行波热声发动机的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热声效应是热与声之间相互转换的现象,即声场中的时均热力学效应。热声发动机是一种通过热声效应实现热能与声能转化的装置。用热声发动机取代机械式压缩机来驱动脉管制冷机或其它热声制冷机是完全消除制冷系统运动部件以延长制冷系统运行寿命的新思路。1979年Ceperley首先提出了行波型热声发动机概念。由于行波热声发动机在回热器中进行的是可逆热声转换过程,并且声场中速度和压力相位相同,所以可以更高效地产生和传输声功。因此行波热声发动机也就成为这一领域的研究热点。
     本文简要回顾了热声学的历史和研究现状,并从不同角度对热声机械的基本原理进行了论述。根据前人的观点并结合自己对热声热机的理解,给出了热声热机工作机理的热力学解释。
     在可行性分析之后,设计并搭建了一台大型多功能行波热声发动机。该热声发动机长4.5米,高1.25米,设计最大输入功率5千瓦。它不仅可以用于行波与驻波混合型热声发动机实验,还可以单独进行行波环路实验及热声发动机驱动脉管制冷机实验。该热声发动机比纯驻波型热声发动机具有更低的起振温度、更大的压比及更高的热声转换效率。以氮气为工质,在充气压力为0.9MPa的条件下,该热声发动机最大压比达1.21,工作频率为25Hz,这是当前国际上处于前列的实验结果。
Thermoacoustic effect is the phenomenon of the conversion between thermal energy and acoustic power. Thermoacoustic engine is a kind of machine, which converts thermal energy into acoustic power by thermoacoustic effect. It is a new way of thinking to drive a pulse-tube refrigerator or other thermoacoustic refrigerators by using thermoacoustic engines instead of mechanical compressors so as to completely eliminate moving parts of refrigeration system for more reliable operation. Ceperley first proposed the idea of traveling-wave thermoacoustic heat engine in 1979 and it was practically realized by Swift in 1999. Because the thermoacoustic conversion process that occurs in its regenerator is reversible and velocity is in phase with pressure, traveling-wave thermoacoustic engine can produce and transmit acoustic power with higher efficiency theoretically.
    After a detailed review on the developments of the research on thermoacoustics, as well as the latest advancements in this field, prospective applications, and a survey of theoretical fundamentals, the author's work focuses on the following sections:
    According to predecessors' explanations, as well as personal understanding on thermoacoustic effects, a qualitative explanation for the operating mechanism of thermoacoustic engines from thermodynamic viewpoint is presented.
    After the analysis of feasibility, a large-scale multi-function thermoacoustic-stirling heat engine has been designed and constructed. With the length and height of 4.5meters and 1.25 meters, respectively, the engine is designed to have the maximal input power of 5,000W. It can operate in traveling wave mode with only the torus in experiment, as well as in hybrid mode of standing wave and traveling wave with the whole engine working, and it can be also used to drive a pulse-tube refrigerator. In comparison with standing-wave heat engine, it has lower onset temperature and higher pressure ratio, which is of great significance for introducing a variety of energies of low quality into thermoacoustic engines, such as solar energy, waste vapor energy and so on. With the filling nitrogen of 0.9 MPa, the maximal pressure ratio reaches 1.21 and the operation frequency is 25 Hz, which is a rather good result in this field.
引文
[1] Radebaugh R. A review of pulse tube refrigeration. Adv Cryo Eng, 1990; 35 (B): 1191-1025
    [2] Radebaugh R. Recent developments in cryocoolers. Proceedings of 19th Int'l Congress on Refrigeration, 1995; Ⅲb: 973-988
    [3] Radebaugh R. Advances in cryocoolers. Proceedings of the ICEC 16/ICMC, Japan, 1996:33
    [4] Walker G. Miniature refrigerators for cryogenic sensors and cold electronics. Oxford: Oxford University Press, 1989
    [5] Walker G. Stirling engines. Oxford: Clarendon, 1960
    [6] Organ A J. Thermodynamics and gas dynamics of the Stirling cycle machine. Cambridge University Press, 1992
    [7] Gifford W E. The Gifford-McMahon cycle. Adv Cryo Eng, 1961; 11: 152
    [8] Gifford W E, Longsworth R C, Pulse tube refrigeration. Trans ASME, J Eng Ind, 1964; 86: 264-270
    [9] Gifford W E, Longsworth R C. Surface heat pumping. Adv Cryo Eng, 1966; 11: 171-179
    [10] Mikulin E I et al. Low-temperature expansion pulse tube. Adv Cryo Eng, 1984; 29:629
    [11] Zhu S W et al. A single-stage double inlet pulse tube refrigerator capable of reaching 4.2K. Cryogenics, 1995; 35: 1207
    [12] 蒋彦龙,陈国邦,G.Thummes.20K以下温区单级脉管制冷机直流控制实验研究.低温工程,2002,6:3~18
    [13] Xu M Y, de Waele A T A M, Ju Y L. A pulse tube refrigerator below 2K. Cryogenics, 1999; 39 (10): 865-869
    [14] Radebaugh R et al. Development of a thermoacoustically driven orifice pulse tube refrigerator. Proceedings of 4th Interagency Meeting on Cryocoolers, Plymouth, MA, David Taylor Research Center, 1990; Navy Report DTRC91/003:205
    [15] Swift G W, Radebaugh R. Acoustic cryocooler. U. S. Patent, 4953366, 1990
    [16] Godshalk K M, Jin C, Kwong Y K, Hershberg E L, Swift G W, Radebaugh R. Characterization of 350 Hz thermoacoustic driven orifice pulse tube refrigerator with measurements of the phase of the mass flow and pressure. Adv Cryo Eng, 1996; 41: 1411-1418
    [17] Chen G B, Qiu L M, Jiang N et al. Experimental investigation on a pulse tube refrigerator driven by thermoacoustic prime mover. Cryocooler, 2001; 11:301-308
    [18] Chen R L, Garrett S L. Solar/heat-driven thermoacoustic engine. J Acoust Soc Am, 1998; 103 (5) Pt 2: 2841
    [19] A deff J A, Hofler T J. Design and construction of a solar powered, thermoacoustically driven thermoacoustic refrigerator. At web site: http://www.physics.nps.navy.mil/hofler, 2000
    [20] Swift G W. Thermoacoustic natural gas liquefier. DOE Natural Gas Conference, Houston,
    
    1997: 1-5
    [21] Wollan J J, Swift G W, Wijngaarden W V. Development of a thermoacoustic natural gas liquefier. Proceedings of American Gas Association Operations Conference, Denver, 2000:1-10
    [22] Hofler T J. Concepts for thermoacoustic refrigeration and a practical device. Proceedings of the 5th Int'l Cryocooler Conference, Monterey, CA, 1988:93
    [23] Garrett S L, Hofler T J. Thermoacoustic refrigeration. ASHRAE Journal, 1992; 34:28-36
    [24] Wheatley J C, Hofler T J, Swift G W, Migliori A. An intrinsically irreversible thermoacoustic heat engine. J Acoust Soc Am, 1983; 74:153
    [25] Swift G W, Migliori A, Hofler T J, Wheatley J C. Theory and calculations for an intrinsically irreversible acoustic prime mover using liquid sodium as primary working fluid. J Acoust Soc Am, 1985; 78:767
    [26] Backhaus S, Swift G W. A thermoacoustic Stirling engine. Nature, 1999; 399:335-338
    [27] 金滔,陈国邦,应哲强.关于热声驱动脉管匹配问题的讨论.低温工程,1999:(3):27
    [28] Lou E C, Xiao J H, Zhou Y. A simplified thermoacoustic modeling for pulse tube refrigerator. Proceedings of the 4th JSJS, Beijing, 1993:94
    [29] 肖家华.热声效应和回热式低温制冷机(热机)的热声理论.中国科学院物理研究所博士学位论文,1990年12月
    [30] 邓晓辉,胡晓,郭方中.回热器的热声网络模型.低温工程,1996:90(2):6-13
    [31] 邓晓辉.回热器的热声机理及热声热机的设计理论.华中理工大学博士学位论文,1994年5月
    [32] Xiao J H. Thermoacoustic heat transportation and energy transformation part 1: formulation of the problem. Cryogenics, 1995; 35:15-19
    [33] Xiao J H. Thermoacoustic heat transportation and energy transformation part 2: isothermal wall thermoacoustic effects. Cryogenics, 1995; 35:21-26
    [34] Xiao J H. Thermoacoustic heat transportation and energy transformation part 3: adiabatic wall thermoacoustic effects. Cryogenics, 1995; 35:27-29
    [35] Swift G W. Thermoacoustics: A unifying perspective for some engines and refrigerators. Textbook on Thermoacoustics (Fourth Draft), Los Alamos National Laboratory, web site: http://www.lanl.gov/projects/thermoacoustics/, 1999
    [36] Rijke P L. Notiz über eine neue Art, die in einer an beiden Enden of fenen Rhre enthaltene Luft in Schwingungen zu versetzen. Ann Phys (Leipzig), 1859; 107:339
    [37] Feldman K T. Review of the literature on Sondhauss thermoacoustic phenomena. J Sound Vib, 1968; 7(1): 71-82
    [38] Sondhauss C. Ueber die Schallschwingungen der Luft in erhitzten Glasrhren und in gedeckten Pfeifen von ungleicher Weite. Ann Phys (Leipzig), 1850; 79:1
    [39] Feldman K T. Review of the literature on Rijke thermoacoustic phenomena. J Sound Vib, 1968; 7 (1): 83-89
    [40] Kirchhoff G. Ueber den Einfluss der Wrmeleitung in einem Gas auf die Schallbewegung.
    
    Ann Phys(Leipzig), 1850; 79:1
    [41] 金滔,白烜,颜鹏达,甘智华,陈国邦.可视化Rijke型热声振荡演示器的研制.低温与超导,1998;26(3):42-46
    [42] Rayleigh L. The theory of sound. UK: Dover Publications, 1896; Sections 322f-322k
    [43] Taconis K W. Vapor-liquid equilibrium of solutions of ~3He in ~4He. Physica, 1949; 15:738
    [44] Kramers H A. Vibration of a gas column. Physica, 1949; 15:971
    [45] Yazaki T, Tominaga A, Narahara Y. Stability limit for thermally driven oscillations. Cryogenics, 1979; 19:393-396
    [46] Rott N. Thermoacoustics. Adv Appl Mech, 1980; 20:135
    [47] Rott N. Damped and thermally driven acoustic oscillations in wide and narrow tubes. Z Angew Math Phys, 1969; 20:230
    [48] Rott N. Thermally driven acoustic oscillations, part Ⅱ: Stability limit for helium. Z Angew Math Phys, 1973; 24:54
    [49] Rott N. Thermally driven acoustic oscillations, part Ⅲ: Second-order heat flux. Z Angew Math Phys, 1975; 26:43
    [50] Rott N, Zouzoulas G. Thermally driven acoustic oscillations, part Ⅳ: Tubes with variable cross-section. Z Angew Math Phys, 1976; 27:197
    [51] Zouzoulas G, Rott N. Thermally driven acoustic oscillations, part Ⅴ: Gas-liquid oscillations. Z Angew Math Phys, 1976; 27:325
    [52] Rott N. The influence of heat conduction on acoustic streaming. Z Angew Math Phys, 1974; 25:417
    [53] Rott N. Linear thermoacoustics. First Workshop on Thermoacoustics, the Netherlands, April 2001: 8
    [54] Merkli P, Thomann H. Thermoacoustic effects in a resonance tube. J Fluid Mech, 1975; 70: 161-177
    [55] Thomann H. Acoustical streaming and thermal effects in pipe flow with high viscosity. Z Angew Math Phys, 1976; 27:709-715
    [56] Merkli P, Thomann H. Transition to turbulence in oscillating pipe flow. J Fluid Mech, 1975; 68: 567-575
    [57] Swift G W. Thermoacoustic engines. J Acoust Soc Am, 1988; 84:1145-1180
    [58] Wheatley J C, Cox A. Natural engines. Physics Today, 1985; 38:50
    [59] Olson J R and Swift G W. Similitude in thermoacoustics. J Acoust Soc Am, 1994; 95 (3): 1405-1412
    [60] Olson J R, Swift G W. Acoustic streaming in pulse tube refrigerators: Tapered pulse tube. Cryogenics, 1997; 37: 769-776,
    [61] Olson J R, Swift G W. Suppression of acoustic streaming in tapered pulse tubes, in Ross R G Jr.. editor. Cryocoolers 10, Plenum, New York, 1999:307-313
    [62] Ward W C, Swift G W. Design environment for low-amplitude thermoacoustic engines. J Acoust Soc Am, 1994; 95 (6): 3671
    
    
    [63] Worlikar A S and Knio O M. Numerical simulation of a thermoacoustic refrigerator. J Computational Physics, 1996; 127:424-451
    [64] Wetzel M, Herman C. Design optimization of thermoacoustic refrigerators. Int J Refrigeration, 1997; 20 (1): 3-21
    [65] Gu Y F, Timmerhaus K D. Mass--spring analyses of thermal acoustic oscillations in a helium system. Proceedings of 19th Int'l Congress of Refrigeration, 1995; Ⅲb: 1115~1122
    [66] ominaga A. Thermodynamic aspects of thermoacoustic theory. Cryogenics, 1995; 35: 427-440
    [67] Tominaga A. The second step of thermoacoustic theory. Cryogenic Engineering, 1992; 27:43 (in Japanese)
    [68] Tominaga A. Thermoacoustic theory of viscous fluid part 1--Energy conversion and energy flux of small cycles. Cryogenic Engineering, 1992; 27 (7): 543-548 (in Japanese)
    [69] Tominaga A. Thermoacoustic theory of viscous fluid part 2--Average over the cross-sectional area of flow channel. Cryogenic Engineering, 1992; 27 (7): 549-554 (in Japanese)
    [70] Tominaga A. Thermoacoustic theory of viscous fluid part 3--Radial distribution of velocity and entropy. Cryogenic Engineering, 1993; 28 (2): 99-107 (in Japanese)
    [71] Tominaga A. Thermoacoustic theory of viscous fluid part 4--Axial variations. Cryogenic Engineering, 1993; 28 (2): 108-113 (in Japanese)
    [72] Tominaga A. Thermoacoustic theory and its applications to refrigerators. Proceedings of 3rd JSJS, Okayama, 1989:141-146
    [73] Tominaga A. Thermoacoustic theory of regenerator in refrigerator. Cryogenic Engineering, 1992; 26 (1): 30-36 (in Japanese)
    [74] Tominaga A. Phase dependance of energy flows in a regenerator. Cryogenic Engineering, 1993; 27 (1): 63-69 (in Japanese)
    [75] Tominaga A. Phase dependence of pulse tube refrigerators. Cryogenic Engineering, 1993; 27 (1): 134-141 (in Japanese)
    [76] 富永昭.热音响工学(Fundamental Thermoacoustics).日本:内田鹤圃,1998(日语)
    [77] 韩飞,沙家正.Rijke管热声非线性地不稳定增长过程的研究.声学学报,1996;21(4):362-367
    [78] 韩飞,岳国森,沙家正.Rijke热声振荡的非线性效应.声学学报,1997;22(3):5
    [79] 韩飞,杨军,沙家正.Rijke热声振荡的有源控制.声学学报,1997:22(5):9
    [80] 戴根华.声致冷与声制冷机.物理,1992;21(1):48-5
    [81] 王本仁,缪国庆.热声热机场方程的改进计算.应用声学,1994;13(4):38-43
    [82] Luo E C, Xiao J H, Zhou Y. A simplified thermoacoustic modeling for pulse tube refrigerator. Proceedings of the 4th JSJS, Beijing, 1993:94
    [83] Radebaugh R. A review of pulse tube refrigeration. Adv Cryo Eng, 1990; 35 (B): 1191-1025
    [84] Radebaugh R et al. Development of a thermoacoustically driven orifice pulse tube refrigerator. Proceedings of 4th Interagency Meeting on Cryocoolers, Plymouth, MA, David
    
    Taylor Research Center, 1990; Navy Report DTRC91/003:205
    [85] Swift G W. Analysis and performance of a large thermoacoustic engine. J Acoust Soc Am, 1992; 92 (3): 1551-1563
    [86] 邱利民,蒋宁,陈国邦.丝网热声板叠的最佳填充率.太阳能学报,2001,Vol.22,No.3:322-326
    [87] T. Jin, G.B.chen A thermoacoustically driven pulse tube refrigerator capable of working below 120k. Cryogenics, 2001, 41: 595 -- 601
    [88] Ceperley P H. A pistonless Stifling engine - the traveling wave heat engine. J Acoust Soc Am, 1979; 66 (5): 1508-1513
    [89] Ceperley P H. Gain and efficiency of a short traveling wave heat engine. J Acoust Soc Am, 1985; 77:1239-1244
    [90] Yazaki T et al. Traveling wave thermoacoustic engine in a looped tube. Physical Review Letters, 1998; 81:3128-3131
    [91] Gedeon D. DC gas flows in Stirling and pulse tube cryocoolers. In R.G.Ross Jr.. editor. Cryocoolers 9, Plenum, New York, 1997:385-392
    [92] Swift G W, D.L.Gardner, Backhaus S. Acoustic recovery of lost power in pulse tube refrigerators. J Acoust Soc Am, 1999; 105:711-724
    [93] Backhaus S and Swift G W. A thermoacoustic-Stirling engine: detailed study. J Acoust Soc Am, 2000; 107 (6): 3148-3166
    [94] Swift G W. Hybrid thermoacoustic-Stirling engines and refrigerators. Proceedings of Int'l Symposium on Energy Engineering (SEE 2000), Hong Kong, 2000:2-17
    [95] Jin T. Realization of a travelling wave thermoacoustic engine--thermoacoustic Stirling engine. Research Report of LIMSI-CNRS(France), 2000
    [96] T.Biwa, Y.Ueda, T.Yazaki, U.Mizutani. Work flow measurements in a thermoacoustic engine, Cryogenics, 2001, 41: 305-310
    [97] 刘海东,罗二仓等.高效热致声发动机的新方案探索及其热力分析.低温工程,1999;(4):90-94
    [98] 刘海东,罗二仓.行波型热声发动机的实验研究.低温工程,2000,115(3):23~28
    [99] G.Penelet, E.Gaviot Experimental investigation of transient nonlinear phenomena in an annular thermoacoustic prime-mover: observation of a double-threshold effect. Cryogenics, 2002, 42:527~532
    [100] 金滔.热声驱动器及其驱动的脉管制冷研究,浙江大学博士学位论文,2001
    [101] 杜功焕,朱哲民等.声学基础.南京大学出版社,2001
    [102] 罗志昌.流体网络理论.机械工业出版社,1988
    [103] 黄成骏.空气预热器原理与计算.同济大学出版社,1995
    [104] A.A.约宁(著),李猷嘉 王民生(译),《煤气供应》,中国建筑工业出版社,1986,9
    [105] 日本煤气协会(编),李强霖等(译),《煤气应用手册》,中国建筑工业出版社,1989.5
    [106] 张松寿编,《工程燃烧学》,上海交通大学出版社,1988,1
    [107] 黄素逸编著,《能源科学导论》,中国电力出版社,1999,9
    [108] 岑军健等编,《非标准设备设计手册》,国防工业出版社,1983,12
    [109] 梁文林,夏越良,《高频感应加热设备的原理、工程计算、调整与维修》,机械工业出版社,1986,7
    
    
    [110] 梁文林,《感应加热装置》,机械工业出版社,1981,4
    [111] Steven L.Garrett, David K.Perkins, Thermoacoustic refrigerator heat exchangers: design, analysis and fabrication. Proceedings of the 10th International Heat Transfer Conference Braghton, UK.
    [112] 金滔,陈国邦,应哲强.热声驱动器冷却器性能分析.低温与超导,1999,27(2):49~54
    [113] 孙大明,邱利民,张武.可用于热声发动机的加热方式.低溫与超导,2002,30(2):27~31
    [114] 欧阳录春,邱利民,张武,孙大明,谢雪梅.热声系统起振机理的初步研究.低温工程,2002,第五期:7~11
    [115] Yuki Ueda, T.Biwa. Construction of a thermoacoustic stirling cooler. Preprint submitted to LT 23 proceedings.
    [116] 孙力勇.行波型热声发动机及其驱动的脉冲管的实验研究.中国科学院硕士论文

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700