波,吴庆书,邹伟等.城市生态学.北京:科学出版社, 2006
    [122]何晓凤,蒋维楣,陈燕等.人为热源对城市边界层结构影响的数值模拟研究.地球物理学报, 2007, 50 (1): 74-82
    [123] Arnold C L, Gibbons C J. Imoervious surface coverage: The emergence of a key environmental indicatior. Journal of the American Planning Association, 1996, 62(2): 243-258
    [124] RIDD M K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities. INT. J. Remote Sensing, 1995, 16 (12): 2165-2185
    [125]李胜.厦门市城市热岛_径流量和不透水面的遥感信息提取研究.福州大学, 2005
    [126]刘骏,蒲蔚然.城市绿地系统规划与设计.北京:中国建筑工业出版社, 2004
    [127] Auguster Heckscher. Open space-the life of American city. New York: Harper & Row, 1984: 55-69
    [128]高原荣重.城市绿地规划.杨增志,阎稳藩,纪昭明译.北京:中国建筑工业出版社, 1983: 8-42
    [129]杨士弘.城市生态环境学.北京:科学出版社, 1999
    [130]白雪莲.实现节能与健康的绿化体系.重庆大学学报(自然科学版), 2002, 5(8): 77-81
    [131]黄晓鸾.居住区环境设计.北京:中国建筑工业出版社, 1994
    [132]徐竟成,朱晓燕,李光明.城市小型景观水体周边滨水区对人体舒适度的影响.中国给水排水, 2007, 23 (10): 101-104
    [133]陈述彭,童庆禧,郭华东.遥感信息机理研究.北京:科学出版社, 1998
    [134] Pratt, D. A. A calibration procedure for fourier series thermal inertia models. Photogrammetric Engineering and Remote sensing, 1980, 46(4):529-538
    [135]徐振东.城市热岛效应成因的研究与分析.大连理工大学, 2003
    [136]王远飞,沈愈.上海市夏季温湿效应与人体舒适度.华东师范大学学报(自然科学版), 1998(3): 60-66
    [137]江亿,林波荣,曾剑龙等.住宅节能.北京:中国建筑工业出版社, 2006
    [138] [EB/OL]: http://baike. baidu. com/view/820599. htm?fr=topic
    [139]李冬宁,李先庭,窦春鹏.实际空调系统中空气龄的计算方法.清华大学, 2002
    [140]刘梅,于波,姚克敏.人体舒适度研究现状及其开发应用前景.气象科技, 2002, 30 (1): 11-14
    [141]杭州气象.人体舒适度指数分级[EB/OL]: http://www. hzqx. com/gzhfw/ disremo. asp? no=84, 2007-2-23
    [142]杨英宝,苏伟忠,江南.基于遥感的城市热岛效应研究.地理与地理信息科学, 2006, 22(5): 36-40
    [143]田国良.热红外遥感.北京:电子工业出版社, 2006
    [144]王才军.基于RS的城市热岛效应研究.重庆师范大学, 2006
    [145]王伟武.地表演变对城市热环境影响的定量研究.浙江大学, 2004
    [146]王桥,杨一鹏,黄家柱等.环境遥感.北京:科学出版社, 2005
    [147]杨惠岚.多源卫星遥感影像在城市规划中的应用.科技情报开发与经济, 2006, 16(19): 145-149
    [148]吴卿. SPOT5在小流域水土保持生态建设遥感监测中的应用.中国水土保持SWCC, 2007(8): 52-54
    [149]冯钟葵,石丹,陈文熙等.法国遥感卫星的发展——从SPOT到Pleiades.遥感数据, 2007(4): 87-92
    [150] IKONOS(艾科诺斯)卫星[EB/OL]: http:// www. geoview. com. cn/ weixing_ nei. asp, 2006-9-11
    [151] QuickBird卫星[EB/OL]: http://www. bsei. com. cn, 2006-6-27
    [152]马照松.卫星热红外准实时数据处理综合技术与异常提取模型研究及其应用.中国地震局地质研究所, 2005
    [153]张治坤,桑建国.不均匀地表产生的中尺度通量的数值试验.大气科学, 2000, 24 (05): 694-702
    [154]郭晓寅,程国栋.遥感技术应用于地表面蒸散发的研究进展.地球科学进展, 2004, 19(1): 107-114
    [155]闫敬华,戴光丰,袁卓建. CFD方法在街巷气象场模拟和预测中的应用.气象, 2006, 32(11): 12-18
    [156]村上周三. CFD与建筑环境设计.朱清宇等译.北京:中国建筑工业出版社, 2007
    [157]赵英时.遥感应用分析原理与方法.北京:科学出版社, 2006
    [158]贾永红.多元遥感影像数据融合技术.北京:测绘出版社, 2005
    [159]顾晓鹤.遥感影像数据融合原理与方法, 2003: 5-6
    [160]覃志豪, ZhangMinghua, ArnonKarnieli, et al.用陆地卫星TM6数据演算地表温度的单窗算法.地理学报, 2001, 56 (4): 456-466
    [161] Landsat 7用户手册. [EB/OL]: http:// landsathandbook. gsfc. nasa. gov/handbook/ handbook_htmls/chapter11/chapter11. html, 2006-12-11
    [162]覃志豪, LI Wenjuan、ZHANG Minghua等.单窗算法的大气参数估计方法.国土资源遥感, 2003(56): 37-43
    [163]覃志豪,李文娟,徐斌等.陆地卫星TM6波段范围内地表比辐射率的估计.国土资源遥感, 2004(61): 28-41
    [164]李净.基于Landsat-5TM估算地表温度.遥感技术与应用, 2006, 21(4): 322-326
    [165]杨景梅,邱金恒.我国可降水量同地面水汽压关系的经验表达式. 1996, 20(5): 620-626
    [166]涂梨平.利用Landsat TM数据进行地表比辐射率和地表温度的反演.浙江大学, 2006
    [167]徐涵秋.基于谱间特征和归一化指数分析的城市建筑用地信息提取.地理研究, 2005, 24(2): 311-320
    [168]田平,田光明,王飞儿等.基于TM影像的城市热岛效应和植被覆盖指数关系研究.科技通报, 2006, 22(5):708-713
    [169]刘仁钊,廖文峰.遥感图像分类应用研究综述.地理空间信息, 2005, 3(5): 11-13
    [170]吴非权,马海州,沙占江.基于决策树与监督、非监督分类方法相结合模型的遥感应用研究.盐湖研究, 2005, 13(4): 9-13
    [171]孟飞,刘敏,张心怡. ETM影像中城镇覆盖与背景信息的提取.华东师范大学学报(自然科学版), 2005, (4): 59-86
    [172]王琳.福州及其毗邻地区的土地利用变化、城市热岛和蒸发(散)量遥感信息反演的研究.福州大学, 2005
    [173]郭玉川,董新光. SEBAL模型在干旱区区域蒸散发估算中的应用.遥感信息, 2007(3): 75-78
    [174]张晓涛.区域蒸发蒸腾量的遥感估算--以民勤绿洲为例.西北农林科技大学, 2006
    [175]徐丽君.黄河三角洲湿地生态需水量研究.北京中国科学院地理科学与资源研究所, 2006
    [176] Masahiro Tasumi. Progress in operational estimation of regional evapotranspiration using satellite imagery. University of Idaho, 2003
    [177] Nelson, Kimberly, Richard Allen, et al. SEBAL advanced training and users manual. Water consulting, University of Idaho, WaterWatch, INC. Funded by aNASA EOSDIS/Synergy grant from the Raytheon Company through the Idaho department of water resource, 2002
    [178]李红军,雷玉平,郑力等. SEBAL模型及其在区域蒸散研究中的应用.遥感技术与应用, 2005, 20 (03): 321-325
    [179] Ecotect[EB/OL]. http://www. squ1. com
    [180]唐子来,付磊.城市密度分区研究_以深圳经济特区为例.城市规划会刊, 2003, (4): 1-9
    [181]赵飞,王忠静,刘权.洪水资源化与湿地恢复研究[J].水利水电科技进展, 2006, 26(1): 6-19
    [182] Hunt, J. C. R. , et al. . The effects of wind on people; new criteria based on wind tunnel experiments. Build. Environ. 1976, 11: 15–28
    [183] Rotach, M. W. . Profiles of turbulence statistics in and above an urban street canyon. Atmos. Environ. 1995, 29(13): 1473–1486
    [184] Stathopoulos, T. . Design and fabrication of a wind tunnel for building aerodynamics. . Wind Eng. Ind. Aerodyn. , 1984, 16: 361–376
    [185] G. Evola and V. Popov. Computational analysis of wind driven natural ventilation in buildings[J]. Energy and Buildings, 2006, 38(5): 491-501
    [186] C. Ghiaus, F. Allard, M. Santamouris, et al. Urban environment influence on natural ventilation potential [J]. Building and Environment, 2006, 41: 395-406
    [187] K. Ahmad, M. Khare and K. K. Chaudhry. Wind tunnel simulation studies on dispersion at urban street canyons and intersections—a review[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(09): 697-717
    [188]陶康华,陈云浩,周巧兰等.热力景观在城市生态规划中的应用.城市研究, 1999(1): 20-63
    [189]楔形绿地缓解热岛效应. [EB/OL]: http://www. nuca. gov. cn/dsfx/dsfxwz. asp?id=302
    [190]杨·盖尔,拉尔斯吉姆松.新城市空间.何人可,张卫,邱灿红等译.北京:中国建筑工业出版社, 2003
    [191]易军红,郭美锋.构建合生态廊道与非机动车绿色通道为一体的城市绿色通道网络系统[J].江西农业大学学报(社会科学版), 2004, 3(9): 100-102
    [192]李鹍,余庄.武汉地区风环境影响下湿地调温作用的模拟分析.资源科学, 2006, 28(6): 51-59
    [193]李鹍,余庄.基于气候调节的城市通风道探析.自然资源学报, 2006, 21(6): 991-997
    [194] Li Kun, Yu Zhuang. Design and simulative evaluation of architectural physical environment with Ecotect. CADDM, 2006, 16(2): 44-50
    [195] Li Kun, Yu Zhuang. The Urban Design Research around Water Surface of the Cities of Coldness in Winter And Heat in Summer Based on Climate Sensitivity. In: 6th International Symposium on Architectural Interchanges in Asia. Daegu, Korea: 2006: 684-687
    [196]余庄,张辉.城市规划CFD模拟设计的数字化研究.城市规划, 2007(6): 52-55
    [197]余庄,张辉.夏热冬冷地区办公建筑节能的数字分析和规划策略.建筑学报, 2007(7): 42-45
    [198]余庄,张辉.可持续发展视角下的大都市区域发展规划模拟与分析.城市建筑, 2007(8):63-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700